Lecture Notes In

Computer Science

Edited by G. Goos and J. Hartmanis

206

~ Automata, 4 |
| Languages and Programmlng

13th International Colloqu:um
_Rennes, France, July 1986
Proceedings

Edited by Laurent Kott

S : o
@ Springe‘r-Ve‘rIag, L

gt

S G76l13s

A} " Lecture Notes in
1w Gomputer Science

Edited by G. Goos and J. Hartmanis

—
T
" -
H LI |
L 2 |
% e 1258 b B
\ .

Automata, |
Languages and Programming

13th International Colloquium
Rennes, France, July 15—19, 1986
Proceedings

D

Edited by Laurent Kott

ey

- E8761142

|-

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo

~ Editorial Board
D. Barstow W.Brauer P.Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Editor 2

Laurent Kott _ o

IRISA-INRIA Rennes, ==+,
Campus de Beaulieu & 3., ‘
35042 Rennes, France o8

CR Subject Classifications (1985): F.1, F.2, F.3, F.4,G.1.2,G.1.3,G.2.2

ISBN 3-540-16761-7 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-16761-7 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1986
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

PREFACE PSR

¥l

Y P 0, 7
ICALP is the annual European summer cont‘ef,éﬂceg‘b'ﬁ Theoretical Computer
Science sponsored by the European Association on Tbkgoretigalﬂ Computer Science
(EATCS). S

ICALP stands for International Colloquium on Automata, Languages and
Programming, but this conference intends to cover all important areas of theoretical
computer science such as automata theory, formal language theory, analysis of
algorithms, computational complexity, computability theory, mathematical aspects of
programming language definition, logic and semantics of programming languages, program
specification, theory of data structures, theory of data bases, cryptology, VLSI
structures.

Previous colloquia were held in Nafplion (1985), Antwerpen (1984), Barcelona
(1983), Aarhus (1982), Haifa (1981), Amsterdam (1980), Graz (1979), Udine (1978),
Turku (1977), Edinburgh (1976), Saarbriicken (1974) and Paris (1972).

ICALP 86 was organized by INRIA and located at INRIA Center of Rennes
(called IRISA).

From a total of 140 submitted papers, 48 have been accepted by the Selection
Committee, that consisted of W. BRAUER (Hamburg), J. DIAZ (Barcelona), Ph. FLAJOLET
(Rocquencourt), J. GRUSKA (Bratislava), J. KARHUMAKI (Turku), L. KOTT (Rennes),
K. MEHLHORN (Saarbricken), U. MONTANARI (Pisa), M. NIVAT (Paris), D. PERRIN
(Paris), G. PLOTKIN (Edinburgh), A. RESTIVO (Palermo), R. SETHI (Murray Hill),
W. THOMAS (Aachen).

There were three invited lecturers : M.P. SCHUTZENBERGER (Paris) with
"Les ambiguités de la Pureté", A. SCHONHAGE (Tubingen) with "Tape versus pointers :
a study in implementing fast algorithms" and G. HANSEL (Rouen) with "Symbolics
dynamics, automata theory and coding". These lectures are however not contained in
this volume.

I am grateful for the support from Bull Company, City of Rennes and Regional
Council of Brittany.

I also thank all those who made this conference possible, especially the
members of the Program Committee who consisted of members of the selection
committee plus L. GUIBAS (Palo Alto) and G. ROZENBERG (Leiden), the staff of INRIA
(Rennes .and Rocquencourt), especially M. GLEVEO, S. GOSSET and E. LEBRET.

Rennes, May 1986 Laurent KOTT
Program Committee Chairman

REFEREES FOR ICALP 86

AALBERSBERG 1J.J.
AMBOS-SPIES K.
ANCILOTTI P.
APT K.R.
AUSIELLO G.

BAIARDI F.
BALCAZAR J.L.
BEAUQUIER J.
BELLIA M.
BERSTEL J.
BERTONI A.
BONUCCELLI M.A.
BREBNER G.J.
BRODER A.
BUDACH L.

CARALLI A.L.
CARDELLI L.
CASAS R.
CERNY A.

COHN E.

COSTA G.
COURCELLE B.
CROCHEMORE M.
CULIK II K.

D'ARTRI R.

DEGANO P.
DELPORTE-GALLET C.
DE NICOLA R.
DEZANI-CIANCAGLINI M.
DIEKERT V.

DOBERKAT E.E.

DURIS P.

ENGELFRIET 7.
EVEN S.

FEHR E.
FEIGENBAUM J.
FANTECHI A.
FONTET M.
FRAENKEL A.S.
FRIBOURG L.
FROUGNY Ch.
FRUTOS ESCRIG D.

GABARRO 1.
GOLTZ U.

HAJEK P.
HARJU T.
HROMKOVIC J.

INDERMARK K.

JANSSENS.D.
JERRUM M.
JOHNSON J.H.
JOSKO B.

KARLIN A.R.
KEESMAAT N.W.
KLEIJN H.C.M.
KLOP J.W.
KOREC 1.
KROGER F.
KUCERA L.
KUICH W.

LAGARIAS J.C.
LANGE K.J.
LA PAUGH A.
LAVAULT Ch.
LAWRENCE J.
LAZARD D.
LEIGHTON T.
LENGAUER T.
LEVI G.
LIGHTNER M.
LUCCIO F.

MACQUEEN D.B.
MAHANEY S.
MAIN M.
MAIRSON H.
MANASSE M.S.
MAZURKIEWICZ A.
MILNER

MONIEN B.
MORGENSTERN J.
MUNRO I.

OBERSCHELP W.
OCHMANSKI E.
OLDEROG E.R.

PACHL J.
PALLOTTINO S.

PAPADIMITRIOU C.
PARTSCH H.
PATERSON M.
PERRIN G.R.

PIN J.E.

POLJAK J.

PUDLAK

RAMSHAN L.
REISIG W.
ROSENBERG A.L.
ROVAN B.
RUOHOVEN K.

SAKAROVITCH J.
SALOMAA A.
SALOMAA K.
SALTOR
SANNELLA D.
SAVAGE J.E.
SAVITCH W.
SCHAFFER A.A.
SCHOETT O.
SCHONING U.
SCHREIBER F.A.
SIEBE K.
SIFAKIS J.
SILVESTRI A.
STERN 1J.
STEYAERT
STIRLING C.
STROTHOTTE
SUBRAMANIAN A.
SZPANKOWSKI N.

TAUBNER D,
TENNENT R.D.

VALLEE B.

VALK R.

VAN EMDE BOAS P.
VAN LEEUWEN J.
VENTURINI ZILLI M.
VITTER 1.

VOGLER W.

VOSSEN G.

WENEGER 1.
WELZL E.
WIEDERMANN 1J.
WINKELMAN K.
WIRSING M.

YANNAKAKIS M.
YU S.

TABLE OF CONTENTS

E.W. Altender
Characternizations of PUNC and PAeCOMPULALAON «uvvreeneeerneeernennnnannanns 1

D. Arqués, J. Frangon, M.T. Guichet, P. Guichet
Comparison of algorithms contrnolling concurrent access fo a database :
a CombANAtoRAAL APPAOACKH «vvvue e it eeneeeneenseesaesasoesnesnsnesnanssnnnns 11

F. Aurenhammer
A new duality result concerning Voronod dAAgQramseeeeeeevoseeennnns 21

A. Averbuch, Z. Galil, S. Winograd
Classifdication of all the minimak bilfinear algorithms for computing the
coefpicients of the product of two polynomials modulo a polynomial 31

R. Book, P. Orponen, D. Russo, 0. Watanabe
0N CXPONCRLAGL. LOWICAS o v wiss oo swrs s o sio s w6 s 0im o i sis 6 w8 ¢ w10 5 w8 816 S8 & 9165 878 37510 614 40

A. Borodin, F.E. Fich, F.Meyer auf der Heide, E. Upfal, A. Wigderson
A tradeoff between search and update time fon the implicit dictionary
PAOBLRN ¢ oo s 50 w10 6 oo & 595 50605 536t & 97616 BES & 504 5515 57046 5168 5 618 BIRIS o o ‘om & s omimmtor o g o, 0 50

F.J. Brandenburg
Intensections of some families 0f LANGUAGEA v vuneeernneeeeennneeeennannns 60

J.A. Brzozowski, C-J. Seger
Cornespondence between ternary simulation and binary race analysis in

GALL NCIWOARA « v v e te s vt itit et tttneeesnseeasonseeeeonneesonnnnnosasacessnnes 69
C. Choffrut, M.P. Schutzenberger

Counting with ratLoNal FUNCEAONS wuvvvveeeseeeaennennnnnnnnenenssensseasaas 79
C. De Felice

Finite bipregix sets of paths AN @ GRAPR «.eeue et ineeeneenneeneenaans &9

P.W. Dymond, W.L. Ruzzo
Paralled RAMs with cwned global memory and deterministic context-gree

fANGUAGR MRCOGNALAOK +eet et ittt iiieiineeeeeeessennnnassocnennnnnnnns 95
L. Fribourg
A strong restrniction of the inductive compleiion PAOCCAUNC v.veveeeennennn. 105

P. Goraleik, V. Koubek
On discerning words by AUEOMALA «eveveernnennnnnnenneneneeeneseaneeeeennss 116

J. Hartmanis, L. Hemachandra

Complexity classes without machines : on complete fLanguages for UP, 123
J. Hartmanis, M. Li, Y. Yesha

Containment, separation, complete sets, and immunity of complexity

REUECE 2 aie orn o vre o050 0 578 315, 0, 856 = 550 $1636 93018 SST8 B0 § 928 506 66 508 8 536 5w B o meme o o bresiaie A 136

M. Hermann, 1. Privara
On Nontermination of Knuth-Bendix ALGOAAZAM .vvvurveeeneeeeneeennnnennns 146

Vil

J. Hromkovic)

Tradeoffs for Language recognition on parallel computing models 157
J.H. Johnson

Rational equivalence ACLALAOMS «uuuuueueeeeeeeeeeeeeeensnsnsnnsnnnnnonanes 167
P. Kinschenhofer, H. Prodingen

Some further nesults on digital ACAHCH TS «ovvuvrnernennnennnnaeeennnn 177
S. Kraus, D. Lehmann

Knowledge, belief and LAMEueeueeuenieeeeeneeeeesneeeeennaneennnnnnns 186
T.H. Lai

A termination detector fon static and dynamic distributed systems with
asynchronous non-§inst-in-§4nst-out COMMURLCATAON « v veueunnnnnnnnnnenneenn 196
K.J. Lange

Decompositions of nondete/ministic AQAUCEAOMS «uvunvneeeeseeeeenennnnnnes 206
T. Lengauer

Hierarchical planarity 1esting algoMAZAMsuuueveueeeeeeeseenennnnnnss 215
B. Lisper

Synthesis and equivalence 0f CONCUINENT SYALRMA e eesenneensenneennenn.s 226
H. Mannila, E. Ukkonen

The et union problem with BACRIAACRANG weurvrenenneeneeeeeeenenneneannnn, 236
J.P. Mascte

Torsion matrix semigroups and recognizable TAANSAUCTILONS «oueenneennenn.. 244
Y. Metivier

On recognizable subsets of free partially commuiative monoids 254

B. Monien, 1.H. Sudborough
Min Cut is NP-complete for edge weighted BHECA ...u'v'ueueeueensenennnnnnn. 265

D.E. Muller, A. Saoudi, P.E. Schupp
Alternating automata, the weak monadic theony of the tree, and its

COMPERRLLY va'sesannenunosinsososssossonnenonenennnsnnassssnssssossssansss 275
N.Th. Mittexr

Subpolynomial complexity classes of real functions and real numbers 284
J.P. Pecuchet '

Etude syntaxique des parties reconnaissables de mots LAGANLE viss os s mnswnse 294
1. Phillips

R 2 2 T A A 304
G.M. Reed, A.W. Roscoe |

A timed modef for communicating sequential JROCRABRSE vvvetiennenennnnnnnns 314
K.W. Regan

A uniform reduction theorem

extending a result of J. Grolhmann and A. SELHMEM «veeeeeeennensennnnnennn. 324

L.E. Rosdier, H.C. Yen
On the complexity of deciding fair termination of probabilistic
Concurrent §Anite-42ate PAOGAAMS «.vuvuuneuneennernneneeenersnesnnnnnnnn, 334

N. Shavit, N. Francez

A new approach to detection of Locakly indicative stability AR saess . 344
C.P. Schnonn

A more efficient algonithm for Lattice basis AQAUCTLON «eevvrvrernanennnnes 359
U. Schoning

Lower bounds by recwtsion theoreldC agumendseeeeeeeeeenccaoncnnnnns 370
K. Simon

An improved algorithm for transitive closure on acyclic digraphs 376
J.C. Spehnex

Un algonithme déterminant Les méfanges de deux mots ...eevevesneennennnnns 387

P. Spirakis, A. Tsakalidis
A very fast, practical algonithm for ginding a negative cycle in a

e R R 397
C. Stirling

A compositional reformulation of Owicki-Gries's partial correctness

Logic for a concwirent while LANGUAGE «..vevennnirirnteenaneesennssannnns . 407
H. Straubing

Semigroups and Languages of dot-depth 2 ..ooeveveieiiiiiiiinnnnnnnnns seses. 416
P. Varman, K. Doshi

A parallel vertex insertion akgornithm for minimum spanning trees «........ 424
K.W. Wagnex

Mone complicated questions about maxima and minima, and some closures

OB NP o v o oo ime win s 5 0 wods oics 16 6 @8 & 866 8 556 97818 536 4 Wi o570 51005 91918 W10 ¥iS1 SI070 9fbid le winle wivem 434
D.E. Wilkard

Lower bounds f§or dynamic range query problLems that permit subtraction 444
J.H. You P.A. Subrahmanyam

E-unification algornithms for a class of conflfuent term rewriting
AUAT@INE o0 s s 5.0 wi6is 30 S1978 916, 91910, Siwve i 9wy, winse winve s 4,606 diei wiare i e oa a AR Bhare . 454

D. Niwinski
O (£XCA-P0RNE (CUOIEA . iivs wri 510 590 #1548 S andsdraie. et anelis ot swis bxohes wigl W76,8 074 91578, oo 464

Author Index -cceeeeeeeceneeenneceaeeasososacscsscsessssssssscssssssscsncsnncs 474

CHARACTERIZATIONS OF PUNC AND PRECOMPUTATION
Eztended Abstract

Eric W. Allender!

Department of Computer Science
Rutgers University

New Brunswick, N.J. 08903 (USA)

Abstract

Much complezity-theoretic work on parallelism has focused on the class NC, which is defined
in terms of logspace-uniform circuits. Yet P-uniform circuit complezity is in some ways a more
natural setting for studying feasible parallelism. In this paper, P-uniform NC (PUNC) 1is charac-
terized in terms of space-bounded AuzPDA’s and alternating Turing Machines with bounded access
to the input. We also present a general-purpose parallel computer for PUNC; this characterization
leads to an.easy proof that NC = PUNC iff all tally languages in P are in NC. The characteriza-
tions of PUNC lead to natural methods for modelling precomputation. We show that for many
classes of interest, there is a single “universal” table which can be used in place of any table of

similar size and complezity, while for certain other classes, no such “universal” table ezists.

1. Introduction

With the advent of VLSI, it has become feasible to construct computers which exhibit mas-
sive parallelism; chips with thousands of processors are no longer unimaginable. Motivated by the
possibility of so much parallelism, complexity theory has picked up the question of determining
what class of problems can be solved much more quickly in parallel than on sequential computers.
Much complexity-theoretic work in this area has focused on the class NC, the class of all lan-
guages for which there exists a logspace-uniform family of circuits {C,} of size polynomial in n
and of depth log®(M)n. (Definitions of uniformity, circuits, etc. will be given in a later section.)

Ruzzo [Ru-81] has shown that the class NC remains the same if stronger notions of unifor-
mity than logspace-uniformity are used. That is, if we require not only that the functions
1" — C, be logspace-computable, but that they must be “easily” logspace-computable, there is no
effect on the class NC. Indeed, if we define NC not in terms of circuits, but rather in terms of
interconnected processors (RAM’s or finite-state machines) we can do away with the uniformity
condition entirely, as the characterizations of NC in terms of HMM’s [Co-81], SIMDAG’s [Go-82],
WRAM’s [CSV-84], etc. [Vi-83] show. In this way, the “pre-processing” phase implicit in the
logspace-uniformity condition for circuits is sidestepped. As has been observed before |Go-82,
Co-81, DC-80], these machines can be thought of as building their own interconnection network

_during the course of the computation. In the characterization of NC in terms of HMM’s, this is

"Portions of this research were carried out while the author was supported by NSF grant MCS
81-03608.

S

particularly evident. NC can thus be viewed as the class of problems for which fast “self-
organizing” feasibly-parallel solutions exist. We argue that the “self-organizing” condition is an
unnatural restriction.

Let us now take the view that it is okay to pack as much computational power into the
pre-processing phase as is feasible. That is, we will be interested in any problem for which a fast
circuit family {C,} exists, with the only stipulation being that the function n — C, be feasible to
compute. The natural formulation of this stipulation in complexity theory is P-uniformity
[BCH-84]; the family of circuits {C,} is P-uniform if the function n — C, is computable in time
polynomial in n. This gives rise to the class P-uniform NC (PUNC), the class of languages for
which there exists a P-uniform family of circuits {C,} of size polynomial in n and depth log®®n.

PUNC has not been studied before (although P-uniform circuits of depth log n and log®n
were considered in [BCH-84,vzG-84]), and we list below some reasons which may partly explain
why. At the same time, we present the contributions of this paper which, we believe, put PUNC
on a more equal footing with NC.

First, NC has very nice characterizations in terms of general-purpose parallel computers such
as SIMDAG’s, WRAM’s, etc. The fact that logspace-uniform circuit depth corresponds to parallel
time on these machines has been taken as evidence that NC is the “right” setting in which to
study parallelism. In fact, one might suppose that, because so much power has been placed in the
pre-processing phase, problems in PUNC might be solvable only by “special-purpose” chips.
However, in Section 5, we present a natural model of general-purpose computation on which
PUNC is the class of problems solvable using n°(1) processors in log®Mn time.

Second, NC has many alternate characterizations in terms of other models of computation.
For example, Ruzzo [Ru-81] has shown that NC can be characterized in terms of AuxPDA’s and
alternating Turing machines with simultaneous time and space bounds. It may have seemed un-
likely that PUNC would have similar characterizations. Yet, in section 4, PUNC is characterized
in terms of AuxPDA’s and alternating Turing machines with simultaneous bounds on space and
access to the input. For instance, a language L is in PUNC iff it is accepted by a logspace-
bounded AuxPDA which moves its input head 2""0(1)" times.

Third, many researchers seem to have considered uniformity conditions to be inelegant and
ungainly. For example, Cook [Co-81], in discussing HMM’s, cites as an advantage the fact that
the HMM model has no uniformity condition, and Ruzzo [Ru-81] cites as undesirable the situation
in which the circuit constructor is more powerful than the circuit. Uniformity conditions also
cause some annoying difficulties when relating alternating time to circuit depth. Let NC* denote
the class of languages accepted by logspace-uniform circuits of depth O(logkn). It was shown in
[Ru-81] that NC* = ASPACE,TIME(log n, logkn) for all k > 2. Unfortunately, equality does not
seem to hold for k = 1. This is because deterministic logspace seems to be more powerful than
alternating log time, and thus a logspace-computable function which constructs a circuit cannot be
simulated in alternating log time. It was suggested in [Ru-81, Co-83] that uniformity conditions
stronger than logspace-uniformity be used so the equality NC* = ASPACE,TIME(log n, log*n)
would hold for all k. Note that these results are obtained by essentially “overpowering” the

precomputation phase by making the uniformity condition very strong. In this paper we take the

approach of “factoring out™ the precomputation phase and dealing with it explicitly. Thus we
show that PUNCF is the class of languages accepted by logspace-bounded alternating Turing
machines which access their input only during the first O(log*n) steps, for all k € N.

The type of computational power which is added by precomputation is illustrated in the fol-
lowing result:

NC = PUNC <« all tally languages in P are in NC.
This, in turn, leads to results about exponential-time complexity classes.

The characterizations of PUNC also clarify the complexity of one-way auxiliary pushdown
automata, which have been studied before in [Br-77a, Br-77b, Ch-77, WB-79, We-80, BDG-85,
Hu-85]. Some restrictions of AuxPDA’s have been shown not to have a severe effect on the com-
plexity of the languages they accept; in [Ga-77] a two-way deterministic (one-head) PDA is
presented which accepts a language which is hard for P under logspace reductions. Some other
restrictions have been shown to be more limiting; in [Ki-81a, We-79] it was shown that logspace-
bounded AuxPDA’s whose pushdowns make at most a constant number of turns accept only lan-
guages in NLOG, and Ruzzo [Ru-81] showed that AuxPDA’s which run in time 2,“0(1),, accept
only languages in NC. Here we show that AuxPDA’s which move their input heads at most
2“‘0(1)" times accept exactly the languages in PUNC, and thus it seems unlikely that any such
machine accepts a language which is hard for P.

In Section 6, we present some results about precomputation in general, rather than just in
the context of circuit complexity. These results are intended to model the case in which one may
be willing to devote considerable computational resources to a one-time task of building a precom-
puted table of some specified size, in order to have the table available for repeated use by more
efficient routines. We show that for many cases of interest, there is a single “universal” table
which can be used in place of all other tables of similar size and complexity, whereas for some
other classes, no such “universal” table exists.

Due to space limitations, the results presented in this extended abstract are stated without
proof. Proofs will be provided in the final version of the paper. Many of the results are also
proved in [Al-85].

2. Preliminaries

A circuit for inputs of size n is a finite collection of AND, OR, and NOT gates, and n in-
put nodes, along with an acyclic interconnection network linking the gates to each other and to
the input and output nodes. We will not distinguish between a circuit and its description in some
suitable description language. The size of a circuit is the number of gates it contains. The depth
of a circuit is the length of the longest path in the network from an input node to an output
node.

A family of circuits is a set {C, | n € N} where C, is a circuit for inputs of size n. {C,}
is a DSPACE(S(n))-uniform (DTIME(T(n))-uniform) family of circuits if the function n — C, is
computable on a Turing machine in space S(n) (time T(n)).

Background, and a more detailed discussion of circuit complexity, may be found in [Ru-81].

A language is sparse if [{we L | n > |w]}] is n°0); L is a tally languege if L C {0}".

In order to use strings in {0.1}' to represent numbers and vice-versa, we use the standard
method of letting the string w denote the number whose binary representation is 1w. We shall of-
ten refer to languages L C {0, 1, #}'. This is merely a notational convenience; such an L should

be thought of as a subset of {00,11,01}".

3. PUNC

The class of problems (languages) for which extremely fast parallel algorithms can be ef-
ficiently constructed is a class of some interest. PUNC is an attempt to capture this class in
complexity-theoretic terms.

Although PUNC is defined as a class of languages, we may also say that a function f is in
PUNC. It is clear what is meant by this.

PUNC is a robust class in the sense that it is not overly dependent upon idiosyncracies of
the circuit model. In particular, if we allow circuits with unbounded fan-in, or if we consider P-
uniform networks of RAM’s or finite-state machines, the same class of languages results.
Similarly, we could have defined PUNC in terms of aggregates [DC-80] or conglomerates [Go-82]

with P-uniform interconnection networks.

Proposition 8.1:
L is in PUNC iff
L is accepted in time log®!)n by an aggregate with a P-uniform interconnection net-
work iff

L is accepted in time logo(l)n by a congiomerate with a P-uniform interconnection net-
work.

PUNC is also closed under a broad class of reducibilities:

Proposition 8.2:
PUNC is closed under logspace reductions (defined in [Jo-75]) and NC, reductions
(defined in [Co-83]).
If fis in PUNC, L is in PUNC, and for all w, w € L’ ¢ flw) € L, then L’ is in
PUNC.
Thus PUNC has a robust definition in terms of circuit-based models of parallel computation.
In the next two sections we will present characterizations of PUNC in terms of some sequential

models of computation, and also in terms of general-purpose parallel computers.

4. An Alternate Characterization of PUNC

In order to consider alternating Turing machines of sublinear time complexity (which is
necessary in order to characterize NC in terms of alternating time) a special “random-access” fea-
ture has to be contrived which allows alternating Turing machines to access specified bits of the
input in unit time. This is a powerful feature, and it makes sense to restrict its use. In this sec-
tion, we show that such a restriction in fact gives one way to characterize PUNC. Another
characterization is given by restricting how often AuxPDA’s may move their input heads.
Theorem 4.1: The following are equivalent:

(1) L € PUNC

(2) L is a.cclepted by a logspace-bounded deterministic AuxPDA which moves its input head
O(2'°¢ """ times.

(3) L is accepted by a logspace-bounded nondeterministic AuxPDA which moves its input
head 0(28°"%) times.

It is clear that restricting motion of the input head is the natural way to restrict access to
the input for an AuxPDA. It is far less clear what the correct way is to restrict an alternating
Turing machine. Simply restricting the number of accesses to the input along any computation
path is not sufficient, since any alternating Turing machine which uses at least logspace can be
simulated efficiently by a machine which never accesses its input more than once on any computa-
tion path. The reasonable ways of restricting access to the input seem to be to restrict the com-
putation which precedes any access to the input, and to restrict the total number of nodes in the
alternation tree which access the input.

Theorem 4.2:

L € PUNC* & L is accepted by a logspace-bounded alternating Turing machine which

accesses its input only during the first O(log*n) steps, for all k > 1.

It is interesting to compare Theorem 4.2 to the characterization of SC given by Sudborough
in [Su-83]. Sudborough considered both one-way and two-way loglogspace-bounded alternating
Turing machines, and he showed that SC is the class of all problems which are logspace-reducible
to languages accepted by one-way loglogspace-bounded alternating Turing machines. Thus both
SC and PUNC are characterized in terms of space-bounded alternating Turing machines with
restricted access to the input.

We close this section with two further characterizations of PUNC, the proofs of which follow
easily using the techniques used here and the results proved in [Ru-80] relating AuxPDA’s and al-
ternating Turing machines.

Theorem 4.3: The following are equivalent:

(1) L € PUNC

(2) L is accepted by a logspace-bounded alternating Turing machine which accesses its in-
put only during the first O(log®(*)n) alternations.

(3) L is accepted by a logspace-bounded alternating Turing machine which, if it accepts an
input, accepts via an alternation tree which contains 0(2'°go ") nodes which access the
input.

5. A General-Purpose Parallel Computer for PUNC

NC is the class of problems using n®(!) processors in time 1og°Wn on a SIMDAG, on a
WRAM, and on almost all of the many approximately-equivalent models of parallel computation
which have been proposed in the past few years. (For surveys, see [Co-81,Vi-83].) This has been
taken as evidence that NC truly captures the notion of efficient parallel computation. However, it
was argued earlier in the paper that PUNC, and not NC, better captures that notion, at least
when one is trying to model the class of problems solvable efficiently by special-purpose chips.

Note that SIMDAG’s, WRAM’s, and the like are general-purpose parallel computers, in the
sense that one SIMDAG will efficiently compute all problems in NC; all one need do is swap one
program out of the CPU and swap another one in. One might therefore suspect that NC models
general-purpose parallel computation, and PUNC models special-purpose parallel computation. We

show here that that is not the case.

Models of general-purpose parallel computers such as SIMDAG’s and WRAM’s all share the
characteristic that they have infinitely many processors. These processors are nearly identical, but
each processor has a register which stores its “name”, or address. Let us now take the position
that it makes just as much sense to provide infinitely many bits, where the bits are no harder to
produce than are the processors; i.e., the n-th bit can be produced in time polynomial in n. This
section explores the consequences of taking that position.

A SIMDAG augmented with a sequence s consists of a SIMDAG along with an infinite se-
quence of read-only global registers B;, B;, ..., where each B; contains the #th bit of the sequence.
When counting the number of processors used by a SIMDAG during a computation, we include
the number of registers B, accessed during the computation. (Equivalently, we could let B, reside
in processor P..)

A sequence s is P-printable if the language {0" | the n-th bit of s is 1} is in P; that is, if
the n-th bit of s can be obtained in time polynomial in n.

The reader should already suspect that L is in PUNC iff L is accepted using n®() processors
in time log®Yn on a SIMDAG augmented with a P-printable sequence. However, we will prove
more. There is a universal P-printable sequence sy such that L is in PUNC iff L is accepted
using n°() processors in time log®n on a SIMDAG augmented with a sy. Furthermore, sy has
a natural and appealing definition.

For any language L, the characteristic sequence for L, s, is an infinite sequence of 0’s and
1’s such that the r-th character of s, is 1 iff r € L.

Now let U be any language complete for EXPTIME under log-lin reductions. (See, e.g.,
[St-74].) For a concrete example, let U = {M#uw#ivl | M accepts w in time 2(+1)lely The

characteristic sequence sy is P-printable; to obtain the n-th bit, see if n € U in time 2°(n) —
90(logn) _— 0(1),

Theorem 5.1:

L € PUNC ¢ L is accepted using n°(!) processors in time log®Mn time on a SIMDAG

augmented with sy.

Theorem 5.1 says that there is a single general-purpose parallel computer on which all
problems in PUNC can be solved quickly; thus this has somewhat the same flavor as the results
presented in [GP-83, Vi-84], in which efficient general-purpose parallel computers are studied. Un-
fortunately, the practical utility of this result is limited since, as Rackoff has pointed out [Ra-85],
the number of registers B; needed is exponential in the size of the program M.

Theorem 5.1, together with the relationship between P-printable sequences and tally lan-
guages, leads to an easy proof of the following result, which helps to explain the nature of the
computational power added by P-Uniformity over logspace-uniformity.

Theorem 5.2: [Al-86)

NC = PUNC ¢ all tally languages in P are in NC 4 {0° | i € U} is in NC.

Theorems 5.1 and 5.2 make obvious the connection between P-uniform circuits and charac-
teristic sequences of languages in EXPTIME. Other closely-related concepts are P-recognizable real
numbers (using the “standard left cut” definition in [Ko-83]) and P-printable sets (sets S such that
the function n —+ $ N {w | n >|w|} is computable in time polynomial in n [HY-84]). Also, P-

printable sequences may be defined as sequences s such that, for some k and M,, every prefix of s
is in K,(log n, nf), where K,(log n, n), is the “generalized Kolmogorov complexity” measure of
[Ha-83]. In addition, a set is P-printable iff it is sparse and has an easy ranking function, as con-
sidered in [GS-85]. For a related discussion, see [Ko-84,A1-86].

Tally languages have often been studied in conjunction with other types of sparse sets.
Theorem 5.2 led to some other results about the complexity of sparse sets in P, which are covered
in [Al-85,A1-86)

Techniques presented in [Bo-74] enable us to interpret results about classes of tally languages
as results about exponential-time complexity classes. Thus Theorem 5.2 has the following corol-

lary:

Corollary 5.3: NC = PUNC iff ASPACE,TIME(n, n°(1)) = EXPTIME.
Since NC = ASPACE,TIME(log n, logo(l)n), Corollary 5.3 can be interpreted as saying that
the NC = PUNC question is equivalent to the exponential-time analog of the NC = P question.

6. Precomputation

The results of Section 5 show how to augment a parallel computer with a precomputed
table, where the table is feasible to compute and of polynomial size. There are other aspects of
precomputation, however. For instance, when augmenting a space-bounded computation, it makes
sense to bound the size of the precomputed table as well. Furthermore, it- may happen that one
is willing to use more than polynomial time to precompute a table. This section deals with
modelling these aspects of precomputation.

Of particular interest will be the existence of “universal” precomputed tables, analogous to
the “universal” sequences of section 5. Universal tables exist in many interesting cases, but do
not exist for all classes.

Computations augmented by short strings of “nonuniform” data were studied in [KL-82], as a
generalization of nonuniform circuit complexity. The principal difference between the definitions of
[KL-82] and the definitions considered here is that the “advice” bits of [KL-82] did not need to be
effectively or efficiently constructible. Here, we are trying to model “feasible” precomputation.
Note that there is no chance of having “universal” tables for nonuniform advice, since given any
sequence of advice bits, (1) any language accepted relative to that sequence is r.e. in that se-
quence, and (2) there are languages which are not r.e. in the sequence which can be recognized ef-
ficiently with very little advice.

Definition: Let C be a class of languages, and let S and T be sets of functions. (S and T
should be thought of as bounds on the size of the precomputed table and on the amount of time
spent in precomputation, respectively.) Then C/S,pretime(T) is the class of languages L such that
there is a function h (a help function for C/S,pretime(T)) such that » — h(n) is computable in
time bounded by some function in T, where |h(n)| is bounded by some function in S, and there is
some language L’ € C such that for all strings w of length < n, w € L iff w#h(n) € L. (We
will denote this language L° by L/k(n).

For example, SC/O(log n),pretime(n®())) is the class of all languages which can be accepted
in polynomial time and polylog space with the help of a precomputed table of size O(logn), where

the table can be built in polynomial time. For another example, note that Adleman showed ‘in
|Ad-78] that R C P/no(l),};retime(Z"o(l)).

We could also make similar definitions for the case when there is a space bound on the
precomputation. Thus, for example, we also have that R C P/ no(l),prespace(no(l)) [Ad-78].

Definition: A help function A is universal for C/S,pretime(T) if for every language L in
C/S,pretime(T) there is a function g and some language L’ € C such that the function n —
h(g(n)) is a help function for C/S,pretime(T), and for all strings w of length < g'(n), w € L iff
w#h(n) € L".

In other words, the help function h is universal for C/S,pretime(T) if it can be used in place
of all other help functions.

The main lemma which allows us to show a relationship between precomputation and charac-

teristic sequences, and eventually to produce universal help functions, is the following.

Lemma 6.1: Assume DLOG C C, n?) ¢ T, and all functions in S are monotone and are com-
putable in logspace. Define s'(r) = min {n | s(n) = r}. If for all functions s € S and t € T,
the function ¢(s}(s(n)+1)) € T, then for every help function h for C/S,pretime(T) there is a help
function h* for C/S,pretime(T) such that if L/h(n) € C, then L/k’'(n) € C, and for all r < n,
h’(r) is a prefix of h’(n).

Note that the help function h’ defines a sequence; this sequence can, in turn, be interpreted
as the characteristic sequence of a language. For appropriate classes C, S, and T, the characteris-
tic functions of complete languages give rise to universal help functions. Rather than present
necessary conditions on C, S, and T for this to happen, it is more enlightening to consider some
examples.

In what follows, assume an encoding of Turing machines such that no encoding contains “00”

as a substring.

Let Ly = {M#w#' | M accepts w in time 2(+Dlvl},
Let L, = {M#ws'" | M accepts w in time 22(l+1”w|}_
o+ |w|

Let Ly = {M(00)'1lw | M accepts w in time 22 '+|"}'
Let Ly = {M(00)’'1w | M accepts w in time 22’)

Theorem 6.2:
Let S, T, and h be given by any row in the following table. then h is a universal
help function for C/S,pretime(T), where C is any of the classes DLOG, NLOG, SC,

NC, PUNC, P.
S T
n0(1) noéﬂ) 815825.-,8y, Where 8 is the characteristic sequence for L.
n°() 2" 81582,.+-s8p, Where s is the characteristic sequence for L,.

O(log n) n0(1)
O(log n) 2"02()1)
O(loglog n) 28 " '»

815835-3810g ny Where s is the characteristic sequence for L.
815825438105 ny Where s is the characteristic sequence for L,.
81582y+-18l0glog w» Where s is the characteristic sequence for L,.

S 333>

O A

In some cases, it can be shown that universal help functions do not exist.

Theorem 6.3:

There is no universal help function for P/O(loglog n),pretime(Z"o(l)

%

There are other cases where the existence of universal help functions is unlikely, but cannot

be proved without proving DLOG 7 P. In these cases, the existence of universal help functions is

usually equivalent to the collapse of some higher space and time complexity classes.

Theorem 6.4: The following are equivalent:
(1) There is a universal help function for DLOG/O(loglog n),pretime(no(l))
(2) DLOG/O(loglog n),pretime(n®(!)) = DLOG
(3) DSPACE((22")°)) = DTIME((2?")°V)

7. Open Problems The results of Sections 5 and 6 show how to replace any precomputed
table with a “universal” table of similar asymptotic size and complexity. Unfortunately, the
universal table will be larger by a constant factor, where that constant factor has size exponential
in the size of the program which performs the precomputation. Can these results be improved so
the constant factor is not so overwhelming?

Are there any “natural” problems which seem to be in PUNC - NC?

Acknowledgements

Larry Ruzzo, in considering “Ug-uniformity” [Ru-81], has recently proved some results with a
flavor similar to Theorems 5.2 and 6.4 [Ru-85]. Discussions with a number of people influenced
the direction in which this work developed: my thesis advisor: Kim King, Marc Graham, Rich
DeMillo, Craig Tovey, Ray Miller, Steve Cook, Charles Rackoff, Jim Hoover, Pat Dymond, Larry
Ruzzo, and Steve Mahaney.

References

[Ad-78] L. Adleman, Two theorems on random polynomial time, Proc. 19th IEEE Symposium on
Foundations of Computer Science, pp. 307-311.

[Al-85] E. W. Allender, Invertible functions, Doctoral Dissertation, Georgia Institute of Technol-
ogy.

[Al-86] E. W. Allender, The complezity of sparse sets in P, Paper presented at the Structure in
Complexity Theory Conference, Berkeley, to appear in Lecture Notes in Computer
Science.

[BDG-85] J. L. Balcazar, J. Diaz, J. Gabarro, On some “non-uniform” complezity measures, 5th
Conference on Mathematical Foundations of Computer Science, Lecture Notes in Com-
puter Science 199, pp. 18-27.

[BCH-84] P. W. Beame, S. A. Cook, and H. J. Hoover, Log depth circuits for division and related
problems, Proc. 25th IEEE Symposium on Foundations of Computer Science, pp. 1-11.

[Bo-74] R. V. Book, Tally languages and complezity classes, Information and Control 26,
186-193.

[Br-77a] F.-J. Brandenburg, On one-way auziliary pushdown automata, Proc. 3rd GI Conference,
Lecture Notes in Computer Science 48, pp. 133-144.

[Br-77b] F.-J. Brandenburg, The conteztsensitivity of contextsensitive grammars and languages,
Proc. 4th International Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science 52, pp. 272-281.

[CSV-84] A. K. Chandra, L. J. Stockmeyer, U. Vishkin, Constant depth reducibility, SIAM
J. Comput. 13, 423-439.

[Ch-77] M. P. Chytil, Comparison of the active visiting and the crossing complezities, Proc. 6th
Conference on Mathematical Foundations of Computer Science, Lecture Notes in Com-
puter Science 53, pp. 272-281.

[Co-81] S. A. Cook, Towards a complezity theory of synchronous parallel computation,
L’Enseignement Mathematique 27, 99-124.

