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PREFACE

This i1s an introductory undergraduate textbook 1n set theory. In mathe-
matics these days, essentially everything 1s a set. Some knowledge of set
theory 1s a necessary part of the background everyone needs for further
study of mathematics. It is also possible to study set theory for its own
interest—it is a subject with intriguing results about simple objects. This
book starts with material that nobody can do without. There 1s no end
to what can be learned of set theory, but here 1s a beginning.

The author of a book always has a preferred manner for using the
book: A reader should simply study it from beginning to end. But In
practice, the users of a book have their own goals. I have tried to build
into the present book enough flexibility to accommodate a variety of goals.

The axiomatic material in the text is marked by a stripe in the margin.
The purpose of the stripe is to allow a user to deemphasize the axiomatic
material, or even to omit it entirely.

A course 1n axiomatic set theory might reasonably cover the first six or
seven chapters. omitting Chapter S. This is the amount of set theory that
everyone with an interest in matters mathematical should know. Those with
a special interest in set theory itself are encouraged to continue to the end
of the book (and beyond). A very different sort of course might emphasize

X1



Xi1 Preface

the set-theoretic construction of the number systems. This course might
cover the first five chapters, devoting only as much attention to the axiomatic
material as desired. The book presupposes no specific background. It does
give real proofs. The first difficult proof is not met until part way through
Chapter 4.

The hierarchical view of sets, constructed by transfinite iteration of the
power set operation, is adopted from the start. The axiom of regularity is
not added until 1t can be proved to be equivalent to the assertion that
every set has a rank.

The exercises are placed at the end of each (or nearly each) section.
In addition, Chapters 2, 3, and 4 have “ Review Exercises™ at the ends of the
chapters. These are comparatively straightforward exercises for the reader
wishing additional review of the material. There are, in all, close te 3060
€XErcises.

There 1s a brief appendix dealing with some topics from logic, such as
truth tables and quantifiers. This appendix also contains an example of how
one might discover a proof.

At the end of this text there i1s an annotated list of books recommended
for further study. In fact 1t includes diverse books for several further studies
in a variety of directions. Those wishing to track down the source of particular
results or historical points are referred to the books on the list that provide
specific citations.

There are two stylistic matters that require mention. The end of a proof
is marked by a reversed turnstile (4). This device 1s due to C. C. Chang
and H. J. Keisler. In definitions, I generally pass up the traditionally correct
“if" in favor of the logically correct “iff” (meaning “if and only if”).

Two preliminary editions of the text have been used in my courses at
UCLA. I would be pleased to receive comments and corrections from
further users of the book.



LIST OF SYMBOL®S

The number indicates the page on which the symbol first occurs in the text or the

page on which it is defined.
Symbol! Page Symbol

or
=

<~

ZF
VNB

N T S S S S S
pet
M
o

Page

13
13
13

15
15
15
} 21
21
21
22
23
235
27
27
28
32

Symbol

M\

| 1Xe o
CXa YD
A x B
XRYy
[
dom

ran

fid

(X, ¥, 2)
(x)

F(x)
F:4A- B
F-1
F-G
FI A
FTA]

Page

32
35
37
40
40
40
40
40
41
42
43
43
44
44
44
44

X1ii



X1V List of Symbols

Symbol Page Symbol Page Symbol Page
[x. v] 44 < 5 08 E 182
U o 51 Q 102 = 1 84
[ Y ot 51 O 02 <, 185
F. 51 I, 102 < 189
‘B 52 + 0 03 Q 194
X, ., 54 3 05 N, 199
[x]k 57 rot 107 V. 200
[x] 57 s = 107 rank S 204
A'R 58 <g 108 N, 212
0 67 4 09 3, 214
1 67 R [13 sup § 216
2 67 < o 13 (A, R> 220
3 67 + 114 kard S 222
a' 68 0, 115 D 222
) 69 — X 117 p+o 222
o 71 | x| 118 i 223
Z 75 - 118 M 223
m+ n 79 l 119 p* 224
Al 79 ~ 129 R xS 224
A2 79 (x, v) 130 P 0 224
m-n 80 card S 136 x+ f 228
MiI 80 N, 137 x - ff 228
M?2 80 K+ / 139 47 228
m" 80 K- A 139 A3 229
El 80 K 139 M3 229
E2 80 N 144 P 232
. 83 < 145 E3 232
Eg 83 K< A 45 Eq 240
c 85 <l 46 R' 243
Z 91 Sq(A) 160 oM 249
4y 92 =0 67 ZFC 253
0, 92 < 168 HF 256
—a 95 seg 73 cf 4 257
> 95 ““B 75 ssup S 262
ks 97 TC S 178 ' 263




CONTENTS

Preface X1
List of Symbols X111
Chapter 1 INTRODUCTION I

Baby Set Theory l

Sets —An Informal View 7

Classes 10

Axiomatic Method 10

Notation 13

Historical Notes 14
Chapter 2 AXIOMS AND OPERATIONS 17

Axioms 17

Arbitrary Unions and Intersections 23

Algebra of Sets 27

Epilogue 33

Review Exercises 33

vil



viil

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

RELATIONS AND FUNCTIONS

Ordered Pairs 35

Relations 39

n-Arv Relations 41

Functions 42

Infinite Cartesian Products 54
Equivalence Relations 55
Ordering Relations 62

Review Exercises 64

NATURAL NUMBERS

Inductive Sets 67
Peano’s Postulates 70
Recursion on w 73
Arithmetic 79
Ordering on w 83
Review Exercises 88

CONSTRUCTION OF THE REAL NUMBERS

Integers 90

Rational Numbers 101
Real Numbers 111
Summaries 121

Two 123

CARDINAL NUMBERS AND THE AXIOM

OF CHOICE

Equinumerosity 128

Finite Sets 133

Cardinal Arithmetic 138
Ordering Cardinal Numbers 145

Axiom ol Choice 151
Countable Sets 159
Arithmetic of Infinite Cardinals 162

Continuum Hypothesis 165

ORDERINGS AND ORDINALS

Partial Orderings 167
Well Orderings 172

Replacement Axioms 179
Epsilon-Images 182
Isomorphisms 184

Ordinal Numbers 187
Debts Paid 195
Rank 200 |

Contents

35

6

90

128

167



Contents

Chapter 8 ORDINALS AND ORDER TYPES

Transfinite Recursion Again 209
Alephs 212

Ordinal Operations 215
Isomorphism Types 220
Arithmetic of Order Types 222
Ordinal Arithmetic 227

Chapter 9 SPECIAL TOPICS

Well-Founded Relations 241
Natural Models 249
Cofinality 257

Appendix NOTATION, LOGIC, AND PROOFS

Selected References for Further Study
List of Axioms

Index

1X

241

263

269
271

273



CHAPTER 1

INTRODUCTION

BABY SET THEORY

We shall begin with an informal discussion of some basic concepts of set
theory. In these days of the “new math,” much of this material will be
already familiar to you. Indeed, the practice of beginning each mathematics
course with a discussion of set theory has become widespread, extending
even to the elementary schools. But we want to review here elementary-
school set theory (and do it in our notation). Along the way we shall be able to
point out some matters that will become important later. We shall not, in
these early sections, be particularly concerned with rigor. The more serious
work will start in Chapter 2.

A set is a collection of things (called its members or elements), the collection
being regarded as a single object. We write “t € A" to say that r 1s a member
of A, ahd we write “t ¢ A to say that t is not a member of A.

For example, there 1s the set whose members are exactly the prime
numbers less than 10. This set has four elements, the numbers 2, 3, 5, and 7.
We can name the set conveniently by listing the members within braces
(curly brackets): '

{2, 3,5, 7}.



2 1. Introduction

Call this set 4. And let B be the set of all solutions to the polynomial
equation

x* — 17x% + 101x2%2 — 247x + 210 = 0.

Now 1t turns out (as the industrious reader can verify) that the set B has
exactly the same four members, 2, 3, S, and 7. For this reason 4 and B are
the same set, 1.e., 4 = B. It matters not that A and B were defined in
different ways. Because they have exactly the same elements, they are
equal; that is, they are one and the same set. We can formulate the general
principle:

Principle of Extensionality If two sets have exactly the same members.
then they are equal.

Here and elsewhere, we can state things more concisely and less
ambiguously by utilizing a modest amount of symbolic notation. Also we

abbreviate the phrase “if and only if” as “1ff.” Thus we have the restatement:

Principle of Extensionality If A and B are sets such that for every

object t,
te A ff 1€ B,

then A = B.

For example, the set of primes less than 10 is the same as the set of
solutions to the equation x* — 17x> + 101x* — 247x + 210 = 0. And the set
{2} whose only member is the number 2 is the same as the set of even primes.

Incidentally, we write “ 4 = B" to mean that 4 and B are the same object.
That is, the expression “A” on the left of the equality symbol names the
same object as does the expression “B” on the right. If A = B, then
automatically (i.e., by logic) anything that is true of the object A4 is also true
of the object B (it being the same object). For example, if A = B, then 1t 1s
automatically true that for any object ¢, t € A iff t € B. (This 1s the converse
to the principle of extensionality.) As usual, we write * A # B" to mean that
it 1s not true that 4 = B.

A small s¢t would be a set {0} having only one member, the number 0.
An even smaller set is the empty set . The set & has no members at all.
Furthermore it is the only set with no members, since extensionality tells us
that any two such sets must coincide. It might be thought at first that the
empty set would be a rather useless or even frivolous set to mention, but.
in fact, from the empty set by various set-theoretic operations a surprising
array of sets will be constructed.

For any objects x and y, we can form the pair set {x, y} having just the
members x and y. Observe that {x, y} = {y, x}, as both sets have exactly the

same members. As a special case we have (when x = y) the set {x, x} = {x].
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For example, we can fesm the set {} whose only member 1s f. Note
that {F} # &, because F = {Zf} but J ¢ &. The fact that {F} # & is
_reflected in the fact that a man with an empty container is better off than a
man with nothing—at least he has the container. Also we can form |{J}},
{1}, and so forth, all of which are distinct (Exercise 2).

Similarly for any objects x, y, and z we can form the set {x, y, z. More
generally, we have the set {x , ..., x ; whose members are exactly the
objects s FEEEE For example.

(D). WD

i1s a three-element set.

(@)
Fig. 1. The shaded areas represent (a) A U B and (b) A n B.

Two other familiar operations on sets are union and intersection. The
union-of sets A and B 1s the set A U B of all things that are members of
A'or B (or both). Similarly the intersection of A and B 1s the set A n B of all
things that are members of both 4 and B. For example,

{x; yiw {z} = (% y, 2]
and
{2,3,5, 7' n{l.2, 3,4 =12, 3}

Figure 1 gives the usual pictures illustrating these operations. Sets 4 and B
are said to be disjoint when they have no common members, 1.e., when
An B={.

A set A 1s said to be a subser of a set B (written 4 < B) 1iff all the
members of 4 are also members of B. Note that any set is a subsct of itself.
At the other extreme, (J is a subset of every set. This fact (that &f < 4 for
any A) 1s “vacuously true,” since the task of verifying, for every member of
J, that 1t also belongs to A, requires doing nothing at all.

If A< B, then we also say that A4 is included in B or that B includes A.
The inclusion relation (<) is not to be confused with the membership
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relation (€). If we want to know whether 4 € B, we look at the set 4 as a
single object, and we check to see if this single object 1s among the members
of B. By contrast, if we want to know whether 4 < B, then we must open up
the set A, examine its various members, and check whether its various
members can be found among the members of B.

Examples 1. O < 5, but & ¢ .

2. e {T}} but {F} ¢ {{F}]. {T} is not a subset of {{F}} because
there is a member of {F}, namely ¢, that is not a member of {{(F}}.

3. Let Us be the set of all people in the United States, and let Un be

the set of all countries belonging to the United Nations. Then

John Jones € Us € Un.

But John Jones ¢ Un (since he is not even a country), and hence Us & Un.

Any set A will have one or more subsets. (In fact, if 4 has n elements,
then A has 2"subsets. But this is a matter we will take up much later.) We
can gather all of the subsets of A mto one collection. We then have the set
of all subsets of A4, called the power' set ZA of A. For example,

7% = (D),
22} = (D, (D))
2(0, 1} = {@, {0}, {1}, {0, 1}}

A very flexible way of naming a set is the method of abstraction. In this
method we specify a set by giving the condition—the entrance requirement—
that an object must satisfy in order to belong to the set. In this way we
obtain the set of all objects x such that x meets the entrance requirement.
The notation used for the set of all objects x such that the condition

X holds 1s

b | % )

For example:

1. #A is the set of all objects x such that x is a subset of A. Here " x
is a subset of 4" is the entrance requirement that x must satisfy in order to
belong to Z2A4. We can write

e
—

#A = {x|xis asubset of A}
f
|

(x| x <€ A}.

I The reasons for using the word “power” in this context are not very convincing, but the
usage 1s now well established.
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2. A n B s the set of all objects y such that ye 4 and y € B. We can
Write

AnB={y|ye Aand ye B}.

-k

[t is unimportant whether we use “x7 or “y” or another letter as the
symbol (which 1s used as a pronoun) here.

3. The set {z|z # z| equals (J, because the entrance requirement
"z # 27 is not saiisfied by any ebject .

4. The set {n|nis an even prime number} is the same as the set {2}.

There are, however, some dangers inherent 1n the absiraction method.
For certain bizarre choices of the entrance requirement, it may happen that
there i1s no set containing exactly those objects meeting the entrance
requirement. There are two ways in which disaster can strike.

One of the P\ggential Isasters i:;%illustrated by
2 Ty g W -

{x | x 1s a positive mteger “definable in cne line of type}.

The tricky word here 1s “definable.” Some numbers are easy to define in one¢
line. For example, the following lines each serve to define a positive integer:

12,317,

the millionth prime number,

the least number of the form 27" + 1 that is not prime,
the 23rd perfect? number.

Observe that there are only finitely many possible lines of type (because
there are only finitely many symbols available to the printer, and there is a
limit to how many symbols will fit on a line). Consequently

x| x 1s a positive integer definable in one line of type]

1s only a finite set of integers. Consider the least positive integer not in this
set; that 1s, consider

the least positive ‘integer not definable in one line of type.

The preceding line defines a positive integer in one line, but that number 1s,
by its construction, not definable in one line! So we are n trouble, and th

trouble can be blamed on the entrance requirement of the set, 1.e., on the
phrase *is a positive integer definable in one line of type.” While it may have

A positive integer 1s perfect if it equals the sum of its smaller divisors, eg.
6 =1+ 2+ 3. It is deficient (or abundant) if the sum of its smaller divisors is less than (o:
greater than, respectively) the number itself. This terminology 1s a vestigial trace of
numerology, the study of the mystical significance of numbers. The first four perfect numbers
are 6, 28, 496, and 8128.
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appeared originally to be a meaningtul entrance requircment, 1t now appears
to be gravely defective. (This example was given by G. G. Berry in 1906.
A related example was published in 1905 by Jules Richard.)

There 1s a second disaster that can result from an overly free-swinging
use of the abstraction method. It is exemplified by

X | x ¢ x}.

this is, by the set of all objects that are not members of themselves. Call
thic set 4, and ask “is 4 a member of itself?” If 4 ¢ A, then A meets the
cntrance requirement for 4, whereupon 4 € A. But on the other hand, if
A e A, then A fails to meet the entrance requirement and so 4 ¢ 4. Thus
both “Ae A" and “A¢ A" are untenable. Again, we are in trouble. The
phrase “1s not a member of itself” appears to be an illegal entrance require-
ment for the abstraction method. (This example i1s known as Russell’s
paradox. It was communicated by Bertrand Russell in 1902 to Gottlob
Frege, and was published in 1903. The example was independently
discovered by Ernst Zermelo.)

These two sorts of disaster will be blocked in precise ways in our
axiomatic treatment, and less formally in our nonaxiomatic treatment. The
first sort of disaster (the Berry example) will be avoided by adherence
to entrance requirements that can be stated in a totally unambiguous form,
to be specified in the next chapter. The second sort of disaster will be
avolded by the distinction between sets and classes. Any collection of sets
will be a class. Some collections of sets (such as the collections ¢ and
!31) will be sets. But some collections of sets (such as the collection of all
sets not members of themselves) will be too large to allow as sets. These
oversize collections will be called proper classes. The distinction will be
discussed further presently.

In practice, avoidance of disaster will not really be an oppressive or
onerous task. We will merely avoid ambiguity and avoid sweepingly vast
sets. A prudent person would not want to do otherwise.

Fxercises

1. Which of the following become lrue when “e” is inserted 1n place of the
blank ? Which become true when “= 7 1s inserted”?

(@) (T {1

(b) tzl —IQ) ” Hi

(c) 1 ,. I, .ﬁ

(e) ‘L{Qj}J — {@ 1@ lQJJH'
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Stow Lot no two of the thiree sets &, {(J}, and {{F}} are equal to each

3 Ebhow thatif B< C, then 2B < £C.

4 Assuinzthat xand yare members ofa set B. Show that {{x!},{x, v}; € 2ZB.

SETS—AN INFORMAL VIEW

We are about to present a somewhat vague description of how sets are
obtained. (The description will be repeated much later in precise form.)
None of our later work will actually depend on this informal description,
but we hope it will illuminate the motivation behind some of the things
we will do.

Fig. 2. V, is the set 4 of atoms.

First we gather together all those things that are not themselves sets but
that we want to have as members of scts. Call such things atoms. For
example, if we want to be able to speak of the set of all two-headed
coins, then we must include all such coins in our collection of atoms.
Iet A be the set of all atoms; it is the first set in our description.

We now proceed to build up a hierarchy

VO - V1 = V2 c -
of sets. At the bottom level (in a vertical arrangement as in Fig. 2) we take
V. = A, the set of atoms. The next level will also contain all sets of atoms:

V1 == V0 v QVO = Au PA.



