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Editor’s Statement

A large body of mathematics consists of facts that can be presented and de-
scribed much like any other natural phenomenon. These facts, at times ex-
plicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely to
survive change of style and of interest.

This ENCYCLOPEDIA will attempt to present the factual body of
all mathematics. Clarity of exposition, accessibility to the non-specialist, and
a thorough bibliography are required of each author. Volumes will appear in
no particular order, but will be organized into sections, each one comprising
arecognizable branch of present-day mathematics. Numbers of volumes and
sections will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely
used where it is needed, and more accessible in fields in which it can be ap-
plied but where it has not yet penetrated because of insufficient information.

GIAN-CARLO ROTA



Foreword

The last twenty years have witnessed most vigorous growth in areas of math-
ematical study connected with computers and computer science. The enor-
mous development of computers and the resulting profound changes in
scientific methodology have opened new horizons for the science of mathe-
matics at a speed without parallel during the long history of mathematics.

The following two observations should be kept in mind when reading
the present monograph. First, various developments in mathematics have di-
rectly initiated the ‘‘beginning’’ of computers and computer science. Sec-
ond, advances in computer science have induced very vigorous developments
in certain branches of mathematics. More specifically, the second of these
observations refers to the growing importance of discrete mathematics—and
we are now witnessing only the very beginning of the influence of discrete
mathematics.

Because of reasons outlined above, mathematics plays a central role
in the foundations of computer science. A number of significant research
areas can be listed in this connection. It is interesting to notice that these
areas also reflect the historical development of computer science.

1. The classical computability theory initiated by the work of Godel,
Tarski, Church, Post, Turing, and Kleene occupies a central role. This area
is rooted in mathematical logic.

2. In the classical formal language and automata theory the central
notions are those of an automaton, a grammar, and a language. Apart from
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xii Foreword

developments in area (1), the work of Chomsky on the foundations of natu-
ral languages, as well as the work of Post concerning rewriting systems,
should be mentioned here. It is, however, fascinating to observe that the
modern theory of formal languages and rewriting systems was initiated by
the work of the Norwegian mathematician Axel Thue at the beginning of this
century!

3. An area initiated in the sixties is complexity theory. The perfor-
mance of an algorithm is investigated. The central notions are those of a trac-
table and an intractable problem. This area is gaining in importance because
of several reasons, one of them being the advances in area (4).

4. Quite recent developments concerning the security of computer
systems have increased the importance of cryptography to a great extent.
Moreover, the idea of public key cryptography is of specific theoretical inter-
est and has drastically changed our ideas concerning what is doable in com-
munication systems.

Areas (1) through (4) constitute the core of the present maonograph.
Many other important areas dealing with the mathematical foundations of
computer science (e.g., semantics and the theory of correctness of program-
ming languages, the theory of data structures, and the theory of data bases)
lie beyond the scope of the present monograph and will, hopefully, be pre-
sented in other books in this series.

All the areas listed above comprise a fascinating part of contempo-
rary mathematics that is very dynamic in character, full of challenging prob-
lems requiring most interesting and ingenious mathematical techniques.

This monograph provides a very good basis for the understanding of
these developments. It presents this fascinating modern area of mathematics
in a broad and clear perspective. Because everything is developed essentially
from the beginning, even an uninitiated reader can use the monograph as an
entry to this area. In spite of this, a glimpse of a number of very recent devel-
opments is given.

Grzegorz Rozenberg
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CHAPTER 1

Introduction: Models of Computation

The basic question in the theory of computing can be formulated in any of
the following ways: What is computable? For which problems can we con-
struct effective mechanical procedures that solve every instance of the prob-
lem? Which problems possess algorithms for their solutions?

Fundamental developments in mathematical logic during the 1930s
showed the existence of unsolvable problems: No algorithm can possibly
exist for the solution of the problem. Thus, the existence of such an algo-
rithm is a logical impossibility—its nonexistence has nothing to do with our
ignorance. This state of affairs led to the present formulation of the basic
question in the theory of computing. Previously, people always tried to
construct an algorithm for every precisely formulated problem until (if
ever) the correct algorithm was found. The basic question is of definite
practical significance: One should not try to construct algorithms for an
unsolvable problem. (There are some notorious examples of such attempts
in the past.)

A model of computation is necessary for establishing unsolvability.
If one wants to show that no algorithm for a specific problem exists, one
must have a precise definition of an algorithm. The situation is different in
establishing solvability: It suffices to exhibit some particular procedure that
is effective in the intuitive sense. (We use the terms algorithm and effective
procedure synonymously. There are some obvious requirements every intui-
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tively effective procedure has to satisfy. At the moment we do not try to list
such requirements.)

We are now confronted with the necessity of formalizing a notion of a
model of computation that is general enough to cover all conceivable com-
puters, as well as our intuitive notion of an algorithm. Some initial observa-
tions are in order.

Let us assume that the algorithms we want to formalize compute
functions mapping the set of nonnegative integers into the same set. Al-
though this is not important at this point, we could observe that our assump-
tion is no essential restriction of generality. This is due to the fact that other
input and output formats can be encoded into nonnegative integers.

After having somehow defined our general model of computation,
denoted by MC, we observe that each specific instance of the model pos-
sesses a finitary description; that is, it can be described in terms of a formula
or finitely many words. By enumerating these descriptions, we obtain an
enumeration MC,, MC,,. .. of all specific instances of our general model of
computation. In this enumeration, each MC; represents some particular al-
gorithm for computing a function from nonnegative integers into nonnega-
tive integers. Denote by MC;(/) the value of the function computed by MC;
for the argument value j.

Define a function f{x) by

Jx) =MC(x) + 1. (1)

Clearly, the following is an algorithm (in the intuitive sense) to compute the
function f(x). Given an input x, start the algorithm MC, with the input x and
add one to the output.

However, is there any specific algorithm among our formalized MC-
models that would compute the function f(x)? The answer is no, and the
argument is an indirect one. Assume that MC, would give rise to such an al-
gorithm, where ¢ is some natural number. Hence, for all x,

Sx) = MC(x). )

A contradiction now arises by substituting the value # for the variable x in
both (1) and (2).

This contradiction, referred to as the dilemma of diagonalization,
shows that independently of our model of computation—indeed, we did not
specify the MC-model in any way—there will be algorithms not formalized
by the model.

There is a simple and natural way to avoid the dilemma of diagonali-
zation. We have assumed so far that the MC;-algorithms are defined every-
where: For all input j, the algorithm MC; produces an output. This assump-
tion is unreasonable from many points of view, one of which is computer
programming; we cannot be sure that every program produces an output for
every input. Therefore, we should allow also the possibility that some of the
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M(C;-algorithms enter an infinite loop for some inputs j and, consequently,
do not produce any output for such a j. Moreover, the set of such values j is
not known a priori.

Thus, some algorithms in the list

MC,, MC,,. .. 3)

produce an output only for some of the possible inputs; that is, the corre-
sponding functions are not defined for all nonnegative integers. The dilem-
ma of diagonalization does not arise after the inclusion of such partial func-
tions among the functions computed by the algorithms of (3). Indeed, the
argument presented above does not lead to a contradiction because MC(¢) is
not necessarily defined.

The general model of computation, now referred to as a Turing ma-
chine, was introduced quite a long time before the advent of electronic com-
puters. Turing machines constitute by far the most widely used general
model of computation. Other general models discussed later in this book are
Markov algorithms, Post systems, grammars, and L systems. Each of these
models leads to a list such as (3), where partial functions are also included.
All models are also equivalent in the sense that they define the same set of
solvable problems or computable functions. This is understood in a sense
made precise later; also, the input and output formats are taken into ac-
count. For instance, grammars naturally define languages and, consequent-
ly, an input-output format associated to computing function values is rather
unsuitable for grammars.

We have considered only the general question of characterizing the
class of solvable problems. This question was referred to as basic in the theo-
ry of computing. It led to a discussion of general models of computation.

More specific questions in the theory of computing deal with the com-
plexity of solvable problems. Is a problem P, more difficult that P, in the
sense that every algorithm for P, is more complex (for instance, in terms of
time or memory space needed) than a reasonable algorithm for P,? What is a
reasonable classification of problems in terms of complexity? Which prob-
lems are so complex that they can be classified as intractable in the sense that
all conceivable computers require an unmanageable amount of time for
solving the problem?

Undoubtedly, such questions are of crucial importance from the
point of view of practical computing. A problem is not yet settled if it is
known to be solvable or computable and remains intractable at the same
time. As a typical example, many recent results in cryptography are based on
the assumption that the factorization of the product of two large primes is
impossible in practice. More specifically, if we know a large number n
consisting of, for example, 200 digits and if we also know that # is the prod-
uct of two large primes, it is still impossible for us to find the two primes.
This assumption is reasonable because the problem described is intractable,
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at least in view of the factoring algorithms known at present. Of course,
from a merely theoretical point of view where complexity is not considered,
such a factoring algorithm can be trivially constructed.

Such specific questions lead to more specific models of computing.
The latter are obtained either by imposing certain restrictions on Turing ma-
chines or else by some direct construction. Also, such specific models will be
discussed in the sequel. Of particular importance is the finite automaton. 1t is
amodel of a strictly finitary computing device: The automaton is not capable
of increasing any of its resources during the computation.

It is clear that no model of computation is suitable for all situations;
modifications and even entirely new models are needed to match new devel-
opments. Theoretical computer science by now has a history long enough to
justify a discussion about good and bad models. The theory is mature
enough to produce a great variety of different models of computation and
prove some interesting properties concerning them. Good models should be
general enough so that they are not too closely linked with any particular sit-
uation or problem in computing—they should be able to lead the way. On the
other hand, they should not be too abstract. Restrictions on a good model
should converge, step by step, to some area of real practical significance. A
typical example is some restrictions of abstract grammars especially suitable
for considerations concerning parsing. The resulting aspects of parsing are
essential in compiler construction.

To summarize: A good model represents a well-balanced abstraction
of a real practical situation—not too far from and not too close to the real
thing.

Formal languages constitute a descriptive tool for models of compu-
tation, both in regard to the input-output format and the mode of operation.
Formal language theory is by its very essence an interdisciplinary area of sci-
ence; the need for a formal grammatical description arises in various scientif-
ic disciplines, ranging from linguistics to biology. Therefore, appropriate as-
pects of formal language theory will be of crucial importance in this book.



CHAPTER 2

Rudiments of Language Theory

2.1. LANGUAGES AND REWRITING SYSTEMS

Both natural and programming languages can be viewed as sets of sen-
tences—that is, finite strings of elements of some basic vocabulary. The no-
tion of a language introduced in this section is very general. It certainly
includes both natural and programming languages and also all kinds of non-
sense languages one might think of. Traditionally, formal language theory is
concerned with the syntactic specification of a language rather than with any
semantic issues. A syntactic specification of a language with finitely many
sentences can be given, at least in principle, by listing the sentences. This is
not possible for languages with infinitely many sentences. The main task of
formal language theory is the study of finitary specifications of infinite lan-
guages.

The basic theory of computation, as well as of its various branches,
such as cryptography, is inseparably connected with language theory. The
input and output sets of a computational device can be viewed as languages,
and—more profoundly—models of computation can be identified with
classes of language specifications, in a sense to be made more precise. Thus,
for instance, Turing machines can be identified with phrase-structure gram-
mars and finite automata with regular grammars.

We begin by introducing some notions and terminology fundamental
to all our discussions.
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An alphabet is a finite, nonempty set. The elements of an alphabet,
which we might call £, are referred to as letters, or symbols. A word over an
alphabet I is a finite string consisting of zero or more letters of L, in which
the same letter may occur several times. The string consisting of zero letters is
called the empty word, written A. For instance, A, 0, 10, 1011, and 00000 are
words over the alphabet £ = {0, 1}. The set of all words (resp. all nonempty
words) over an alphabet L is denoted by L* (resp. L*). Thesets E*and L+ are
infinite for any Z. Algebraically speaking, L* and ' are the free monoid
(with the identity A\) and the free semigroup generated by Z.

The reader should keep in mind that the basic set L, its elements, and
strings of its elements could equally well be called a vocabulary, words, and
sentences, respectively. This would reflect an approach with applications
mainly in the area of natural languages. In this book, we use the standard
mathematical terminology introduced above.

For words w; and w,, the juxtaposition w,w, is called the catenation
(or concatenation) of w, and w,. The empty word is an identity with respect
to catenation: w\ = Aw = w holds for all words w. Because catenation is as-
sociative, the notation w', where i/ is a positive integer, is used in the custom-
ary sense. By definition, w° is the empty word, A.

The length of a word w, denoted by |w/|, is the number of letters in w
when each letter is counted as many times as it occurs. Again by definition,
IN| = 0. The length function possesses some of the formal properties of
logarithm:

lwiwa| = [wi] + [wol, (W] = i[w]

for all words w and integers i = 0.

A word w is a subword (or a factor) of a word u if there are words x
and y such that ¥ = xwy. Furthermore, if x = \ (resp. y = \), then w s called
an initial subword, or a prefix, of « (resp. a final subword or a suffix of ).

Subsets of L* are referred to as formal languages—or, briefly, lan-
guages—over L.

Thus, this definition is very general: A formal language need not have
any form whatsoever! The reader might also find our terminology somewhat
unusual in general. A language should consist of sentences rather than of
words, as is the case in our terminology. However, as already pointed out
above, this is irrelevant and depends merely on the choice of the basic termi-
nology; we have chosen the ‘‘neutral’”” mathematical terminology.

For instance,

L, ={\0,010,1110} and L,= {0” | pprime}

are languages over the alphabet £ = {0, 1}, the former being finite and the
latter infinite. Here, L, is also a language over the alphabet T, = {0}. In
general, if L is a language over the alphabet I, and L is an alphabet contain-
ing L, then L is also a language over L. However, when we speak of the
alphabet of a language L, denoted by ALPH(L), then we mean the smallest
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alphabet L such that L is a language over L. Thus, ALPH(L,) = {0, 1} and
ALPH(L,) = {0}. If L consists of a single word, L = {w}, then we write sim-
ply ALPH(w) instead of ALPH({w}). In general, we identify elements x and
singleton sets {x} whenever there is no danger of confusion.

Specific families of languages are often conveniently characterized in
terms of operations defined for languages: The family consists of all lan-
guages obtainable from certain given languages by certain operations. We
now define some of the most-common operations. Others will be defined
later on.

Regarding languages as sets, we may immediately define the Boolean
operations of union, intersection, complementation, and difference in the
natural fashion. The customary notations LUL', LNL', ~Land L — L’

are used. In defining the complement of L, ~L, we often consider
ALPH(L) =X : ~L consists of all words in £* that are not in L. Thus,
~L=X*—L.

(This is done in order to avoid any ambiguity in the definition of complemen-
tation. When defining the other Boolean operations, the alphabet need not
be considered. One should, however, be careful; if complement is defined
using ALPH, then some of the customary formulas are not necessarily valid.
An example of such a formula is ~~L = L.)

The catenation (or product) of two languages L, and L, is defined by

L|L2:{W1W2 | Wl GLI and W2€L2}.

The notation L' is extended to apply to the catenaticn of languages. By defi-
nition, L° = (\). Observe that this definition guarantees that the customary
equations

L'I’=L" and (L)Y =LY
hold for all languages L and nonnegative integers / and j. Observe also that
the empty language, (7, is not the same as the language {A}. Indeed, ¢/ and

{\} can be considered as zero and unit elements with respect to catenation
because, for any language L,

Ly =QL=g, L{\={\L=L.

The catenation closure of a language L, L*, is defined to be the union
of all powers of L:

L* = I¥,

s

Il
(=]

i

The A-free catenation closure of L, L ', is defined to be the union of all posi-
tive powers of L:

Lt = gJIL'.
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Thus, a word is in L iff it is obtained by catenating a finite number
of words belonging to L. The empty word, A, is in L* for every L (including
L = ) because L° = {\}. Observe also that the notations £* and £ * intro-
duced previously are in accordance with the definition of the operations L*
and L* if I is viewed as the finite language consisting of all single-letter
words. For instance,

{a* |n=1}={a’}* and {a"*?|n=0}={d}*{d’}.

An operation of crucial importance in language theory is the opera-
tion of morphism. A mapping 4 : £*—A*, where L and A are alphabets,
satisfying the condition

h(ww') = h(w)h(w'), for all words wand w’ (1)
is called a morphism. For languages L over I, we define
h(L) = {h(w) | wisinL}.

(Again, algebraically speaking, a morphism of languages is a monoid mor-
phism linearly extended to subsets of monoids.) In view of the condition in
(1), to define a morphism A, it suffices to list all the words A(a), where a rang-
es over all the finitely many letters of £. A morphism # is called nonerasing
(resp. letter-to-letter) if A(a) # A\ (resp. A(a) is a letter) for every @ in L.

We have pointed out that a finite language can be defined, at least in
principle, by listing all the words in it, whereas such a definition is not possi-
ble for infinite languages. We have already seen how to define infinite lan-
guages by specifying a property that must be satisfied by the words in the
language. An example is the language {0” | p prime}. The operations intro-
duced above give a way of defining infinite languages because each of the op-
erations ~, *, and " yields an infinite language when applied to a finite lan-
guage containing at least one nonempty word. For instance, we may consider
all languages obtainable from the atomic languages ¢ and {a}, where a
ranges over the letters of some alphabet £, by finitely many applications of
the operations introduced above. Such languages are called regular in Chap-
ter 3, where it will be also seen that we need only a few of the operations in-
troduced above to get all these languages.

We shall introduce a general model for the definition of languages by
means of ‘‘legal’’ derivations. The model is referred to as a rewriting system.
The notion of a (phrase-structure) grammar is obtainable from this model by
providing it with an input and output format. Before introducing this model,
we still want to consider four examples of a somewhat more sophisticated na-
ture than the examples mentioned above. The first three examples deal with
operations and are also of general theoretical interest: Example 2.1 in regard
to operations in general, Example 2.2 for regular languages, and Example
2.3 for cryptography. The fourth example introduces the notion of a rewrit-
ing system.
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Example 2.1. Consider the language L over the alphabet {a, b, ¢} consist-
ing of all words of the form

ciwel, i=0,j=0,

where w is the empty word, the letter a is a prefix of w, or the letter b is a suf-
fix of w. (Thus, for instance, \, ¢3, cacbac?, ca, and bc are all in L, whereas
none of the words ba, c*bca’c, c¢*bc’a is in L.) Although L misses many
words over the alphabet {a, b, c}, we claim that

L*={a,b,c}*. ?)

Consequently, since Nisin L, L' = {a, b, c}* for every i = 2.

To establish the claim in (2), we prove that an arbitrary given word x
over {a, b, c} isin L?. This is obvious if x = \. If @ is a prefix of x, then x is in
L and, hence, also in L?. (Observe that L2 contains L.) If b is a prefix of x, we
may write x in the form x = bz or x = bybz, for some words y and z such that
b is not in ALPH(z). Clearly, the words b, byb, and z are in L and, conse-
quently, xis in L. Finally, let ¢ be a prefix of x. If b is not in ALPH(x), then
clearly x is in L. Otherwise, we may write x in the form

x = c'ybz,

for some / = 0 and words y and z such that b is not in ALPH(z). Again, both
c'yb and z are in L and, consequently, x is in L2. Since we have exhausted all
cases, the claim in (2) follows. The reader might want to prove (2) by consid-
ering the cases: ¢ occurs in x and @ does not occur in x.

Example 2.2. Define the language L by L = {ababa}*. Thus, L consists of
the’empty word N and of all words of the form (ababa)”, where n = 1. We
want to show that L can be obtained from the atomic languages ¢, {a}, and
{b} without using the star operation. (The definition above shows how L is
obtained from the atomic languages by the operations of star and catena-
tion.) We claim that L can be obtained from the atomic languages by the op-
erations of catenation, union, and complementation.

Let £ = {a, b} and observe that ~(% = L*. Observe also that inter-
section can be expressed in terms of union and complementation:

LNLy= ~(~L, U ~L,)
for all languages L, and L,. Finally, observe that
{A\} = ~(({a} U {b})LT*).

Consequently, we may use each of the items Z*, N, and {\} without loss of
generality in our following considerations.

Since the nonempty words in L are ababa, ababaababa,
ababaababaababa, . . ., we conclude that the words

ababa, babaa, abaab, baaba, aabab 3)



