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SUMMARY

In chapter I the concept of Padé approximants is generalized for nonlinear operators

F: X = Y where X is a Bunach space and Y is a commutative Banach algebra, starting
from analyticity as is done in the classical theory. The generalization is such that
the classical univariate Padé approximant (X = R =Y) is a special case of the theory.
We discuss the existence and unicity of a solution of the Padé-approximation problem
of order (n,m) for F and prove that a lot of the properties for univariate Padé appro-
ximants remain valid: several covariance properties, recurrence relations, the epsi-
lon algorithm , the gd-algorithm, the structure of the Padé table, criteria for regu-
larity and normality of an entry of the Padé table. We are also able to prove a pro-
jection property and a product property.

In chapter II the multivariate Padé approximants (X = Blp, Y = R) are studied more
extensively. We prove for instance the nontriviality of a solution of the Padé-appro-
ximation problem and the near-Toeplitz structure of the homogeneous system.of equations.
Also an extra covariance property and more recurrence relations are formulated. The
multivariate Padé approximants introduced here are compared with other definitions of
Padé approximants for multivariate functions given by different authors in the last
few years. Our definition turns out to be an interesting generalization too.

Most of the applications are discussed in chapter III, except the acceleration of con-
vergence of a table with multiple entry which is done by means of multivariate Padé
approximants and therefore added to chapter II.

As far as the nonlinear operator equations are concerned, we treat the solution of
nonlinear systems of equations, initial value problems, boundary value problems,
partial differential equations and integral equations. An interesting procedure, espe-
cially in the neighbourhood of singularities, is the Halley-iteration which is newly
introduced here. Its numerical stability for the solution of a system of nonlinear
equations is formulated at the end of chapter III.
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§ 2.

2.1.

CHAPTER I: ABSTRACT PADE APPROXIMANTS IN OPERATOR THEORY

MOTIVATION

Padé approximants are a frequently used tool for the solution of mathematical problems:
the solution of a nonlinear equation, the acceleration of convergence, numerical inte-
gration by means of nonlinear techniques, the solution of ordinary and partial diffe-
rential equations. In the neighbourhood of singularities the use of Padé approximants
can be very interesting. : :

Many attempts have been made to generalize the concept of Padé approximants in some
sense; we refer to definitions of multivariate Padé approximants by Bose [ 7], Chisholm
[11, 12, 13, 14], Karlsson and Wallin [ 32] » Levin [ 34] and Lutterodt [37], to quadratic
approximants and their generalizations [45, 21], to operator Padé approximants for
formal power series in a parameter with non-commuting elements of a certain algebra

as coefficients [4], to matrix-valued Padé approximants [3, 46], to Padé approximants
for the operator exponential [17] and so on.

It would be important to generalize the concept of Padé approximants for nonlinear
operators, following the ideas of the classical theory, for this would enable us to
prove a lot of the classical properties for the generalizations as well and it would
also enable us to use those generalizations for the solution of nonlinear operator
equations. these are more general problems than the ones we solved with the aid of
univariate Padé approximants; we mention nonlinear systems of equations, nonlinear
initial value and boundary value problems, nonlinear partial differential equations
and nonlinear integral equations.

Such a generalization is treated here.

INTRODUCTION

Banach spaces and Banach algebras

In ordinary analysis we work with the real or complex number system. Here we shall
work in complete normed spaces which are generalizations of these number systems.
Since linear spaces may consist of such interesting mathematical objects as vectors
with a finite or infinite number of components or functions that satisfy given con-
ditions, we shall be able to deal with a wide variety of problems.

In abstract terms, a linear vector space X over the scalar field A (where A is R or
L) is a set of elements with two operations, called addition and scalar multiplica-

tion, which satisfy certain conditions:




0 2.

a) the set X is a commutative group with respect to the operation of addition ( we
shall denote the unit for the addition by 0O)

b) for any scalars A, pin A and any elements x, y in X, the following rules hold:

Ax € X
X = X
o.x =0

(A+tu)x = Axtpx
AX+y) = AxHAy

The algebraic structure of a linear space is similar to that of the real or complex
number system. However, to deal with other concepts of theoretical and computational
importance, such as accuracy of approximation, convergence of sequencés, and so on,
it is necessary to introduce additional structure into such spaces.

X is called a normed linear space if for each element x in X, a finite non-negative
real number lIxll, called the norm of x, is defined and the following conditions are
satisfied:

a) IIxl = o if and only if x = O

b) Iaxit = IAl Iixl

c) lx+yll = lIixli + Iyl

In the solution of many problems the basic issue is the existence of a limit X" of an
infinite sequence {Xi} of elements of X. A normed linear space X is said to be complete
if every Cauchy sequence of elements of X converges to a limit which is an element of
X. Such a complete normed linear space is called a Banach space.

Some Banach spaces have the property that the product xy of two elements of the space

is defined and is also an element of the space. Such a Banach space is called a Banach

algebra if
lIxyll < lixil .0yl

A Banach algebra is said to be comnmutative if
Xy = yx

and we say that it has a unit for the multiplication, which we shall denote by I, if
x.I'=x=1.x
The spaces RP and TP for example are Banach algebras with unit if the multiplication

is defined component-wise.

Linear and multilinear operators

Many mathematical operations which transform one vector or function into another have
certain simple algebraic properties. We shall now discuss such operators.

An operator L which maps a linear space X into a linear space Y over the same scalar
field A so that for each x in X there is a uniquely defined element Lx in Y, is called

linear if it is




Lx1 + sz

b) homogeneous: L(Ax) = ALx

n

a) additive: L(x1+x2)

If X=RP and Y=RY then a linear operator L has a unique representation as a qxp matrix.
Another example of a linear operator is furnished by differentiation; the operator
D—a— maps X=C'([ O, ;]) into Y=C([0,1]) with
Dx(t) = % = y(t)
If X and Y are linear spaces over a common scalar field A , then the set of all linear
operators from X into Y becomes a linear space over A if addition is defined by
(L1+L2)x = L1x+L2x
and scalar multiplication by
(AL)x = A (Lx)
The norm of a linear operator L is defined by

Ll = sup I Lxil
I xil =1
and the operator L is called bounded if LI < .

We know that a continuous linear operator L from a Banach space X into a Banach space
Y is bounded [ 41 pp. 38] and also that

Ll = L. Il
Clearly the set L(X,Y) of all bounded linear operators from a Banach space X into a
Banach space Y is a Banach space itself. So we may consider linear operators which map
X into L(X,Y). For such an operator B and for X, and X, in X, we would have

Bx1 =L
a linear operator from X into Y, and

Bx1x2 (Bx1)x2
an element of Y.
The operator B is called a bilinear operator from X into Y. Since the bounded 1linear
operators from X into L(X,Y) form themselves a linear space L(X,L(X,Y)) which we shall
denote by L(XZ,Y), the foregoing process could be repeated, leading to a whole hierarchy
of linear operators and spaces. These classes of operators play a fundamental role in
the differential calculus in Banach spaces.
A k-linear operator L on X is an operator L:Xk = Y which is linear and homogeneous in
each of its arguments separately. If XyZe e TX =X, We shall use the notation

ka = Lx1...xk
We write L(Xk,Y) for the set of all bounded k-1linear operators from X into Y.
We define a o-linear operator on X to be a constant function, i.e. for y fixed in Y,
we have

Ix =y for all x in X
The set L(XO,Y) is identified with Y.
IE L € L(Xk,Y) and XpseeesX, € X with k> £ =2 1 then

Lx]...xz
is a bounded (k-£)-linear operator.




2:5.

3 Lok i i
In general the elements Lx s X and in ceeXy with (x1,...,xk) in X© and (11,... ’lk)

1
a permutation of (1,...,k) are different] o) tﬁ%t actually k! k-linear operators are
associated with a given k-linear operator L.

But if

foriall (x1,...,xk) in Xk and for all permutations (i1,...,ik) ot (e ki 4lmps
103-104] then the k-linear bounded operator L is called symmetric.
If Y is a Banach algebra, multilinear operators can also be obtained by forming tensor-

products.

Definition I.2.1.:
Let F: X>Y and G : X+ Y be operators.

The product F.G is defined by (F.G)(x) = F(x).G(x) in Y.

Definition 1.2.2.:

Let 'Xl’ 5 Xp, Z1, i Zq be vector spaces and let

Fs )(1 Xt i i Xp -+ Y be bounded and p-linear and

G Z1 % ek Zq - Y be bounded and g-linear.

The tensorproduct F ® G : Xy x e x Xp i Z1 Xl Zq—»Y

is bounded and (p+q)-linear when defined by
(F® G) Xq eee xp 21...zq = Fx] S Gz1 A
[ 23 pp. 3181,

Fréchet-derivatives

An operator F from X into Y is called nonlinear if it is not a linear operator.
Now suppose that F is an operator that maps a Banach space X into a Banach space Y.

£ L in'LX,Y) exists such that

IIF(x0+Ax) =~ F(xo) - LAl

lim =0
[1Axll =0 I A

then F is said to be Fréchet-differentiable at Xs and the bounded linear operator
! (xo)

is called the first Fréchet-derivative of F at X,
Note that the classical rules for differentiation, like the chain rule still hold
for Fréchet differentiation. In practice, to differentiate a given nonlinear operator
F, we attempt to write the difference F(xo+Ax) - F(xo) in the form
= = AX) A A
F(xO+Ax) F(xo) L(xo, x)Ax + n(xo, X)




2.4

where L(xo,Ax) is a bounded linear operator for given X and ax with
Tim O Lix 5aAX) =L € LOX,Y)
laxio °

and
I Cxgs 2)1

1im =
flaxlvo  TAX .

To illustrate this process, consider the operator F in C({0,1]) defined by

F(x) = x(t) f s+t x(s) ds Grsipiciq
The difference F(x +AX) - F(xo) equals

x, (1) f T X(s) ds i+ ax(t) f = X.(s) ds + Ax(t) f

S+t S+t "0 px(s) ds

S+t

So the operator L(x ,0X) equals
1
X, (t) f = Tdsoif f St o(s) dsi+ f o f s+t Ax(s) ds

where [ ] is a place holder and is used to indicate the position of the argument of
the operator L(xo,Ax).
Now L(xo,Ax) is a continuous function of Ax, so we may set Ax = O to obtain F'(xo) =

F'(x,) = x () f—g 1ds + [ ] f ot X, (5) ds

where now [ ] indicates the position of the argument of the linear operator Bt ()

Suppose that an operator F from X into Y is differentiable at X, and also at every
point of the open ball B(x ,T) with centre X, and radius r >o. For each x in B(x STy
B! (x ) will be an element of the space L(X,Y). Consequently F' may be considered to
be an operator defined in a neighbourhood of X, We know that F' will be differentiable
at X, if a bounded linear operator B from X into L(X,Y) exists such that

1im HF'(xO+Ax) - F'(xo) =/BAx]l -

b 1axi
Such a bounded linear operator B is known to be a bilinear operator and if it exists,

it is called the second derivative of F at X, and denoted by F"(xo) = B. Thus the
second derivative of an operator F is obtained by differentiating its first derivative
F'. Now it is possible to give an inductive definition of higher derivatives of an

operator F.

Abstract polynomials

If L is a k-linear operator from a Banach space X into a Banach algebra Y, then the
operator P from X into Y defined by



P(x) = ka for; xhinsk
is a nonlinear operator. In this way we can define abstract polynomials.

Definition I.2.3.:

An abstract polynomial is a nonlinear operator P : X - Y such that

Flx) = & o+ o g A, with

A; € L(X » Y) and A, symmetric [ 41 p. 107].

The degree of P(x) is n. We also introduce the following notations.

If there exists a positive integer j1 such that for all o = k < 'jT: Akxk = 0 and
J

Aj X L £ 0 then 3 P = j1 is called the order of the abstract polynomial P.

i
If there exists a positive integer 32 such that for all _]2 < ki=zm; Ak g = 0 and

Iz

AJ X “ £ 0 then aP = is called the exact degree of the abstract polynomial P.
2
Abstract polynomials are differentiated as in elementary calculus: if P(x) =
Anxn > An_1xn_1 + ... + A then the Fréchet-derivatives of P at x, are
i = n-1
2 (xo) nNA X +...+2Ax +A €LX Y)
PP (x) = n@-1) e P

P(n)(x) =nl A e LOO, V)

We empha51s the fact that for an operator F: X — Y “the Kt &

Fréchet-derivative at X»
(x ), is a symmetric k-linear and bounded operator [41 pp. 110]. Examples of ab-

stract polynomials and Kkt th Fréchet-derivatives of a nonlinear operator can be found

in § 3. of this chapter.

We can easily prove the following important lemmas for abstract polynomials.

Lemma I.2.1.:
n 2
Let the abstract polynomial P be given by P(x) = 2 Aixl.
i=o
If P(x) = O then Ai =:0vfor 1.2 0 .. 4N
Lemma I.2.2.:

Let V be an abstract polynomial and U a continuous operator with D(U) # @.

If U(x).V(x) = O then V(x) =

Proof:
Since D(U) # @, we can find X, in X such that U(xo) is regular.




