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Editorial Policy

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes” character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length, a bibliography, and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Preface.

These notes are from a graduate seminar at Cornell in Spring 1994. They
are devoted mainly to basic concepts of superconvergence in second—order time—
independent elliptic problems.

A brief chapter-by—chapter description is as follows: Chapter 1 considers one—
dimensional problems and is intended to get us moving quickly into the subject
matter of superconvergence. (The results in Sections 1.8 and 1.10 are new.) Some
standard results and techniques used there are then expounded on in Chapters 2 and
3. Chapter 4 gives a few selected results about superconvergence in Ly—projections
in any number of space dimensions. In Chapter 5 we elucidate local maximum-
norm error estimates in second order elliptic partial differential equations and the
techniques used in proving them, without aiming for complete detail. Theorems
5.5.1 and 5.5.2 are basic technical results; they will be used over and over again in
the rest of the notes.

In Chapters 6 through 12 we treat a variety of topics in superconvergence for
second order elliptic problems. Some are old and established, some are very recent
and not yet published. Some of the earlier contributions have benefitted from later
sharpening of tools, in particular with respect to local maximum-norm estimates.

In Chapter 6 we consider tensor-product elements. Using ideas of [Douglas,
Dupont and Wheeler 1974b] we show that in some situations one-dimensional su-
perconvergence results automatically translate to several dimensions. Chapter 7,
“Superconvergence by local symmetry”, presents recent fundamental results from
[Schatz, Sloan and Wahlbin 1994]. Chapter 8 treats difference quotients for approx-
imating derivatives of any order on translation invariant meshes. Here we follow
the basic ideas of [Nitsche and Schatz 1974, Section 6]. In Chapter 9 we briefly
comment on how, in many cases, results about superconvergence in linear problems
automatically carry over to nonlinear problems. The essential idea is from [Douglas
and Dupont 1975], which in turn is essentially the quadratic convergence of New-
ton’s method. Chapter 10 is concerned with superconvergence on curved meshes
which come about via isoparametric mappings of straight-lined meshes; it is based
on [Cayco, Schatz and Wahlbin 1994]. Chapter 11 reverts back to the seventies. It is
mainly concerned with the K—operator of [Bramble and Schatz 1974]; the presenta-
tion follows [Thomée 1977]. We give an application to boundary integral equations,
[Tran 1993]. Also, we briefly mention a method for obtaining higher order accuracy
in outflow derivatives, [Douglas, Dupont and Wheeler 1974a], and an averaging
method of [Louis 1979)]. Finally, in Chapter 12, we review the computational inves-
tigation of [Babuska, Strouboulis, Upadhyay and Gangaraj 1993] and comment on
it in light of the theories of Chapters 6 and 7.

Previous treatises of superconvergence are [Chen 1982a] and [Zhu and Lin 1989].
Both are in Chinese and, although there is a description of Zhu and Lin’s book
in Mathematical Reviews, it is hard for me to judge how they compare with the
present account. The use of local maximum-norm estimates seems common to all
three. For what appears to be a major difference of approach, see Remark 7.4.1.

Surveys of superconvergence with a more limited scope have appeared in [Kﬁ'iek
and Neittaanmiki 1987a] and [Wahlbin 1991, Chapter VII].

Let me next list some topics that are not included ip these notes. The first is su-
perconvergence in collocation finite element methods for differential equations. For
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this topic I have not even included references; the reader is referred to [K¥izek and
Neittaanmaki 1987a]. The second omitted topic is superconvergence in boundary
integral methods or in integral equations (except for Section 11.5). Third, extrapo-
lation methods, involving computation on two or more meshes, and fourth, the use
of superconvergence in construction of smooth stress fields and the related use of
superconvergence for a posteriori error estimation and adaptive refinement. For the
second through fourth topics I have included a fair number of references so that
the interested reader may, by glancing through the list of references, easily gain an
inroad to the literature on the subjects. Finally, I have not considered supercon-
vergence in Galerkin finite element methods for time-dependent problems. Here,
though, I have included all references that I know of.

The references are likewise “complete” with respect to the mathematical lit-
erature for the main topics treated. Of course, many of these references touch
only briefly on superconvergence. In preparing the references I have used Mathsci
(~ Mathematical Reviews since 1972 on line) which does not systematically cover
the vast engineering literature. The number of references given is more than it makes
sense to actually refer to in the text, unless one resorts to plain listing, which I have
not done. I hope that nevertheless some readers will find the list of references useful.
(As an example, if a reader interested in early history wants to find references to
papers on superconvergence in finite element methods before 1970, our list gives:
[Stricklin 1966], [Filho 1968], [Stricklin 1968], [Oganesyan and Rukhovetz 1969] and
[Tong 1969].) '

Basic discoveries continue to be made at present. Furthermore, the theory of
superconvergence is very immature in carrying results up close to boundaries (or,
internal lines of discontinuity). Today, such investigations are carried out on a case-
by—case basis, and, of course, not all results hold all the way up to boundaries (see
Section 1.7). Most results that are proven up to boundaries in several dimension per-
tain to axes—parallel parallelepipedes, or, locally, to straight boundaries. For these
and other reasons I have decided to offer these notes essentially as they were written
week—by-week during the seminar, rather than rework them into “text—book” form;
such a textbook would most likely be out—-of-date when it appears. The reader may
be warned that, reflecting my lecturing style, proofs often appear before theorems;
indeed, the “theorem” may be only an informal statement. Also, true to the prin-
ciple that repetition is the mother of studies, there is a fair amount of such. E.g.,
symmetry considerations are first met with in two—point boundary value problems,
then in La—projections and finally in multidimensional elliptic problems; difference
quotients first ocur in two—point boundary value problems and later in many di-
mensions; and, tensor product elements are considered as well for Ly—projections as
for elliptic problems.

Let me penultimately remark that there are three concepts which may be con-
fused with superconvergence. “Supraconvergence” is a concept in finite—difference
theory for irregular meshes, cf. [Kreiss, Manteuffel, Swartz, Wendroff and White
1986], [Manteuffel and White 1986], [Heinrich 1987, p. 107], and cf. also [Bramble
1970]. “Superapproximation” will be explained in these notes and “superlinear con-
vergence” occurs in the theory of iterative methods, cf. e.g. [Ortega and Rheinboldt
1979, pp. 285 and 291]. '
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Finally, I thank Arletta Havlik for her superior typing, Al Schatz for many stimu-
lating discussions, Stig Larsson for timely help and the National Science Foundation
for financial support.

Ithaca, January 1995
Lars B. Wahlbin



Table of Contents.

Chapter 1. Some one-dimensional superconvergence results.

1.1. Introduction

1.2. Nodal superconvergence for function values in continuous
elements (u = 0).

1.3. Reduction to a model problem.

1.4. Existence of superconvergence points in general.

1.5. Superconvergence for interior points of mesh-intervals for
continuous elements (u = 0).

1.6. Superconvergence in derivatives at points about which the
meshs are locally symmetric (r even).

1.7. Necessity of staying C1hln1/h away from the boundary for
superconvergence in the uniform mesh case (p = 1).

1.8. Finding all superconvergent points for function values and
derivatives in the case of a locally uniform mesh for g =1
and r even (with a remark about smoothest cubics).

1.9. Superconvergence in function values at points about which
the meshes are locally symmetric (r odd).

1.10. Finding all superconvergent points for function values and
derivatives in the case of a locally uniform mesh for x = 1 and
r odd.

1.11. First order difference quotients of u, as superconvergent
approximations to u’ on locally uniform meshes.

1.12. Two examples of superconvergence by “iteration”.

1.13. A graphical illustration of superconvergence.

Chapter 2. Remarks about some of the tools used in Chapter 1.

2.1. Inverse estimates.

2.2. On approximation theory, and duality.

2.3. Superapproximation.

2.4. A typical combination of inverse estimates and
approximation theory used in Chapter 1.

Chapter 3. Local and global properties of Ly—projections.

3.1. Assumptions.
3.2. Estimates for Ly—projections.

Chapter 4. Introduction to several space dimensions: some results
about superconvergence in Ly—projections.

4.1. Negative norm estimates and existence of general
superconvergence points for function values.

4.2. Superconvergence in Lo—projections on n—dimensional
tensor product spaces.

4.3. Superconvergence by symmetry in Lo—projections.

10

13

14

16

19

22
25
26

28

28
30
32

35
36
36

38

42

42

43
44



X

Chapter 5. Second order elliptic boundary value problems in any
number of space dimensions: preliminary considerations on local
and global estimates and presentation of the main technical tools
for showing superconvergence.

5.1. Introduction.

5.2. Existence of superconvergence points in general: an example
(also an example of a multi-dimensional duality argument).

5.3. General comments on local a priori error estimates.

5.4. General comments on L, estimates.

5.5. The main technical tools for proving superconvergence in
second order elliptic problems in several space dimensions.

Chapter 6. Superconvergence in tensor-product elements.
6.1. Introduction.
6.2. Superconvergence in derivatives for the case of the Laplacian.

6.3. Negative norm estimates for u — up: Examples.
6.4. Superconvergence in derivatives for the case of (6.1.1.).

6.5. Superconvergence in function values for the Laplacian and r > 3.

Chapter 7. Superconvergence by local symmetry.

7.1. Introduction.

7.2. The case of a symmetric form with constant coefficients.
7.3. The general case of (5.1.3) with variable smooth coefficients.
7.4. Historical remarks.

Chapter 8. Superconvergence for difference quotients on translation
invariant meshes.

8.1. Introduction.

8.2. Constant coefficient operators and unit separation, d ~ 1.
8.3. Constant coefficient operators and general separation d.
8.4. Variable coefficients.

Chapter 9. On superconvergence in nonlinear problems.
Chapter 10. Superconvergence in isoparametric mappings of
translation invariant meshes: an example.

10.1. Introduction.
10.2. Superconvergence in difference quotients for first derivatives.

Chapter 11. Superconvergence by averaging: mainly, the K—operator.

11.1. Introduction

11.2. Preliminaries on Fourier transforms and multipliers.

11.3. The K-operator in general.

11.4. The K-operator applied to finite element approximations in
second order elliptic problems.

11.5. Boundary integral equations and the K—operator: an example.

11.6. Remarks, including some other averaging methods.

11.7. A superconvergent “global” averaging technique for
function values. .

48
48

49
52
58

62
65

65
65
69
70
72

74

74
74
78
79

84

84
86
89
89

93

98

98
101
107
107

107
111

115
116
121

123



xi

Chapter 12. A computational investigation of superconvergence

for first derivatives in the plane. 125
12.1. Introduction. 125
12.2. Proof of (12.1.5), (12.1.6) and precise definition of the principal

error term . 128
12.3. Results of computational studies, with comments. 132
References. 136

Subject index. 165



2

simple in this chapter we make the following explicit assumption of quasi-uniformity
of meshes, except in the case of continuous elements (2 = 0) when no such restriction
is made.

(1.1.7) If p > 1, then there exists a positive constant Coy independent
of h such that in any subdivision 7, we have h < Cqy min h;.
1

We shall assume that (1.1.3) has a unique solution u for any f in Ly(I), say.
Following [Schatz 1974], cf. also [Hildebrandt and Weinholz 1964] and [Schatz and
Wang 1994], we then know that there exists hg > 0 such that for h < hg, given any
f € La(I) there is a unique solution up, to (1.1.6). Furthermore, under our general
conditions on smooth enough data, we have the following estimates for the error
€ =1U— Up:

(1.1.8) lell,ry + Rllell a1y < CRT||ull a1y

and

(1.1.9) lellzr-+ry < Ch™**||ullgr(1y, for s <7 —2.

Here

(1.1.10) lollg-ey = sup (v,w).
weH"(I)

llwll s (ry=1

Correspondingly we have in maximum-norm,

(1.1.11) lellLo(ry + Rllellwy () < CR"lullwy, (1)
and
(1.1.12) lellwzsry < Ch™**|lullwy, (1), for s <7 —2,
where now
(1.1.13) lollwzey=sup (v, w).

weW; (I)

llwllwe =1

The constants C occurring are independent of h and u. They do depend on the
coefficients a; and on p and r; in the case of u > 1 they may also depend on Cgqu
in (1.1.7).

The H'-estimate in (1.1.8) can be found in this generality in [Schatz 1974], after
use of standard approximation theory. The Ly—estimate and the negative norm
estimates (1.1.9) follow by standard duality arguments, cf. (2.2.4) below. The Lo
estimate (1.1.11) for g = 0 is in [Wheeler, M. F. 1973]. The case of general y, with
the quasi—uniformity condition (1.1.7), is in [Douglas, Dupont and Wahlbin 1975].
From this the W2 —estimate follows in the quasi-uniform case. The W —estimate
in the case u = 0, although “well-known folklore”, we have not been able to locate
without restrictions on the meshes. We will therefore give a proof, in Remark 1.3.2
below. The negative norm estimates in (1.1.12) follow in a standard duality fashion
from (1.1.11).
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It is not hard to convince one-self that the powers of h occurring in (1.1.11) are
the best possible in general. E.g.,

1.1.14 min lle" —
( ) X€,_1(0,h) 2" = XllZoo0.8)

1
= it )~ ]
X€EM-_1(0,h) (h) h'X(z) Lo (0,h)

1
min T—— “
X€M,—1(0,h) ¢ hr (he) L(0,1)

=B e - =CH.
)?El'lr_fl(o,l)”£ X©)llLao,1)

r

A superconvergent “point” for function values of order o is now a family of points
& = &(h) such that

(1.1.15) le(€)| < Ch™,

where ¢ > 0 and C = C(u,as,a1,a0) (and possibly also depending on Ggu in
(1.1.7)). Similarly, n = n(h) is superconvergent of order o for first derivatives if

(1.1.16) le'(n)| < Ch™=14°,

with o > 0.

In principle, we could talk about superconvergence points for a particular problem
or for a particular solution. Generally what we have in mind, though, is some class
of problems with (locally) smooth coefficients and solutions, and we then wish to
determine points which are superconvergent for the whole class.

Furthermore, we point out that what is described in (1.1.15) and (1.1.16) is only
so—called “natural” superconvergence. That is, up (or u},) is simply evaluated at the
point £ (or n) and then compared with u(£) (or »/(n)). In these notes we shall also see
many examples of superconvergence involving postprocessing of uy (trivial, or not
so trivial). In fact, in terms of implementation on a computer, many postprocessing
methods are simpler to implement than is evaluating uj, at a (non—node) point.

1.2. Nodal superconvergence for function values in continuous elements

(1= 0).
We shall give the argument of [Douglas and Dupont 1974]. Let G(&;-) be the
Green’s function for (1.1.1), cf. e.g. [Birkhoff and Rota 1969, Theorem 10, p.52-53],

so that
(1.2.1) e(€) = A(e, G(&;))-
From (1.1.3) and (1.1.6), A(e, ) = 0, for x € Sh and thus

(1.2.2) e(€) = A(e,G(&;¢) — x), for any x € .OS'h.

Let now £ = z;, a meshpoint. Since G(¢;-) is continuous and (uniformly in £) smooth
on both sides of z = £, and since y = 0, we have from standard approximation theory
that, for a suitable x,

(1.2.3) IG(& ") = xlla ) < CR™
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Since by (1.1.8) also ||e||g1(1y < Ch"||u||gr(1) we thus obtain from (1.2.2),
(1.2.4) le(z:)| < CR* =2 ||ull g~ 1y,

for z; a meshpoint. Thus, provided r > 3 (i.e., continuous piecewise quadratics
or higher elements are used), we have superconvergence at the knots. There is no
restriction on the geometries of the meshes allowed.

We state the above as a theorem.

Theorem 1.2.1. Under the assumptions of Section 1.1, for p = 0 (with no mesh
restrictions),

(1.2.5) |(w — un)(@:)| < CR* 2 |lullgr (1)
Let us mention that [Douglas and Dupont 1974] gives an explicit example (with
az € C"~1(I) only, though) showing that the power h?"~2 is sharp.

1.3. Reduction to a model problem.

In Sections 1.5-1.11 we shall investigate superconvergence of, typically, order one
(i.e., ¢ = 1 in (1.1.15) or (1.1.16)). It turns out to be convenient to reduce the
investigations to the case az = 1, a; = ap = 0. The argument follows [Wahlbin
1992] which in turn was based on [Douglas, Dupont and Wahlbin 1975]. Let thus

(1.3.1) A(u — up,x) =0, for x € ,g'h,
(cf., (1.1.3) and (1.1.6)) and let @y € §h be another approximation to u given by
(1.3.2) (u' —uy,x') =0, for x € Sh.
Then, with 8= i — uj, € Sk,
(1.3.3) @',x") = (@ —w)',x) = (un — u)’, X)
= (az(uh —u), lx')
1y ay \/

ot ) - ()

(az(Uh —u) ( 2X) - w') + (al(uh - u),w')

(

+ (ao(un — u), ¢)+(uh—u,(z'z ),), for x,z/zeg’h.

Let us now consider (éx)’ — ', and let us treat in detail the continuous case
(u = 0). Let then 9 be the natural (Lagrange) interpolant (at z;, z;+1; and the
appropriate number of equispaced points in the interior of I;) to %x. By standard

approximation theory,
1 \(
oy <0120
Ll(l.') - v ; a2x

(1.3.4) H(al—zx)' =

Ly(%)'
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and since x(™ = 0 we have by Leibniz’ formula and inverse estimates (cf. Section
2.1),

1 v ,
(1.3.5) 159 =¥, < OMilixtwz o,
where C' depends on ay. Thus, summing over all intervals,
(1.3.6) H(l )' '" <Ch
3. X -9 L S lIxlw 1y

This result is a special case of “superapproximation”, cf. [Nitsche and Schatz 1974].
Employing a quasi-interpolant a la [deBoor and Fix 1973] (see e.g. [Wahlbin 1991,

Lemma 3.2, p.367]), (1.3.6) is true for any S, considered by us, cf. (1.1.7). We shall
give some detail on this in Section 2.3 below. From (1.3.3) we now have using also

(1.1.11),

(1.3.7) 18", x)| < Ch™|lullwz, (nylIxllw:y-
We proceed to estimate ||6’||_(r). We have
(1.3.8) 10'lLwiry = sup (6, 9).
I¥lle,n=1
Let
(1.3.9) $p =411 = {x(z) (X E C“—I(I);xlll_ € Hr-z},
and let P denote the Lo—projection into $. For each 1 occurring in (1.3.8) we have
(1.3.10) (6',9) = (¢, Py)
since 6’ € $,. Now set
(1.3.11) B(z) = /0 " Py ()dy - zMV (Py)

where MV (Py) = fol Piydy. Then ¢ € ..OS'h, and ¢’ = Py — MV (P%). Since
(¢’,1) = 0 we have from (1.3.10) and (1.3.7)
(1.3.12) 16", 9)] = (6", ¢')| < CR"|lullw, (nllbllw; (1y-

Since ||¢|lw;z 1) < C|IP¥l|L,(r) and the Ly-projection into $ is bounded in Ly (easy
if p = 0 so that P is completely local; for the cases p > 1 see [Douglas, Dupont
and Wahlbin 1975] or [Wahlbin 1991, Lemma 3.5] or, Theorem 3.2.3 below) we thus
have ||¢||Wlx(,) < C||¥llzy(ry = C. Hence

(1.3.13) 10'| oy < CR lullwe (1)-
We state this result as a theorem.

o
Theorem 1.3.1. Let uy be the projection into Sy of u based on the form A, which
o
satisfies the assumptions of Section 1.1. Let un € Sp be given by (4}, —u',x") =0,

for x € ?5';,. For p > 1 assume quasiuniformity as in (1.1.7). Then
(1.3.14) l(un = @r) || Lo (1) < CR" (lullmiz, (1)-



We shall next prove an analogue of this for function values.

Theorem 1.3.2. With assumptions as in Theorem 1.3.1 and, in addition, r > 3,
we have

(1.3.15) llun — nllzory < CRH lullwr (1y-
Proof: In the case u = 0 we have from Theorem 1.2.1 that 6(z;) = (up—up)(z:) =
0(h?r=2) < Ch™*!. For z € I;, 8(x) = 0(z:) + [, 6'(y)dy and (1.3.15) follows in this

case from Theorem 1.3.1.
For the general case of u > 1 we write

(1.3.16) 0leaiy = sup (6,0).
[lvllzy (=1

For each such v, let —w” =v in I, w(0) = w(1) = 0. Then

(1.3.17) (6,v) = (¢',w') = (¢', P(w'))

where P is the Ly—projection into 8, = $4~ "', Since MV (P(w')) = MV (w') =0,
Q= [, P(w')e .g'h with @' = P(w') so that from (1.3.3), with e = up, — u,
(1.3.18) 6,v) = (¢',Q")

— / l ! ! ’

- "(aze» (azQ) "/’) +(a‘le9¢ )+(aoeﬂ/))

ﬁ '
+ (e’ (0,2 Q) )

=L+ 1+ I3+ 14

Integrating by parts, and using (1.1.11) and superapproximation,

_ 1 ! i 4
(1.3.19) L] = ’(e (az(a—zQ) -w) )l
1 /
< = Y
< Olellzn || (€)= '] 10
< ChHYQllwz )
Similarly, using the WL! error estimate of (1.1.12),
(1.3.20) [Io + I3 + I4] < Ch'+1||Q||wlz(I).

Under our quasi-uniformly assumption (1.1.7) it is easy to see that, since P is stable
in Ly, it is also stable in W}(I). Thus IRllwzuy < Cllwllwzuy < Cllvlle, =C. Tt
follows from this and (1.3.16)—(1.3.18) that

(1.3.21) 18l < CHT1.

This completes the proof of the theorem. O
Remark 1.3.1. In various special cases, better results can be had. E.g., if r > 3,
if az =1 and a; =0, then (1.3.14) in Theorem 1.3.1 may be replaced by

l(un = @n) Ly < CHH ullwz (1)



