An Introduction
to Computer
Hardware

Martin Cripps

An Introduction to
Computer Hardware

Martln Crlpps

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

\WWWWWW

E7960906

Edward Arnold

©M.D. Cripps 1977

First published in 1977 by
Edward Arnold (Publishers) Ltd.
25 Hill Street, London W1X 8LL

ISBN: 0 7131 2572 1

All Rights Reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photo-

copying, recording or otherwise, without the prior permission
of Edward Arnold (Publishers) Ltd.

For Margot and Norman

Printed in Great Britain by the Pitman Press, Bath

Preface

Computing is one of the most important - some might say the most
important - branches of science and technology. In reality it is
a technology and a servant to all sciences and technologies, for
it is useless to have a theory of computing unless there is
something useful to compute and machinery on which to perform the
computation.

This is an introductory book on the important topic of computer
hardware. It is vital for all users and programmers of computers
to appreciate the capabilities and restrictions of the machine
which will execute their programs., The basic technique of modern
computing is systems engineering, that is the software and
hardware are engineered into a total system, A computing
scientist or programmer requires a thorough understanding of
computer hardware if he is to make the best use of it. The aim of
this text is to present the material necessary for a good
understanding of the design, construction and operation of
computer hardware in a straightforward and logical fashion.

There are some excellent works on the detailed design and
hardware of computers for those with a good technological or
electronics background. However, students commence the study of
computing at school, as undergraduates at university or sometimes
as graduates in other subjects taking "conversion" courses. Their
background frequently contains no more than O-level or A-level
physics and 1little engineering or technology. This book was
produced in the absence of any cheap, well-structured texts and
was based on the notes produced for the undergraduate and
postgraduate courses which I developed and presented at Imperial
College. The book should also prove useful to anyone else not
directly studying computing, who wishes to remove any gulf
seperating him or her from the mystique of the "pretty coloured
boxes with the flashing lights".

Computing, in modern terms, is thirty years old this year,
although most of the ideas were foreshadowed by Charles Babbage
and Ada Augusta, Countess of Lovelace, between 1833 and Babbage s
death in 1871. In 1833 Babbage conceived the idea of his
"analytical engine", which was to include stored programs, a

iv Preface

store, an arithmetic wunit which he called the "mill"® and
input-output mechanisms. To be constructed using steel gears and
to be powered by steam, it was a conception far beyond the
technology of the time and was never finished. However, from
Babbage's drawings and the detailed descriptions and suggestions
for usage by his colleague the Countess of Lovelace, it 1is
apparent that their ideas were both brilliant and correct. Their
foresight even went as far as to point out that the analytical
engine (like all subsequent computers) "has no pretensions
whatever to originate anything".

A computer can do whatever we know how to order it to perform,
and nothing further. This is a point which all should hold firmly
in mind when discussing computers.

My approach is to divide the computer into logically separate
parts and to study them individually before putting them together
to create a complete machine. An introduction to the description
of logic and design precedes the main body of text. A description
of the technology used to implement the designs ends the book.

The assistance of Elsbeth Lindner who read the text and
suggested valuable improvements 1is gratefully acknowledged. The
comments, mostly polite and helpful, from students who have
attended my courses have contributed to the accuracy and
suitability of the text and are also much appreciated.

Martin Cripps,
London,
January 1977.

-3
(o
&R
e
O
&
N

Contents

1
1
1
1
1
|
1

3
3
3
3
3
3
3

A
2.
2+
2a
2.
2.
24

ASIC CONCEPTS Y /,,»

0

~NOoOUEWN -

1
2
3
u
5
6

The stored program mach;;é"mmwﬂ“

Logic conventions

Boolean algebra, definitions and postulates
Algebraic properties and Boolean theorems
Karnaugh map design (K-map)

Bistable circuits

Registers

RITHMETIC CIRCUITS

Exclusive OR and half addition
Serial addition

Parallel addition

Subtraction

Number representation

Carry prediction for an adder

RITHMETIC AND LOGIC UNIT

.
?
.
?
.
>

~NOoOUI W =

Simple logical functions

Rotating and shifting

Comparing and masking

Accumulation and general registers
Multiplication and division
Floating point addition

Other floating point operations

4 CONTROL CIRCUITS
4.1
4,2 Fixed wire control circuits
4.3 Instruction format and instruction set
4.4 Command generation

Decoding and timing circuits

5 CENTRAL CONTROL UNIT

5
5
5
5
5
5
5

.
.
0
.
.

.
»

~NOoOUIEFEWN -

Micro-controlled machines

Example of a simple micro-control machine
Addressing modes

Address modification

General purpose registers

Interpretive machines

Machine status and input-output

Voo~V NH-

14
15
15
16
16
18

21
21
23
23
24
26
27

28
29
32
34

36
37
40
41
44
44
46

vi Contents

6

10

11

SIMPLE INPUT OUTPUT AND PERIPHERALS
6.1 Programmed input-output

6.2 Keyboards

6.3 Printers

6.4 Visual displays

6.5 Card readers and punches

OMPLEX INPUT OUTPUT

Autonomous input-output

Data channels

Direct store access

Surface magnetic recording principles
Magnetic tape systems

Magnetic disc drives

C
7
7
7
7
7
7
7 Interrupt systems

~NounEWN =

0
0
2
.
s
.

STORAGE MEDIA

8.1 Storage elements

8.2 Integrated circuit stores
8.3 Magnetic core storage

8.4 Read only storage

TORAGE ARRANGEMENTS
Integrated circuit stores
2D and 3D core stores
Arrangements for speed
Arrangements for volume
Virtual storage systems

S
9
9
9
9
9
9 Store protection

s
0
a
.
.
3

AU EWN =

COMPUTERS, COMMUNICATION AND RELIABILITY
10.1 A complete computer

10.2 Data communication

10.3 Reliability

CONSTRUCTION AND IMPLEMENTATION
11.1 Logic elements

11.2 Integrated circuit production
11,3 Construction and connection

APPENDICES

=

B
c
D

Electrical and logical symbols
Glossary of terms

Summary of peripheral characteristics
Speed and conversion tables

INDEX

48
49
50
53
55

57
57
60
61
64
68
71

77
78
79
81

83
84
89
91
93
95

97
100
102

107
109
112

114
115
120
123

127

1 Basic Concepts

1.1 THE STORED PROGRAM MACHINE

The basic cycle of any computer is to FETCH instructions from a
store and then to EXECUTE them. The instructions must be fetched
in a predetermined sequence, so that they cause execution of the
actions the user requires to solve his problem. They must contain
sufficient information to determine these actions completely.
Instructions need to contain some, or all, of the information in
the form:

RESULT = OPERAND {OPERATOK} OPERAND {NEXT INSTRUCTION}
E.G. A=B+C, next instruction is at X.

No more information is ever required than these five "fields",
though that information may have to be found by means of pointers
to, or "addresses" in the store. It is usual for some of the
fields to be implicit in the design of the machine, for instance,
it is normal to assume that the next instruction is held in the
store location immediately following that of the instruction
being executed. Hence the next instruction field is implicit and
only when a change to the sequential fetching of instructions is
required is any information needed to tell the hardware (the
electronics) to get the next instruction from a location other
than the implied one.

The instruction to be performed, specified by the operator,
sets the machine to add, multiply, compare, etc, the operands
specified, and produce a result, which can then become an input
operand for some later instruction. The most important feature of
a computer is its ability to choose one of a number of different
sequences of instructions, depending on results it has calculated
previously.

To function in this way, a computer requires the following: a
store to hold the instructions and any data or operands; a
processing unit, often called an arithmetic and logic unit, to
perform the operations such as adding or comparing; a control
unit to ensure instructions and data are obtained from the store
correctly, and that the proper sequences are maintained; and a
set of input-output peripherals to communicate with the machine.

2 Basic Concepts

Computer hardware is essentially very simple. All the storage,
control and processing elements can be constructed using a single
electronic circuit containing only a few transistors, whereas a
colour television requires many different .circuits, using all
kinds of components. With computers, the complexity comes not in
the electronics or the circuits but in the way they are connected
together. Fig.1.1 shows the connection of the five key elements
described above and treated as "black boxes". This is the
traditional way to view a computer. Each "box" can be looked at
more or less independently and this will be done after a review
of the basic circuits and the way they can be connected to give

more complex units.
l STORE I

CONTROL OUTPUT

PROCESSING

FIG. 1.1 A SIMPLE COMPUTER STRUCTURE

1.2 LOGIC CONVENTIONS

Signals which can take an infinite number of values or states are
called analog signals and can be used, but as most computers use
signals which can only have defined values or states, digital
signals, these are used throughout this book. However, it should
be borne in mind that both analog and hybrid computers are
constructed as well as digital computers.

In most systems which process information in digital form, the
signals are nominally two-valued or "binary" in nature. For
example, information may be represented by a voltage or current
which takes one of two values on a wire, or by a pulse of defined
shape, which is either present or absent at a given time. 1In
computers the two binary states are represented in different ways
in different parts of the machine because of the physical nature
of the devices which make up the machine. For a first discussion
of computer logic it will be assumed that the states are defined
by bands of voltage, with a forbidden region between them. Each
band will be referred to by its nominal value, as in Fig.1.2

The more positive state has been arbitrarily chosen to
represent the "1" or TRUF state: this is termed "positive" logic.
The case where the "O" or FALSE state is the more positive and

Logic Conventions 3

the true state more negative is called "negative" logic: the
significance of this convention will become apparent further on.
Also one of the levels has been chosen to be zero volts, which is
obviously convenient as a switch being off gives zero volts and
on, connected to a power supply, can give a positive voltage for
the other state. If neither voltage is chosen to be zero volts,
then the 1logic is called "bipolar". This is used for data
communication, by the Post Office and others, as the "0" and "1"
states are represented by voltages which are different from a
failed state, such as a broken wire.

LOGIC 1 4y t; ? /SV' ;ZO/SV @ v
oo, B2
) 1

LOGIC O

ov ov ov
A) Ideal B) Positive C) Negative D) Bipolar

FIG. 1.2 LOGIC LEVELS AND NOMINAL VALUES

With the chosen definitions, switching arrangements could be
devised, using relays or other types of switches, or using
transistors in integrated circuits as in modern computers. It
would obviously be inefficient to carry drawings of relays or
transistor switch circuits through the whole design process, so
logic "symbols" and "truth tables" are introduced to simplify
drawing and to permit easy description of logic.

NOT OR AND NOR NAND
TA A A A —
B T B T B T B —| iy
(s (c] € c_{
A B C|T A B C[T A B C|T B
00 0Jo 0 0 ofo ooo|1 0 of1
1j0 00 1|1 oo 1fo o 0 1o o 0 11
0101 01 ofo o 1 0o o 1 of1
o1 1|1 o1 1o 01 1|0 01 1)1
TRUTH 10 0J1 1 0 ofo 1 00Jo 1001
TABLES L@ 1)1 101f0 101]o 10 1f1
11o0]1 11 0o 11 o0fo 11 o0f1
11 1)1 11 1)1 11 1o 11 1]o
T=A" T=A,B,C T=A,BAC T=(A_B,C)" T= (A BAC)?

FIG. 1.3 SIMPLE LOGICAL ELEMENTS

The logical symbols, truth tables and Boolean expressions for
all the simple logical elements are shown in Fig.1.3. The truth
tables show the outputs which are produced for all possible
different input combinations; the expressions are an algebraic
description and are described later. The three basic elements are

4 Basic Concepts

the inverter or NOT, the OR and the AND gates. The NOR and NAND
gates, which are most common in computers because they happen to
be easier to construct, are formed from OR and AND with an
inverter following. As can be seen, an AND gate only produces a
true output if ALL its inputs are true, so one input effectively
acts as a gate to any others, shutting them off if it is false.
An OR gate, on the other hand, acts as a union, combining inputs
together, so that, if ANY input is true, the output is true.

The effect of positive and negative logic can now be seen. If
the logic convention is changed, everything which represents
"true" would represent "false" and vice versa. The physical
circuit, which produced the NAND, would then produce a NOR, as
can be shown by changing all O's for 1's, and vice versa, in the
truth tables. It is apparent that a single logic element, say a
four input positive NAND, can also be made to perform as a NOR,
by changing convention (to negative), and also as a NOT, by
connecting all four inputs together (see the truth table). Even
though a given design or logic diagram may call for a variety of
gates, all the five basic ones can be "made" from just one.
Storage elements can also be made from NAND and NOR gates.

1.3 BOOLEAN ALGEBRA, DEFINITIONS AND POSTULATES

Starting with the 1logical building blocks, complex 1logical
functions could be designed by inspired guesswork, or experience,
or a combination of both. This would not be very satisfactory, as
there would be no checks on correctness of design, or on
optimality in the design procedure. By using the 1logic of
two-valued functions developed by the mathematician George Boole,
we can produce formal design and optimisation techniques.

A Boolean variable "X" has two possible values, "0O" and "1",
These values are mutually exclusive. A Boolean function is
determined when a relationship between two or more independant
Boolean variables is given.

The following postulates (and notation) are adopted for
addition, multiplication, inversion (complementation) and the
logical functions in Boolean arithmetic and algebra. Each can
occur in two forms, the second being the dual of the first. The
dual of OR is AND and the dual of a variable is its complement.

INVERT AND OR ADD MULTIPLY
-0 =1 0A0 =0 Ov0 =0 040 =0 0.
0" =1 0A1 =0 Ov1 =1 0+1 =1 0.
-1 =0 1A0 =0 1v0 =1 140 =1 1
17 =0 1A1 =1 vl =1 1+1 =0% 1
*with a carry to the next bit.

—_ 0 =20

- O 0O

Algebraic Properties and Boolean Theorems 5
1.4 ALGEBRAIC PROPERTIES AND BOOLEAN THEOREMS

Bearing in mind that Boolean variables can only take one of two
possible values, the following algebraic properties of normal
algebra also apply to Boolean algebra. Commutation implies that
the order or sequence of variables has no effect on the value of
an expression. Association implies that in sequences of only AND
or of only OR functions, the placing of the parenthesis does not
affect the result. The distributive property implies that an
expression containing both AND and OR functions may be AND'ed out
(multiplied out) with the AND taking precedence in a similar
fashion to multiplication and addition in ordinary algebra.

COMMUTATIVE XAY=Y X I Y=Y, X
ASSOCIATIVE XA(YAZ)=(XAY) A2 Xy(Yy2)=(X,Y), 2
DISTRIBUTIVE XyYAZ=(XyY) A (Xy2) XA(Yy2Z)=(X\Y)\ (X,2)

The following provable theorems demonstrate the results of the
logical functions on variables combined with a fixed "true" or
"false", or with themselves or their complements. They can all be
demonstrated by constructing the truth table, taking all possible
combinations of true and false inputs and producing the output.

UNIT AND ZERO OyX=X 1,X=1 0,X=0 1 X=X

IDEMPOTENCE XyX=X XpX=X
COMPLEMENTARITY XX =1 X,\X7'=0
INVOLUTION (X™)7=Xx

The absorption theorem shows how commonly-occurring patterns of
variables are reduced to simpler forms by removing the
redundancies occurring in the theorems above.

ABSORPTION XyXpY=X X\Xy Y=X
vaﬁAY=XVY XAXﬂVY=XAY

The exchange of the logical operators OR and AND is arranged by
using De Morgan's theorem. It is easily shown to be the same as
the convention change between positive and negative logic
discussed earlier. By changing all true and false variables to
their complements, the operator required is also changed to its
DUAL (AND to OR, NAND to NOR and vice versa).

DE MORGAIV -'(XVY)=-XA-Y -(X,\Y)=ﬂXVﬂY

The absorption theorem and De Morgan's theorem are the basis
for all minimisation techniques, the aim of which are to remove
any redundancy from Boolean expressions. This is desirable, as
each redundant AND or OR implies a redundant gate, hence some
redundant components, and so more optimal solutions would result

6 Basic Concepts

from the formal application of these theorems. Logical units of
considerable complexity can be constructed wusing the basic
logical functions and these complex units can then be used as
"black boxes" for further design stages. To formalise the design
techniques, all types of logic need to be considered. There are
three types, namely combinational, synchronous sequential and
asynchronous sequential, and they are diagrammatically
represented in Fig.1.4. Combinational logic contains no storage,
so the outputs at any time are only dependant on the inputs.
There is no effect due to "history", as there is with sequential
logic, which contains storage, so that the outputs depend on the
inputs and on previous states which have been held. The
difference between synchronous and asynchronous logic is that,
whilst in the former a clock is used and changes are only acted
on at predetermined times, so that stored states only alter at
fixed times, in the latter changes can occur at any time and
states may change at any time. Asynchronous sequential logic can
give rise to "races" where two signals change and the order in
which they change may not always be the same.

COMBINATIONAL SEQUENTIAL
SYNCHRONOUS ASYNCHRONOUS

: I LOGIC ': : | LOGIC I: LOGIC

CLOCK STORE STORE

FIG. 1.4 LOGIC CIRCUIT FORMS

There are formal design techniques for all 3 types of logic,
but the sequential logic design methods are complicated, seldom
performed by hand and are well described in books on logic
design. A simple example of one formal technique for
combinational logic design is described to demonstrate the
approach to such problems.

Starting from the truth table, various forms of Boolean
expression can be produced, some of which are very useful,
particularly the "canonical" or standard form.

If all elementary elements or their complements occur once only
in each factor, then the expression is in canonical form. If the
expression is in the form: {AABA-C}V{-AABAC}V{AA-~BAC}, then it is
in the MINTERM (or sum of products form), and if it is in the
form: {AV-BVC}IA{-AVBvV-C}, then it is in the MAXTERM (or product
of sums form). Both these expressions are also canonical, whereas
{AAB}V{AA-BAC}V{~CAD} is a minterm form but not canonical.

Karnaugh Map Design 7

1.5 KARNAUGH MAP DESIGN (K-MAP)

A K-map is the most common simple minimisation technique and is
based on the layout of combinations of elementary variables such
that only one elementary variable changes between adjacent
squares on the map. This change corresponds to the XvX'=1
function, so the variable may be removed without affecting the
final function. As can be seen in Fig.1.5, the value of the
squares 0,1,2 (equivalent to binary 000, 001, 010, etec.) is the
value of a term of the canonical minterm form, hence its
importance. This coding scheme which changes in one bit only is
called the "Gray code".

——A" A Al A
000 foto L 110 }100 c" 0000 J 0100 J 1100 | 1000 1'3"
ABC ABC 0001 0101 f1101 | 1001

0011 J 0111 1111 J1011f|
0010 J 0110 f1110 f 1010fD"
B B?

I
|
001 foi1 111 {101 (I:

B BT
FIG. 1.5 THREE AND FOUR VARIABLE K MAPS

BY ~—~—BR

EXAMPLE: The truth table for a function is shown in Fig.1.6.
The expression can be read off directly by an OR function between
all the AND combinations, which are to provide a true (1) output.
Alternatively, if there are fewer false indications than true
required for output, then the method can be applied to them if an
inversion is added, as the answer generated will be NOT what is
required. The expression can be plotted onto a K-map directly and
reduction is performed by combining adjacent squares into the
fewest number of larger squares or rectangles. Each time two
adjacent squares contain a 1, the function XvX =1 must occur, so
the common variable is redundant at that point.

ABCJHT -] =
000710 T = AABACVAABACVAABACVAABAC = A/\BVBACVCAA (reduced)
001 0 S
01 0¢{o A" A
i’ é (1) (1) ¢l o 0 1 0]
- - _.i_-‘—- S— | —
101 }1 o {1 D150 1)
11 01§1 B B B Output is true if
1 1 1 f1 2 of 3 inputs true

FIG. 1.6 EXAMPLE OF K MAP DESIGE

If a NAND only form is required, it can be obtained by applying
De Morgan's theorem, as in the example, giving a NAND:NAND
implementation instead of the NOT:AND:OR form. K-maps close on

8 Basic Concepts

their edges, i.e. square 1000 is also adjacent to squares 0000,
1010. This technique can be used for up to 6 variables by hand;
thereafter a computer is used. The better computer minimisation
techniques are tabular and will handle any number of variables,
the best known being the Quinne-McCluskey technique, which is
well described in the literature. When plotting onto a K-map, it
can be useful to use any outputs where you "do not care" whether
the output is 1 or 0. They are plotted as # on the map and can be
used, or not, at will.

So far only combinational logic has been descripbed, where no
previous states are relevant, but for a computer, storage will be
required, as will circuits which can react depending on some past
state or event.

1.6 BISTABLE CIRCUITS

Bistable circuits can exist indefinitely in one of two stable,
separate states. By connecting two NOR gates with Feedback, as
shown in fig.1.7, an element which depends on previous inputs as
well as current inputs can be made. It will store one state or
binary digit, often called a BIT, and 1is sometimes called a
staticisor or a "flipflop". The Boolean expression for the
circuit is: @=-{Rv-{gQvS}} and the truth table shows how it
reacts, depending on its previous state (P=previous state,
Q=current state).

L‘ SRPJOQ
>° T 0Ooo0jJo

- R—AD°" ¢ e
2 2 11002

C oo1l]1
R F—o Jo11}o

s | R’}“—Q 1 01 1
— 1 11 }o7

FIG. 1.7 THE SET RESET {Sk} BISTABLE

This "SR" bistable has one major drawback, which occurs when
S=R=1. The final output Q, when S and R are both removed, is not
determined. One can design so that this combination never occurs,
but it is easier to have an element without this drawback. If
only data is to be stored and the element is not required to be
able to be set and reset independantly, then a "D-type" bistable
is used. This has a single data input which is latched by a short
clock pulse.

Registers 9

DCPIJO

DATA 0 0o Jo
—qp—Do— >: S o = o 0 1o]o
r—1 1 OO0 {0

c 1101§1

CLOCK R jp——0" "fo o 11
o011 fo

—I 1Lo1]1
11141

FIG. 1.8 THE D TYPE BISTABLE

The D-type responds to a data input by retaining its value when
the control line (or clock line) makes the transition from true
to false. It responds on an "edge" and the circuit is shown with
the truth table in Fig.1.8. This element is used to build data
registers which hold many binary digits in parallel and hence a
complete number.

| =L
Cc %——

FIG. 1.9 THE JK BISTABLE

(]
11

n
o

1

The "JK" or master-slave bistable is the one used most
frequently when independent set and reset conditions are
required. For instance, if a printer is to start on a given set
of conditions and end on a different set, the JK of Fig.1.9 would
be used to control it. The truth table for the JK is the same as
for the RS except for the two undetermined states, which are
arranged so that the output changes if the J and K inputs are
both "1"., Another useful property of the JK is that the output
appears only when the clock is removed, so the JK acts as a delay
of 1 clock pulse. It contains an RS within it, if one wants to
use one in a design predominantly using JK's.

1.7 REGISTERS

A single state can be retained over time in a bistable, hence
storing a group of bits in a parallel set of bistables, or
register, as in Fig.1.10, will permit a number to be stored.
Number representation is covered in more detail in Chapter 2, but

10 Basic Concepts

as well as numbers, logical values, true or false, sometimes
referred to as FLAGS, and characters will be needed. A single
flag requires a single bit, but they are normally grouped
together to give the same length WOARD as for numbers. In most
minicomputers the word length is' 16 bits, as this is convenient
for instructions, numbers and characters.

The normal number system used by people is the decimal system,
using the digits 0-9 and columns for units, tens and hundreds. We
are able to use other systems easily, for example the
"duodecimal™ (12) system for feet and inches, where columns
represent twelves and "hundred and fourty-fours". Two systems are
particularly important in computing because they work with powers
of two, namely the "binary" and "hexadecimal" (16) systems.

Dec Bin Hex Dec Bin Hex Dec Bin Hex Dec Bin Hex
0 0000 O 4 0100 4 8 1000 8 12 1100 C
10001 1 50101 5 9 1001 9 13 1101 D
2 0010 2 6 0110 6 10 1010 A 14 1110 E
30011 3 70111 7 111011 B 15 1111 F

From this it can be seen that each number represented by a sum
of units, tens and hundreds in decimal has a similar binary
pattern of units, twos, fours, eights, etc. and a hexadecimal
coding of units, sixteens, and "two hundred and {ifty-sixes".
Conversion between the systems is easy, requiring only simple
addition and .subtraction; as an example, 677=1010100101=2A5. The
binary and "hex" forms, containing sums of powers of two, can be
stored easily in two-state stores. The example requires a ten bit
register.

The standard code for characters is called the American
standard code for information interchange or ASCII and uses seven
bits to give 128 character codes, with an eighth bit available as
a check bit. There are 32 control codes for such things as
feeding 1lines, tabs and ringing a bell. The remaining 96
characters contain space and delete (all 1s) and 94 printable
characters, which cover the decimal digits, the alphabet both
upper and lower case, punctuation marks and special symbols.

0

D
? Dy D, D5 D D7 CLOCK]

D
1
I | | |

T sJs]s]s]s

Q % 2 Q QA QA QG gprpeF
outputs of eight D-types. TRANSFER

FIG. 1.10 A REGISTER AND REGISTER TRANSFER

