
Parametric Sensitivity in Chemical Systems

A. Varma, M. Morbidelli, and H. Wu

Parametric Sensitivity in Chemical Systems

A. Varma M. Morbidelli H. Wu

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
http://www.cup.org

© Arvind Varma, Massimo Morbidelli, Hua Wu 1999

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1999

Printed in the United States of America

Typeset in Gill Sans and 10.5/14 Times Roman LATEX 2_{ε} [TB]

A catalog record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

Varma, Arvind.

Parametric sensitivity in chemical systems / cubic equations of state and their mixing rules / A. Varma. M. Morbidelli, H. Wu.

p. cm. – (Cambridge series in chemical engineering)
Includes bibliographical references and index.

ISBN 0-521-62171-2 (hb)

1. Chemical processes – Mathematical models. I. Morbidelli, Massimo. II. Wu, H. (Hua) III. Title. IV. Series. TP155.7.V37 1999

660'.281'015118 – dc21

98-45450

CIP

ISBN 0 521 621712 hardback

Parametric Sensitivity in Chemical Systems

The behavior of a chemical system is affected by many physicochemical parameters. The sensitivity of the system's behavior to changes in parameters is known as parametric sensitivity. When a system operates in a parametrically sensitive region, its performance becomes unreliable and changes sharply with small variations in parameters. Thus, it is of great value to those who design and operate chemical reactors and systems to be able to predict sensitivity behavior.

This book is the first to provide a thorough treatment of the concept of parametric sensitivity and the mathematical tool it generated, sensitivity analysis. The emphasis is on applications to real situations. The book begins with definitions of various sensitivity indices and describes the numerical techniques used for their evaluation. Extensively illustrated chapters discuss sensitivity analysis in a variety of chemical reactors – batch, tubular, continuous-flow, fixed-bed – and in combustion systems, air pollution processes, and metabolic processes. In addition, various plots and simple formulas are provided to readily evaluate the operational behavior of reactors. Chemical engineers, graduate students, researchers, chemists and other practitioners will welcome this valuable resource.

Arvind Varma is the Arthur J. Schmitt Professor of Chemical Engineering at the University of Notre Dame.

Massimo Morbidelli is Professor of Chemical Reaction Engineering at ETH Zentrum, Switzerland.

Hua Wu is Senior Chemical Engineer at Ausimont Research & Development Center, Milano, Italy.

CAMBRIDGE SERIES IN CHEMICAL ENGINEERING

Series Editor:

Arvind Varma, University of Notre Dame

Editorial Board

Alexis T. Bell, University of California, Berkeley
John Bridgwater, University of Cambridge
L. Gary Leal, University of California, Santa Barbara
Massimo Morbidelli, ETH, Zurich
Stanley I. Sandler, University of Delaware
Michael L. Shuler, Cornell University
Arthur W. Westerberg, Carnegie Mellon University

Books in the Series:

E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, second edition

Liang-Shih Fan and Chao Zhu, Principles of Gas-Solid Flows

Hasan Orbey and Stanley I. Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and Their Mixing Rules

T. Michael Duncan and Jeffrey A. Reimer, Chemical Engineering Design and Analysis: An Introduction

John C. Slattery, Advanced Transport Phenomena

A. Varma, M. Morbidelli and H. Wu, Parametric Sensitivity in Chemical Systems

To our parents

Preface

The behavior of physical and chemical systems depends on values of the parameters that characterize the system. The analysis of how a system responds to changes in the parameters is called *parametric sensitivity*. For the purposes of reliable design and control, this analysis is important in virtually all areas of science and engineering. While similar concepts and techniques can be applied in different types of systems, we focus on chemical systems where chemical reactions occur.

In many cases, when one or more parameters are varied slightly, while holding the remaining parameters fixed, the response of a chemical system also changes slightly. However, under other sets of parameter combinations, the chemical system may respond with an enormous change, even if one or more parameters are varied only slightly. In this case, we say that the system behaves in a *parametrically sensitive* manner. Clearly, it becomes difficult to control the chemical system when it operates in a parametrically sensitive region, and sometimes this leads to so-called *runaway* behavior that ends up with catastrophic results. This book is concerned with parametric sensitivity and parametrically sensitive behavior of chemical systems, analyzed with a unified conceptual and theoretical framework.

In Chapter 2, we define various sensitivity indices and illustrate numerical techniques that are commonly used for their evaluation. Then, in Chapters 3 to 4, sensitivity analysis is used to identify the parametrically sensitive regions in various types of reactors, such as batch, tubular, continuous-flow stirred tank, and fixed-bed, where either a single or complex reactions occur. In Chapter 7, we use explosions in hydrogen—oxygen mixtures as an example to show that the same analysis can be used to quantify critical ignition conditions in combustion systems. Chapters 8–10 comprise the second part of the book, where sensitivity analysis is employed as an effective mathematical tool to analyze various chemical systems. These include mechanistic studies and model reduction in chemical kinetics, air pollution, and metabolic processes.

This book should appeal to all who are interested in the behavior of chemical systems, including chemists and chemical, mechanical, aerospace, and environmental

engineers. Also, the applied mathematicians should find here a rich source of interesting mathematical problems. Finally, we hope that industrial practitioners will find the concepts and results described in this book to be useful for their work.

This book can be used either as a text for a senior graduate-level specialized course, or as a supplementary text for existing courses in reaction engineering, applied mathematics, design, and control. In this context, although we do not provide unsolved problems at the end of chapters, there are a relatively large number of examples illustrating the concepts and results. The book can also be used as a reference for industrial applications in reactor design, operation and control.

It is a pleasure to acknowledge here our debt of gratitude to Professor John H. Seinfeld of the California Institute of Technology. He encouraged our writing from the beginning, and looked over drafts of Chapters 2 and 9, providing valuable suggestions for improvements. In addition, Dr. Vassily Hatzimanikatis of du Pont Central Research Department kindly provided a keen evaluation of our draft of Chapter 10.

The last thought goes to our families. Our wives (Karen, Luisella, and Guixian) and children (Anita and Sophia; Melissa and Oreste; Xian and Dino) deeply support us and our work, even as they suffer some neglect during the course of writing projects such as this. We cherish their love and affection.

Arvind Varma Massimo Morbidelli Hua Wu

Contents

Preface			page xv
Ī	Intr	oduction	1
	1.1	The Concept of Sensitivity	
	1.2	Uses of the Sensitivity Concept	5
	1.3	Overview of the Book Contents	1 5 7
	Refe	erences	8
2	Intr	oduction to Sensitivity Analysis	9
	2.1		9
		2.1.1 Local Sensitivity	9
		Example 2.1 Conversion sensitivity in a batch reactor	11
		2.1.2 Objective Sensitivity	13
		Example 2.2 Sensitivity of the maximum yield in an	
		isothermal batch reactor with consecutive reactions	14
		2.1.3 Global Sensitivity	16
	2.2	Computation of Sensitivity Indices	17
		2.2.1 Local Sensitivity	17
		Example 2.3 Sensitivity analysis of an isothermal batch	
		reactor with consecutive reactions of arbitrary order	18
		2.2.2 Global Sensitivity	24
	Nor	menclature	32
	Refe	erences	33
3	The	rmal Explosion in Batch Reactors	36
	3.1	Basic Equations	37
	3.2	Geometry-Based Criteria for Thermal Runaway	38
		3.2.1 The Case of Negligible Reactant Consumption:	
		Semenov Theory	38

		Example 3.1 Application of Semenov criterion to thermal	
		explosion of methyl nitrate	43
		3.2.2 Criteria Accounting for Reactant Consumption	44
		Example 3.2 Application of AE and VF criteria to thermal	
		explosion of methyl nitrate	53
	3.3	Sensitivity-Based Criteria for Thermal Runaway	55
		3.3.1 The Morbidelli and Varma (MV) Criterion	56
		Example 3.3 Application of the MV criterion to catalytic	
		hydrolysis of acetic anhydride	63
		3.3.2 The Vajda and Rabitz (VR) Criterion	64
		Example 3.4 A comparison between various criteria in	
		predicting explosion limits in azomethane decomposition	67
		3.3.3 The Strozzi and Zaldivar (SZ) Criterion	69
	3.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70
		menclature	76
	Refe	erences	77
4	Run	away in Tubular Reactors	80
	4.1	Basic Equations for Tubular Plug-Flow Reactors	81
	4.2	Plug-Flow Reactors with Constant External Cooling	83
		4.2.1 Runaway Criteria	83
		Example 4.1 Runaway behavior in the naphthalene	
		oxidation reactor	85
		4.2.2 The Region of Pseudo-Adiabatic Operation (PAO)	89
		4.2.3 Influence of PAO on the Runaway Region	94
		Example 4.2 Runaway behavior in a naphthalene oxidation	
		reactor operating in the pseudo-adiabatic operation	
	4.2	region	100
	4.3	Plug-Flow Reactors Varying Coolant Temperature	101
		4.3.1 The Regions of Pseudo-Adiabatic Operation4.3.2 Influence of PAO on Runaway Regions	101
	4.4	Role of Radial Temperature and Concentration Gradients	104
	4.5	Complex Kinetic Schemes	111
		4.5.1 The Case of Two Consecutive Reactions $(A \xrightarrow{1} B \xrightarrow{2} C)$	116
		Example 4.3 Reactor operation diagram for naphthalene	119
		oxidation process	130
		4.5.2 The Case of Two Parallel Reactions $(A \xrightarrow{1} B; A \xrightarrow{2} C)$	132
		Example 4.4 Reactor operation diagram for ethylene	134
		epoxidation process	135
		nenclature	138
	Refe	rences	140

5		ametric Sensitivity in Continuous-Flow Stirred Tank Reactors	143
	5.I	Sensitivity Analysis	144
	5.2	Regions of Parametrically Sensitive Behavior	152
		5.2.1 Role of the Involved Physicochemical Parameters	152
	F 3	5.2.2 Relation between Multiplicity and Sensitivity Behavior	157
	5.3	Role of Mixing on Reactor Parametric Sensitivity	159
	5.4	Explicit Criteria for Parametric Sensitivity	163
		menclature	166
	Reie	erences	167
6	Run	away in Fixed-Bed Catalytic Reactors	169
	6.1	The Heterogeneous Model of a Fixed-Bed Catalytic Reactor	170
	6.2	Runaway of a Single Catalyst Particle: Local Runaway	172
		6.2.1 Critical Conditions for Local Runaway of Particle	
		Temperature	173
		6.2.2 Runaway Regions	179
	6.3	Runaway of Fixed-Bed Reactors: Global Runaway	189
		6.3.1 Critical Conditions for Global Runaway of Particle	
		Temperature	189
		6.3.2 Runaway Regions	192
		Example 6.1 Experimental analysis of runaway	
		in a fixed-bed reactor for vinyl acetate synthesis	196
		Example 6.2 Experimental analysis of runaway in a	
		fixed-bed reactor for carbon monoxide oxidation	203
		6.3.3 Limiting Behavior	205
		Example 6.3 Runaway regions in the case of severe	
		intraparticle mass transfer resistance	206
		6.3.4 Effect of Pseudo-Adiabatic Operation on Runaway	
		Regions	208
		Explicit Criteria for Runaway	213
	Nomenclature		216
	Refe	rences	218
7	Para	metric Sensitivity and Ignition Phenomena	
		ombustion Systems	220
	7.1	General Definition of Ignition Limits	221
	7.2	Explosion Limits in Hydrogen-Oxygen Mixtures	224
		7.2.1 Application of the Sensitivity Criterion	224
		7.2.2 Comparison between Experimental and Calculated	227
		Explosion Limits	231

	7.3	Further Insight into Explosion Behavior	
		in Hydrogen-Oxygen Mixtures	234
		7.3.1 Explosion in the Low Pressure Region	235
		7.3.2 Explosion in the High Pressure Region	243
	Refe	erences	244
8	Sen	sitivity Analysis in Mechanistic Study and Model Reduction	247
	8.1	Sensitivity Analysis in Mechanistic Studies	248
		8.1.1 Applications of the Green's Function Method	249
		Example 8.1 Oxidation of wet carbon monoxide	250
		Example 8.2 Sensitivity analysis of the Belousov-	
		Zhabotinsky oscillating reaction	254
		8.1.2 Applications of the Finite Difference Method	259
		Example 8.3 Explosion mechanism in hydrogen-oxygen	
		systems: The first limit	260
		Example 8.4 Explosion mechanism in hydrogen-oxygen	
		systems: The second limit	265
		Example 8.5 Explosion mechanism in hydrogen-oxygen	
		systems: The third limit	269
		Example 8.6 Explosion mechanism in hydrogen-oxygen	
	8.2	systems: The weak-strong explosion boundaries (WSEB)	271
	0.2	Reduction of Detailed Kinetic Models	273
		Example 8.7 Minimum reduced kinetic model for the	07.4
		explosion limits of hydrogen-oxygen systems	274
		Example 8.8 Reduced kinetic model for the combustion	200
	Refe	of methane-ethane systems rences	280
			284
•		itivity Analysis in Air Pollution	287
	9.1	Basic Equations	288
	9.2	Sensitivity Analysis of Regional Air Quality with Respect to	
		Emission Sources	290
		9.2.1 Definition of Sensitivities	290
		9.2.2 A Case Study: Emissions of NO_x and SO_2 in the Eastern	
	0.0	United States	292
	9.3	Global Sensitivity Analysis of Trajectory Model	
		for Photochemical Air Pollution	302
		9.3.1 Global Sensitivities and the FAST Method	302
		9.3.2 A Case Study: Emissions of NO, NO ₂ , Reactive	205
	Refo	Hydrocarbons and O ₃ rences	303
	1/6/6	ELICE)	310

Contents

10	Sensitivity Analysis in Metabolic Processes		312
	10.1	The General Approach for Sensitivity Analysis	313
		10.1.1 Mathematical Framework	313
		10.1.2 A Case Study: The Yeast Glycolytic Pathway	317
	10.2	The Matrix Method from Metabolic Control Theory	320
		10.2.1 Model Framework	322
		10.2.2 A Case Study: The Metabolic Pathway	
		of Gluconeogenesis from Lactate	324
		10.2.3 Some Useful Theorems for Sensitivity Analysis	328
	Nomenclature		330
	Refer	rences	331
A 4	la o a Ino	<i>d</i>	225
Aut	hor In	aex	335
Sub	Subject Index		

Introduction

I.I The Concept of Sensitivity

The behavior of a chemical *system* is affected by many physicochemical *parameters*. Changing these parameters, we can alter the characteristics of the system to realize desired behavior or to avoid undesired behavior. In general, different parameters affect a system to different extents, and for the same parameter, its effect may depend on the range over which it is varied. By *parametric sensitivity*, we mean the sensitivity of the system behavior with respect to changes in parameters.

Let us illustrate the concept of sensitivity using some examples. Figure 1.1 shows the effect of changes in the initial temperature on the temperature evolution in a batch reactor for acetic anhydride hydrolysis, measured experimentally by Haldar and Rao (1992). There is a critical change in the temperature profile as the initial temperature increases from 319.0 to 319.5 K. In particular, an increase in the initial temperature by 0.5 K leads to a change in the temperature maximum by about 31 K. This experimental observation indicates that the system temperature becomes *sensitive to small variations* in the initial temperature in a specific region, called the *parametrically sensitive region*.

Figure 1.2 shows similar sensitivity phenomena in a tubular reactor obtained by numerical computations, given by Bilous and Amundson (1956) in their pioneering work on parametric sensitivity in the context of chemical reactors. In this example, the ambient temperature of a tubular reactor, where an exothermic reaction occurs, is changed. It is seen in Fig. 1.2a that when the ambient temperature increases by 2.5 K from 335 to 337.5 K, the temperature maximum (hot spot) along the reactor length changes by about 70 K. Moreover, such a variation also causes a sharp change in the corresponding concentration profile along the reactor, as shown in Fig. 1.2b. Thus, when a system operates in the parametrically sensitive region, its performance becomes unreliable and changes sharply with small variations in parameters.

1

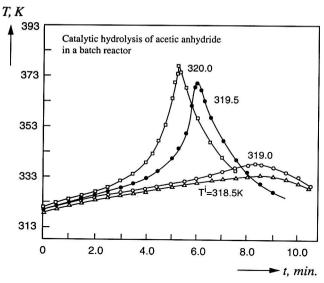
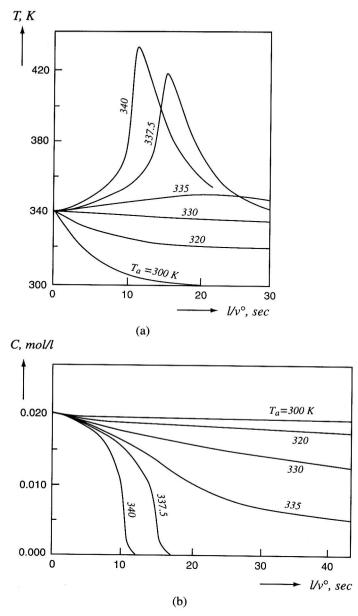
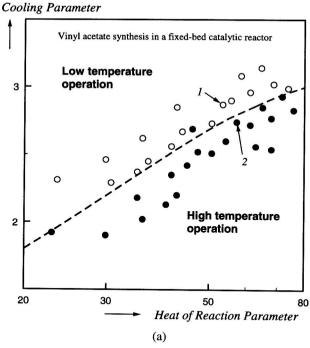



Figure 1.1. Catalytic hydrolysis of acetic anhydride in a batch reactor. Temperature profiles as a function of time for various values of the initial temperature, measured experimentally by Haldar and Rao (1992).

For a chemical system to operate in a reliable and safe manner, it is often required to identify the sensitive regions in the system *parameter space*. An example is shown in Fig. 1.3a, where for a fixed-bed catalytic reactor in which vinyl acetate synthesis occurs, the sensitive region in the cooling versus heat of reaction parameter plane was identified by Emig *et al.* (1980) through a large number of experiments. The symbols o and • denote low- and high-temperature operating conditions, respectively. These data clearly define a boundary (broken curve) separating the low-temperature from high-temperature operating conditions. In particular, let us consider two operating conditions in Fig. 1.3a near the boundary, indicated by points 1 and 2. The corresponding temperature profiles are shown in Fig. 1.3b. As may be seen, although the two conditions are close in terms of parameters, their temperature profiles are substantially different, indicating that the reactor is operating in the parametrically sensitive region.


Sensitive regions have also been investigated experimentally for other reacting systems, especially for combustion processes. An example is the sensitive region in the initial pressure-temperature plane for hydrogen oxidation in a closed vessel, identified by Lewis and von Elbe (1961), as shown in Fig. 1.4. In particular, the boundary representing the sensitive region divides the parameter plane into two parts. For a fixed initial pressure, as the initial temperature increases, the system undergoes a sharp transition near the boundary, from non-explosion on the left-hand side to explosion on the right-hand side.

It should be noted that although the sensitive region for each parameter can, in principle, be identified experimentally, only a few experimental studies on parametric

Figure 1.2. Numerical calculated (a) temperature and (b) concentration profiles along the length, l, of a tubular reactor; v° , represents the reaction mixture velocity. From Bilous and Amundson (1956).

sensitivity have been reported to date in the literature. This is because each system involves many physicochemical parameters, so that detailed experimental investigation becomes cumbersome. Thus, it is of great interest to predict theoretically the sensitivity behavior of a chemical system, through appropriate model simulations. The

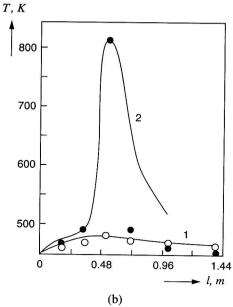


Figure 1.3. Vinyl acetate synthesis in a fixed-bed catalytic reactor. (a) Sensitive operation region in the cooling versus heat of reaction parameter plane, measured experimentally by Emig *et al.* (1980), where $\circ =$ low temperature operation and $\bullet =$ high temperature operation. (b) Temperature profiles along the reactor length corresponding to the two operation conditions indicated by points I and 2 in (a).