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Preface

Probability theory on algebraic and geometric structures such as e.g. topological groups
has attracted much interest in the literature during the past decades and is a subject
of growing importance. Stimuli which can not be overestimated for the research work
which has and is currently been done in the field of probability theory on groups and re-
lated structures are the regular Oberwolfach conferences organized by L. Schmetterer,
H. Heyer, and A. Mukherjea as well as the recent foundation of the ” Journal of Theo-
retical Probability” also by A. Mukherjea.

In this work we will have, from the probabilistic point of view, a closer look at the
so-called Heisenberg group. Its structure reflects the Heisenberg uncertainty principle
as non-commutativity of the location and the momentum operator. In a certain sense,
it is the simplest non-commutative Lie group, so it is clear that in generalizing classical
results of probability theory to the non-commutative situation, one naturally passes by
this group. Our aim will be to survey, under the limit theoretic aspect and its relation
to Brownian motion, certain results which turned out to be valid on the Heisenberg
group but which can not (or not yet) be generalized to the whole class of simply con-
nected nilpotent Lie groups. For this wider framework, we refer (among others) to the
forthcoming book of Hazod and Siebert (1995). So our work will to a certain degree
be a complement to that book in the sense of some sort of a case study.

The second author of the above-mentioned book in preparation, Eberhard Siebert, un-
timely passed away in 1993. Without his fundamental contributions, the theory would
at any rate not be at that level as it is now. It is one of the modest objectives of our
book to underline the importance of Siebert’s work in the development of probability
theory on (in particular non-commutative) groups.

A word about applications: The Heisenberg group turned out to have many appli-
cations not only in mathematics itself (and there even in such remote fields such as
combinatorics!), but also in physics (where it in fact comes from) and engineering sci-
ence (signal theory). Due to the physical ignorance of the author, we have not tried
to look for applications of the results presented in this work. The author would be
delighted to hear one day about applications outside of ”pure” mathematics!

It is my great pleasure to express my most sincere and heartfelt gratitude to my teacher
and mentor Professor Henri Carnal for his constant benevolent support; to Professor
Wilfried Hazod for his kind hospitality at the University of Dortmund; to Professor



René Schott for his kind hospitality at the University Henri Poincaré Nancy I; to Profes-
sor Yuri Stepanovi¢ Hohlov and Professor Gyula Pap for many stimulating discussions;
and last but not least to the Ingenieurschule Biel and its director Dr. Fredy Sidler for
giving me the opportunity of taking a leave in order to continue my research activities
and to begin with this work.

Biel-Bienne, May 1996

Daniel Neuenschwander
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Introduction

From a historical point of view (cf. Heyer (1977), Introduction), the development
of probability theory on other structures than Euclidean spaces may be traced back
to Daniel Bernoulli, who in his astronomical investigations in 1734 assumed planets
to be (uniformly distributed) random points on a sphere. Later on, during the first
decades of the 20th century, several mathematicians continued to consider (also non-
uniform) probability distributions on the circle and the sphere. We mention the names
of Rayleigh, Pearson, Perrin, von Mises, Fisher, and Mardia. Nowadays this direction
of research is called statistics of directional data. Von Mises and Lévy (1939) consid-
ered probability measures on the torus. The pioneering breakthrough to more general
compact groups is due to Kawada and Ito (1940). Bochner, during the late fifties, be-
gan to study probabilities on locally compact abelian groups. An early overview of the
theory is the book of Grenander (1963). Since then, the field has developed into several
directions. One milestone was the paper of Hunt (1956), who considered continuous
convolution semigroups on Lie groups. He was able to characterize their infinitesimal
generators by an analogue of the classical Lévy-Hinéin formula. It turned out that con-
volution semigroups were a natural framework for studying limit theorems. The state
of the art up to 1977 is most exhaustively described in Heyer‘s (1977) monograph. We
also mention the important work of Stroock, Varadhan (1973) and Feinsilver (1978)
concerning stochastic processes on Lie groups.

Since the late seventies it became clear that the simply connected nilpotent Lie groups
play a special role in probability theory, in particular where limit theorems are con-
cerned. Among the first papers along these lines are those of Crépel, Raugi (1978) and
Raugi (1978) concerning the central limit theorem on simply connected nilpotent Lie
groups, and that of Crépel, Roynette (1977), which gives a law of the iterated loga-
rithm for the (three-dimensional) so-called Heisenberg group. The latter is the simplest
example of a non-commutative simply connected nilpotent Lie group, in a certain sense
even generally the simplest non-commutative non-discrete Lie group from the struc-
tural point of view. We will give a detailed description of it later.  So we think that
in aiming at the non-commutative situation, one must come by this group. In 1982,
Hazod (1982) introduced a concept of stability on locally compact groups based on
convolution semigroups and one-parameter automorphism groups. Later it was proved
by Hazod and Siebert (1986) that strictly stable semigroups are concentrated on the
contractible part of the corresponding one-parameter automorphism group, which is
isomorphic to a simply connected nilpotent Lie group. On the other hand, Burrell
and McCrudden (1974) have shown that any infinitely divisible probability measure
on a simply connected nilpotent Lie group is embeddable into a continuous convolu-



tion semigroup. The theory of (semi-)stable semigroups on simply connected nilpotent
Lie groups is in full growth at present; among the most important ones we mention
the papers of Hazod (1982, 1984a, 1984b, 1986), Hazod, Siebert (1986, 1988), Drisch,
Gallardo (1984), Nobel (1991), Hazod, Nobel (1989), Hazod, Scheffler (1993), Schefler
(1993, 1994, 1995a, 1995b), Carnal (1986), Kunita (1994a, 1994b, 1995), Neuenschwan-
der, Scheffler (1996), Neuenschwander (1995a, 1995¢, 1995d), and the theses of Nobel
(1988), Scheffler (1992) and Neuenschwander (1991). Parallel to this stream of research
several other aspects of probability theory on simply connected nilpotent Lie groups
have been investigated. As some examples we mention further (weak and strong) limit
theorems (Pap (1991a, 1991b, 1992, 1993, 1995), Berthuet (1979, 1986), Helmes (1986),
Baldi (1986, 1990), Chaleyat-Maurel, Le Gall (1989), Ohring (1993), Neuenschwan-
der (1992, 1995b, 1995¢, 1995f), Neuenschwander, Scheffler (1995), Neuenschwander,
Schott (1995)), the question of uniqueness of convolution semigroups (Pap (1994)), the
explicit construction of Brownian motion with stochastic integrals (Roynette (1975)),
as well as the development of a potential theory by Gallardo (1982).

The aim of this work is to give an account of certain limit theorems and of some aspects
of Brownian motion under the limit-theoretic point of view on the (three-dimensional)
Heisenberg group, with the major part grouped a little bit around the author‘s own
results. The literature being fairly numerous, no claim to completeness is made. Let us
also mention the important papers Gaveau (1977), Métivier (1980), and Helffer (1980).
In general, only aspects which are (or up to now have been) special for the Heisenberg
groups (or for simply connected step 2-nilpotent Lie groups) are taken into consid-
eration in detail. Though the results are often available also for higher-dimensional
Heisenberg groups or for all simply connected step 2-nilpotent Lie groups, we do not
aim at maximal generality but will restrict ourselves to the simplest case of the three-
dimensional Heisenberg group IH = JH! as a prototype in order to show as simply as
possible the ideas and to unify the presentation, for otherwise the text would become
too heterogeneous. For the more general formulations we can in most cases refer to the
corresponding original works cited. The central component of Brownian motion on IH
is the so-called Lévy stochastic area process, arising as the area enclosed by the curve
of a two-dimensional standard Brownian motion and the chord joining the endpoint to
the origin. This process has of course many other interesting properties quite beyond
the scope of this work and therefore excluded from it. At this place let us mention
the relation of the stochastic area process to the Atiyah-Singer theorems (cf. Bismut
(1984, 1988), Léandre (1988), Yor (1991)). There is another (equivalent) definition of
IH which is a little different from the one we use. With this other definition, ”standard”
Brownian motion has an interesting physical interpretation as the joint distribution of
a Brownian motion on IR, another Brownian motion on IR acting as a random constant
field of forces, and the energy produced by the motion (cf. Hulanicki (1976)).
Another interesting subject concerning probabilities on the Heisenberg group (e.g.) is
the definition and geometric characterization of an analogue of the Cauchy distribu-
tion (cf. Dunau, Sénateur (1986), (1988), Dani (1991)). The work of Neuenschwander
(1993) has now been generalized to all positively graduated simply connected nilpotent
Lie groups (cf. Neuenschwander, Schott (1996)).

The origin of the Heisenberg group lies in quantum mechanics. It became clear that the



Heisenberg commutation relation reflecting the Heisenberg uncertainty principle can
be interpreted within the framework of Lie algebras. Consider the location operator
A: f— zf and the momentum operator B : f +— #f’ on the space of infinitely dif-
ferentiable functions with compact support on IR. Then [A, B| := AB — BA = —ﬁl
(where [ is the identity operator). Now the Heisenberg Lie algebra may be interpreted
as the algebra generated by A, B, and I. So IH can be described as IR®, equipped with

the group multiplication

1
Ty = z+y+§[z,y]

n.

[z,y] = (0,0,z'y" —z"y’)
(z -~ (zlv .'t”‘ z/”),y — (yl’yll‘ y"l))‘

The center of IH is the line {0} x {0} x [R. Compared to the whole class of simply
connected nilpotent Lie groups, IH has several special features which are significant for
probability theory; we mention:

e [H is stratified,
e if k is the homogeneous dimension and ¢ the class of nilpotency, then k—2—¢ = 0,
e the center is 1-dimensional (so results known for IR may be applied),

e Aut(IH) and the (contracting) one-parameter automorphism groups are explicitly
known (cf. Folland (1989), pp.19ff., Drisch, Gallardo (1984)) (this can be used
in the context of stable and semi-stable semigroups),

e E([X,c]) =[E(X),c|, hence E(X-(—E(X))) =0, i.e. IH-valued random variables
may be centered with their expectation and {[IV_, Xn}n>1, where {Xp}n>1 are
independent and E(X,) = 0, is a martingale,

o [T,z + H?:l Tnt1-5 =235, %5 (this has to be used in several places in order
to apply results for the vector space-case),

e the density function of the central component of Brownian motion is explicitly
known,

e the central component of standard Brownian motion on IH - Lévy’s stochastic
area process - is a quadratic Brownian functional which has certain relations
to winding numbers of two-dimensional Brownian motion (this was used by Shi
(1995) to prove his results, which will be presented in 2.3.1).

So the Heisenberg group is much more than just a simple example of a simply connected
nilpotent Lie group. IH plays a role in several branches of mathematics and physics, see
Folland (1989), Taylor (1986), and the very exhaustive survey article of Howe (1980).
One can generalize several notions and facts from harmonic analysis and geometry to
HH (see e.g. Kordnyi (1983, 1985), Taylor (1986)). Relations to combinatorics of paths
in the square lattice Z? are discussed in Béguin, Valette, and Zuk (1995). There are



also certain applications in signal theory (cf. Schempp (1988)).

Now let us give a brief outline of the contents of this work:

Chapter 1 collects some facts from probability theory on simply connected nilpotent
Lie groups G. The notion of a continuous convolution semigroup of probability mea-
sures is important. Since G is strongly root-compact (a notion which is due to Boge
(1964)) and has no non-trivial compact subgroups, every infinitely divisible probability
measure on G can be embedded into a continuous convolution semigroup. This is im-
portant for limit theorems and for defining the several types of domains of attraction.
These are the contents of sections 1.1 and 1.2. In section 1.3 we present the necessary
tools from potential theory as a preparation for the treatment of the Wiener sausage
in 2.2.1 and the Lebesgue needle and related questions in 2.2.2.

In chapter 2 we study Brownian motion on /H and its surroundings under the limit the-
oretic point of view in some detail. Pap (1994) proved that Gauss measures x on simply
connected nilpotent Lie groups determine uniquely the Gauss semigroup in which they
may be embedded, but he left as an open problem if p is also embeddable into a
non-Gaussian continuous convolution semigroup. In section 2.1.1 we prove that for IH
this is indeed not the case. This may be viewed as a weak form of the Cramér-Lévy
theorem telling that (on IR) Gaussian distributions have only Gaussian convolution
factors. This result will be applied in 3.1.5 to formulate a "transfer principle” between
limit theorems on IH and on (IR3, +). Section 2.1.2 is devoted to a generalization of
the Lindeberg theorem due to Pap and the Ljapunov theorem due to Ohring, while
in section 2.1.3 we study the domain of normal attraction of Brownian motion on IH,
work which has been done by Schefler. An aspect which has to do with robust statis-
tics (in the sense of outlier resistance) is studied in section 2.1.4: We show that after
a certain so-called ”intermediate” trimming procedure, domains of attraction of other
stable semigroups merge into (loosely speaking) domains of attraction of Brownian
motion. This explains in certain situations the influence of extremal terms in random
products. We will come back to this topic in 3.1.3. Section 2.2.1 is devoted to a limit
theorem for the ”"Wiener sausage” on IH by Chaleyat-Maurel and Le Gall (1989) and
its application to the absorbtion of Brownian motion on [H by randomly thrown small
sets on IH. In section 2.2.2 we present Gallardo’s results concerning recurrence and the
generalization of the so-called ” Lebesgue needle”. In section 2.3.1 we study some local
and asymptotic results of iterated logarithm type, some of which are due to the author
and to Schott. More precisely, we mention the asymptotic (Lévy-Berthuet-Baldi and
Chung-Shi) laws of the iterated logarithm, give a new proof of the local (Lévy-Helmes)
one, investigate the modulus of continuity, and carry over a qualitative form of the
Erdos-Rényi law of large numbers for Brownian motion. Furthermore we present the
results of Chaleyat-Maurel and Le Gall (1989) concerning the Hausdorff measure of
the range of Brownian motion on /H and the non-existence of multiple points. Sec-
tion 2.3.2 treats the Crépel-Roynette law of the iterated logarithm for distributions
having (roughly speaking) a (2 + §)th absolute moment (§ > 0), an analogue of the
classical Hartman-Wintner law of the iterated logarithm. In the course of the proof
Crépel and Roynette gave an estimation of the speed of convergence in the central
limit theorem on /H, which is of independent interest. In section 2.3.3 we apply the
"subsequence-principle”, which, in a general form, has been established by Chatterji



and Aldous, to the law of the iterated logarithm of Crépel-Roynette. This principle
is a means of transferring limit theorems of i.i.d. random variables to limit theorems
for subsequences of dependent random variables. The corresponding theorem for the
Marcinkiewicz-Zygmund strong laws of large numbers will be mentioned in 3.2.1.

Further (weak and strong) limit theorems are presented in chapter 3. Hazod (1993)
has shown that on arbitrary contractible locally compact groups there exist so-called
strictly universal distributions (in the sense of Doeblin), i.e. distributions which are
partially attracted by every continuous convolution semigroup. Section 3.1.1 is in some
sense a complement to that paper for the case where in the normalizing sequence also
shifts are allowed: It is shown that a probability measure on IH is universal (in this
wider sense with shifts) iff it is universal on the underlying vector space (IR?, +). In
section 3.1.2 we present the characterization of domains of attraction of (non-Gaussian)
stable semigroups due to Scheffler. In section 3.1.3 we come back to the topic of 2.1.4:
We characterize limits of "lightly” trimmed products in the domain of attraction of cer-
tain stable semigroups by means of some ”"Lévy construction” similar to that for stable
laws themselves. In section 3.1.4 we present the results of Tutubalin (1964). Here, the
normalization is performed such that the limit measure is a Gaussian distribution on
(IR, +) instead of (IH, -). Also, the norming maps are not endomorphisms of (IH, -) and
the centering is taken with respect to ” +” rather than ” - ”. The topic of section 3.1.5
are triangular systems of probability measures on IH which are not necessarily rowwise
identically distributed. We show that limits of commutative infinitesimal triangular
systems of probability measures on IH satisfying some "local centering” condition are
always infinitely divisible. As in the i.i.d. case for general simply connected nilpotent
Lie groups, one can in this situation formulate a "transfer principle”, saying that limit
theorems for triangular systems on (IR?, +) have a canonical counterpart on (IH, -) if
the measures within each row commute on IH. This transfer principle also holds the
other way round if the limit measure is known to be Gaussian by the uniqueness prop-
erty mentioned in 2.1.1. If it would be known that (as in the euclidean case) also on IH
any embeddable probability measure y; determines uniquely the continuous convolu-
tion semigroup {u¢}+>0 in which it may be embedded, then this transfer principle would
also hold the other way round in general. Furthermore, we show that also limits of
non-commutative infinitesimal triangular systems of symmetric probability measures
on H are infinitely divisible. While the classical (Kolmogorov) form of the strong law
of large numbers is already known in fairly general situations (see e.g. Furstenberg
(1963), Tutubalin (1969), Guivarc‘h (1976)), we carry over in section 3.2.1 the strong
law of large numbers in the form of Marcinkiewicz and Zygmund. We also apply the
subsequence principle of 2.3.3 to this situation. In section 3.2.2 the convergence rates
are precised; more accurately, the estimations of Baum-Katz and Hsu-Robbins-Erdés
are carried over to IH. The Baum-Katz theorem is a precision of the Marcinkiewicz-
Zygmund law of large numbers, while the Hsu-Robbins-Erdés theorem characterizes
complete convergence in the law of large numbers by the finiteness of the second mo-
ment. Section 3.2.3 is devoted to the ergodic theorem and related results. Section
3.2.4 presents other (non-classical) versions of laws of the iterated logarithm for stable
and semi-stable semigroups which are not yet covered by 2.3.2; these are due to the
author and mainly to Scheffler. In section 3.2.5 we carry over the classical ” three-series



theorem” due to Kolmogorov to symmetric random variables on IH.

Let us close the introduction with some suggestions for further research. In general,
the results collected here are in a form which, up to now, has only been proved for IH
(or, somewhat more generally, the step 2-case). So it remains open to generalize them
to nilpotent Lie groups of higher step.

Another challenging problem whose treatment is just at the beginning now is to try to
get rid of the independence or even i.i.d. assumption, which, up to now, has mostly
been imposed, and to consider more general processes on groups, also processes with
several parameters. Papers which go into this direction are e.g. Watkins (1989), who
generalized Donsker’s invariance principle for mixing sequences to Lie groups, and the
"approximate martingale” approach on abelian groups by Bingham (1993).

The convergence theory for continuous convolution semigroups (which model processes
with independent stationary increments) on groups and their generating distributions
is now developped quite well. But a vast field still to be examined would be to find
corresponding theorems for convolution hemigroups (which model processes with in-
dependent, but not necessarily stationary increments) and their generating families.
Important first steps in this context were undertaken by Feinsilver (1978), Siebert
(1982), Heyer, Pap (1996), and Pap (1996a, 1996b).

Also the generalization to (infinite-dimensional) Hilbert-Lie groups and to p-adic groups
has just been begun (cf. Cogskun (1991), Riddhi Shah (1991, 1995), Teloken (1996)).
In theoretical physics, the so-called quantum and braided Heisenberg groups are of
growing interest (see e.g. Feinsilver, Schott (1996), section 5.3). There are several ap-
proaches to define stochastic processes on these structures (see e.g. Feinsilver, Franz,
Schott (1995a), (1995b), Franz, Schott (1996), and the literature cited there). So the
question arises if results valid for the ordinary Heisenberg group carry over to this
context in some form.

Finally, a subject which, to our knowledge, has not at all been touched so far are random
subsets of groups (with the ”Minkowski multiplication” A-B = {a-b:a € A,b € B}
as operation). The reason is two-fold: First, limit theorems for random subsets of IR%
with Minkowski addition are often only valid for convex sets, or at least their proof
passes by this special case. Now what is a reasonable analogue of convexity on a
group? The second reason is that for random sets on IR%, the Minkowski addition of
convex subsets corresponds to the addition of their support functions, so one can use
the corresponding Banach space results. See e.g. Molchanov (1993), chapter 2 and
the literature cited there. This method does not seem to be applicable at all in the
non-commutative case.



Chapter 1

Probability theory on simply
connected nilpotent Lie groups

1.1 Continuous convolution semigroups of proba-
bility measures

Let G be a locally compact group, e the neutral element, G* := G\{e}. (M!(G), *, 3)
is the topological semigroup of (regular) probability measures on G, equipped with the
operation of convolution and the weak topology (cf. Heyer (1977), Theorem 1.2.2).
A continuous convolution semigroup {u¢}¢>o0 of probability measures on G (c.c.s.! for
short) is a continuous semigroup homomorphism

([0, 00], +) D t = ps € (MY(G), %, 5),

Ho = Ee

(e denotes the Dirac probability measure at z € G.) For simply connected nilpotent
Lie groups the request pg = €. is no restriction, since in any case po has to be an
idempotent element of G and is thus the Haar measure wg on some compact subgroup
K C G (cf. Heyer (1977), 1.5.6); however, simply connected nilpotent Lie groups
have no non-trivial compact subgroups (cf. Nobel (1991), 2.2). Let M®(G) be the
Banach algebra of bounded Radon measures on G, equipped with the norm ||.|| of
total variation. For y € M?(G) one defines

/J"k

k!

e o)
eXp p = £+ Z
k=1

A Poisson semigroup is a c.c.s. of the form

{expt(n — lInllee)}ezo

A probability measure on G is called Poisson, if it lies in a Poisson semigroup on G.
Let G be a Lie group, Cy(G) the space of all bounded complex-valued functions on

1Subsequently, the term ”c.c.s.” will always mean a continuous convolution semigroup of probability
measures.



G, Co(G) the subspace of all complex-valued continuous functions on G vanishing at
infinity, C5°(G) the space of bounded complex-valued C*°-functions on G, D(G) the
subspace of complex-valued C*°-functions with compact support. For a non-negative
measure 7 on G, its adjoint measure 7 is given by [ f(z)7(dz) = [¢ f(z™')n(dz) (f €
Cy(G)). The measure 7 is called symmetric if n = 7. For a measurablemap ® : G — G,
the measure ®(7n) is given by [; f(z)®(n)(dz) := [ F(®(z))n(dz). A (G-valued)
random variable X is called symmetric if its law £(X) € M!(G) is symmetric. For
i € M1(G) define the (right) convolution operator T), : Cy(G) — C(G) by

T, (@)= [ f(ey)nlay).
G

Now for a c.c.s. {p:}e>0 and f € Co(G) the infinitesimal generator N is defined as

Nf = 11m ( f)
d
= alt:0+Tyzf‘

N exists at least on D(G) (cf. Heyer (1977), Theorem 4.2.8). The whole domain of
definition will be denoted by Dy C Co(G). For f € Cp(G), the generating distribution
A is defined as

Af = lim - /[f(z (€)]pe(dz)

t—0+ ¢

—lt " / f(z)pe(dz).

It exists on the whole of C5°(G) (cf. Siebert (1981), p.119). If f € Dy N C°(G), then
Af = Nf(0).

Now let G be a simply connected nilpotent Lie group. This means that G is a Lie
group with Lie algebra G such that exp : G — G is a diffeomorphism and that the
descending central series is finite, i.e. there is some r € INg such that

Go2G12 - 2Gr = {0},
where

Go:=6G, Ger1:=[6,Gk] (0<k<r-1)

G is then called step r-nilpotent. We may (and will from now on often) identify G
with G = IR® via exp. If it will be necessary to distinguish between objects (elements,
functions, ...) on G resp. G, then for an object = on G the corresponding object on
G will be denoted by °=. So G may be interpreted as IR? equipped with a Lie bracket
[.,.] : R*x R? — IR® which is bilinear, skew-symmetric, and satisfies the Jacobi identity

[z, 9], 2] + v, 2], z] + [[z, =], 4] = 0.

8



Write ad(z)(y) := [z,y]. The group product is then given by the Campbell-Hausdor(f
formula (cf. Serre (1965)), where due to the nilpotency only the terms up to order r

arise:
,
T-y= Z Zn,
n=1

1
! n
= o 2 (2p,q T 2pa);
p+q=n

' > (=1)™*! ad(z)"*ad(y)® . .. ad(z)"(y)
b4 =
Pq o ot e Bt = m pilql!. . pm!

3

Q+g+...+gm-1=q—1
pit+qi2>1
Pm 21
" T (=1)™"! ad(z)Pad(y)® . .. ad(y)™-'(z)
Zpg = T s
P25 e Py, == | m pilg!. .. gm—1!
at+tet+...+qm-1=¢q
pitaqi 21

The first few terms are
1 1
T-y :z+y+glz,y]+E{[[z,y],y]+[{y,z],z]}+....

It is clear that the neutral element e is 0 and that 7! = —z. We will implicitly use
the relation [z + y,y] = [z,y]. If 1, z9,... € G we will use, for ordered products, the
notation [[}_, z; := 21 - z2- ... z,. The simply connected step 2-nilpotent Lie groups
play a special role. Here |[,.] is simply a bilinear skew-symmetric map R% x IRY — IR?
satisfying [[z,y], z] = 0. The most prominent examples are the so-called Heisenberg
groups H, given by IR?**! and the Lie bracket

[z,y] = (0,0,(z",y") = («",¥"))
(1‘ — (.’L", z”,z"'),y _ (yl)yll) y///) € md x md x IR~ B2d+l).

This notation (for d = 1) will be kept throughout this work. The center of IH¢ is the
line {0} x {0} x IR. The group that we will consider in this work is the three-dimensional
Heisenberg group IH!. From now on, we will denote it simply by IH. For the central
component we will use the notation ¢(z) := 2" (z = (z/,z",2") € H = IR%). On the
other hand we put p(z) := (z/,z"). Observe that by the Cauchy-Schwarz inequality
we have ||[z,y]|| < ||z|| - |lyl| (z,y € H). This relation will also be used implicitly.
IH is the simplest one among the simply connected nilpotent Lie groups, even the
simplest non-commutative non-discrete Lie group among all Lie groups. So we think
that, generally, in going to the non-commutative situation in Lie group theory, one
naturally passes by such groups. Every simply connected step 2-nilpotent Lie group
is a quotient of a free simply connected step 2-nilpotent Lie group (cf. Taylor (1986),
p.156). We mention that all so-called groups of type H (cf. Kaplan (1980)) arising in
the context of composition of quadratic forms are simply connected step 2-nilpotent.
It turns out that the nilpotent part of the Iwasawa decomposition of a semisimple Lie
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group of real rank 1 is of type H (cf. Koranyi (1985), Proposition 1.1).
Let G be a simply connected step r-nilpotent Lie group. A positive graduation of
G X G is a vector space decomposition

G=g=Pyv;
1=1

such that [V;, V;] C Viy(i+37 < r) and [V;,V;] = {0}(i +j > 7). G is called stratified if
it admits a positive graduation such that V; generates G as a Lie algebra. The number

k=) idim(V;)
i=1

is called the homogeneous dimension of G. Clearly, HH is stratified with homogeneous
dimension k = 4. For t > 0, let the dilatations §; : G — G on a positively graduated
simply connected nilpotent Lie group G be given by

T T
G%‘@Vja(zl,zg,,..,z,)l—»(tzl,t2z2,...,t'z,)e@Vj%‘G
j=1 j=1

(see also Folland, Stein (1982)). Then a homogeneous norm on G is a continuous
function |.| : G — [0, oo| satisfying the properties

(i) 0] =0,]z| > O0(= € G\{0}),

(i) |6e(z)| =t|z| (¢t >0,z € G).
It is well-known that all homogeneous norms are equivalent (in the sense that |.|; <
C|.|2 € D|.]; uniformly on G (cf. Goodman (1977), Lemma 1)). There always exists a
homogeneous norm |.| such that

(iii) |z| = | — z| (symmetry),

(iv) |z -y| < |z|+ |y| (subadditivity)
(cf. Hebisch, Sikora (1990)). For G = IH the homogenous norm

|z| == (II(=', 2")||* + 162"%)1/* (1.1)

is subadditive and symmetric (cf. Koranyi (1985), (1.4)). For any homogeneous norm
|| on G there exist constants C;, Cz, ¢ > 0 such that

lz-yl < Cullz| + ly]),
|—2| < Cofal,
llz;ll < clzf (1.2)

(cf. Goodman (1977), Lemma 2, Pap (1992), (2)).
Let p > 0,c € G, and X a G-valued random variable. Since

E|X - cff < CTE(IX| + [cl)?,

it follows that
E|X|P <00 = E|X - ¢|f < o0.
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