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INTRODUCTION

Expenmentalﬁf observed  temperature-dependent
changes in NMR spectra may be interpreted in terms
of some rate process involving interchange of spins
betweep different environments either by an intramole-
o exchange process or by an intermolecular
mechanism From the gross changes observed, the nuc-
leus involved m the exchange can be identified and a
mechanmism by which exchange is occurring can be pos-
tulated. Depending upon the complexity of the spin
system involved in the exchange process, estimates of
the rate of exchange can be made by the use of ap-
proximate equations'!+?’ derived from the Bloch equa-
tions.® These equations apply to slow. intermediate,
and fast exchange situations. It has long been known,
however, that these approximate treatments are quan-
titatively unreliable and that the most satisfactory
method of determining rate constants and activation
parameters is a full steady-state line-shape (the absorp-
tion mode signal as a function of frequency) fitting over
the temperature range where exchange effects can be
observed.'-

For weakly coupled systems undergcing exchange
it is possible to compute theoretical line-shapes using
modified Bloch equations,*~'® but strongly coupled
systems require a full density matrix (DM) treat-
ment.!!712) Excellent articles are available in the
litesature''3-!8) which describe the principles in-
volved in DM line-shape calculations. Due in
part to the economy of presentation of this method
in the literature, the chemist with a less mathe-
matical background and without specialist training
in quantum mechanics may be discouraged from
applying the theory to problems in which he is
‘involved.

It is the aim of the present article to show in a practi-
cal way how to calculate line-shapes using the DM
method. The article consists of three separate sections.
Section A sets out in some detail, though not rigor-
ously, the basic principles jnvolved in DM line-shape
calculations. The reader who does not have the mathe-
matical background to follow this section can proceed
directly to Section B where density matrix techniques
are applied to specific NMR problems. Section C is
concerned with the practical problems involved in pro-
ducing theoretical spectra for exchanging systems. In
sections B and C the arguments are confined to mag-
netic nuclei of spin  only.

The article is not intended to be an extensive litera-
ture survey of the DM method in the calculation of
NMR line-shapes. Where appropriate, examples wili
be cited from the literature but our main aim is to
demonstrate the relative ease of the theoretical line-
shape generation once the important equations have
either been derived or simply accepted.

In this article the theory will be applied to slow pass-
age continuous wave (CW) spectra; however, the de-
rived line-shape equations can be applied to the fre-
quency domain spectrd obtamed from pulse NMR

spectrometers, ,
n #

SECTION A

1. Dirac Formulism of Quantum Mechanics'!°-2%

Introductory courses in quantum mechanics usuaily
deal with the one-dimensional Schrédinger wave equa-
tion

)
[2: ;2 + Vi(x, t)] ¥(x, t)—ﬂ’xi Y(x, 1) (la)
or

d
HW(x,t) = jh 0_t Y(x, t) (1b)
and solutions for the wave function ¥(x, t) are sought.
In the particular case of the potential function, V{x, 1),
being independent of time, the wave function ¥(x, t)
may be considered as a product of two functions, a

spatial part, and a temporal part,
ie. V(x, 1) = Y (x)-y(t)
(1) = exp(—jE,t/h)

and ,(x) is an energy eigenfunction and is a solution
of the encrgy cigen-equation,
HY x) = Eplolx). 2)

States of the quantum mechanical system in which
the energy remains constant are known as stationary
states.

The superposition principle infers that wave func-
tions can be added together to form a new function
which is also a physically valid representation of a
possible state of the system, hence the general solution
of equation (la) is

Wx,ty= Y cn-p;(x)exp( —JEnt/h) o)

where

where the c,’s are complex numbers. The function
W(x, t) is said to represent the state of the system in the
coordinate representation and it is called the state
function.

In writing equation (3) we have assumed that the
¥,(x) form a complete set of orthonormal functions,

ie. f Ym) Y (x)dx =0, m+#n. 4)
Provided the wave function is normalized,
f YH(x, 1) ¥(x, f) dx = | )

it can be interpreted by saying that ¥*(x, )¥(x, t)dx is
the probability of finding the particle in the range of
values x — x + dx at time t. kS

Sometimes it is more convenient tohave the state
functions expressed as functions of momentum and
time instead of position and time. Such would be the
case if one were describing a wave packet. The appro-
priate state function, ®(p, t), is then said to represent
the system in the momentum representation.’?"

1 = . :
;f(” 9 = JCnh) f_ . ¥(x, exp(—jpx/h) dx.

&

Yok
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Notice in this case ®*(p, )d(p, t)dp is equal to the
probability of finding the wave packet with a momen-
tum in the range p— p + dp at time .

In fact any particular quantum mechanical system in
a particular state may be described by any one of a
number of different state functions each one appertain-
ing to a different representation of the system. Each
state function is a different function of a different argu-
ment thus making quantum mechanics algebraically
complex.

Fhe Dirac formulism of quantum mechanics renders

the form of the analysis of any particular problem in-
dependent of the particular representation chosen. The
essential feature of this formulism is the reinterpre-
tation of equation (3). In the Dirac formulism, the orth-
ogonal set of eigenfunctions ¥ ,(x} may be interpreted
as unit vectors along mutually perpendicular axes in a
muiti-dimensional vector space. Each eigenfunction
defines a direction in this space which is perpendicular
to the directions defined by each of the other eigen-
functions. Hence the number of dimensions of this vec-
tor space is equal to the number of different eigenfunc-
tions possessed by the quantum mechanical system uii-
der scrutiny. The complex numbers ¢, are now to be
interpreted as projections of the state vector ¢ along
the orthogonal set of axes. The state vector is inter-
preted as some kind of multi-dimensional complex
vector and is given the special name “ket” and is
written as i to indicate that it is a vectorlike quan-
tity. Each different direction in this vector space repre-
sents a different possible state of the quantum
mechanical system.

Different representations, for example, coordinate or
momentum may be regarded as rotations of the coor-
dinate axes in vector space, hence the ket i) repre-
sents the state of the system no matter what repre-
sentation is chosen for the analysis.

In any particular representation we may simply
number the eigenkets (basis set or unit vectors) |1, {25,
[3)>....s0 any arbitrary ket |{,> may be written as

Wa> =callld 4+ eal2) + e3l3) + ... (6a)

In fact the nomenclature is often further simplified
by rewriting i, > as simply |a), hence (6a) becomes

lay = c i1 + cal2) + ¢af3> + . .. (6b)

Equations (6a) and (6b) are alternative ways of writing
equation (3).

As an example of the use of the Dirac formulism
consider a single spin  particle in a static magnetic
field acting along the z-axis. The particle has two spin
ecigenstates; |«> has the spin angular momentum
aligned with the magnetic field and |f> has the spin
angular momentum anti-aligned with the magnetic
field. Hence in general the state of a spin particle may
be represented by the ket |y > where

WD = x> + clf).

The Dirac formulism of quantum mechanies must
have expressions which are analogous to equations (4)
and (5) which help to define a different vector-like
" 'quantity. the bra.

To each eigenket |a) there corresponds a different
vector-like quantity, the eigenbra <a| such that the in-
ner (or scalar) product

<blay = dq (7
where d,, is the Kronecker delta. These eigenbras exist
in a different vector space (bra-space) which has the
same dimensions as the corresponding ket-space. The
eigenbras and eigenkets are in a one to one correspon-
dence. A bra is said to be the adjoint of the correspond-
ing ket,

Le. . {a| = |a>t. (8)

*Also, if

lad =Y c,ln) ©)

then the bra corresponding to {a) is a| where

. {a| = [Zc ln>]T

= ch IH)T
= Zc,‘f(nl (10)
and ¢ is the complex conjugate of c,.
Also alt = |ad,
~lay = |a)tt.

Notice that taking the adjoint of a ket is rather simi-
lar to, but different from, taking the complex conjugate
of a function, in_that any kets involved are to be
changed to bras.

The scalar product of two arbitrary state vectors is
in general a complex number with the following pro-
perty:

A Calh) = <blay*. (1)
This implies that the scalar product of a state vector
with itsell always yields a real number. the positive
square root of this number is called the norm of the
state vector, i.e.

[<h1b)]E = (122)
When |b) is normalized its norm is unity and equation
(12) becomes

norm |b).

[<blb>1E =1 (12b)

2. Operators

If two kets in the same vector space are related by
an expression of the form

la> = 2b)

where # might mean differentiation. or integration, or
multiplication, etc., then # is said to be an operator.
All operators are distinguished by the use of capital
script letters. when necessary. Note that operators
always act on kets from the left. Quantum mechanics.
in the main. confines itself to a study of linear hermi-
tian operators. Some of the more useful properties of
linear hermitian operators are listed. together with one
or two brief explanatory notes (see also subsection 4).

(13)
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Since the operators are linear

Pa) + b3) = Plad> + 2Ib) (14)
and
' Pcibd) = o(Pib)) s5)
where ¢ is a complex number.
The sum of two operators may be defined by
(2 + Dla) = Pla) + 2a). (16)

Also the product of two operators may be defined by
P> = P(2lad). an

The commutator of two operators is written as [, 2]
and is defined as

(2. 2] = 2 - 22.

Ail the above rules are satisfied by square matrices
hence quantum mechanical operators may be repre-
sented as square matrices.

Operators may also act on bras so that {b| may be
transferred into {a| by the action of some particular
operator. Take the adjoint of equation (3)

la>t = (Z|b)),
-, using equation (8)
<a| = {b|Pt. (18)

Notice, by convention, operators act on bras from the
right. Also 21 is the adjoint of 2.

A very important example of an operator is {n){m].
This operator may act on a bra from the right to form
a complex number times the bra (m), ie.

Cblny {m| =.c,{m| (19)

or |n>{m| can act on a ket from the left to form a com-
plex number times the ket |n), ie.

[n><mlb) = c,jnd. (20)
We shall have occasion to use operators of this kind.

3. Eigenvalues and Observables

Each ket may be associated with a state of the sys-
tem. There are some operators which leave the ket un-
changed, e.g.

b = plb> @n

The ket is unchanged except for multiplication by
the complex number p. It is the direction of the ket |b>
in vector space which determines the dynamic state of
the system, so under the action of the operator #, the
state of the system remains unchanged.

Ib) is said to be an eigenket of 2 and p is the asso-
ciated eigenvalue. By convention the eigenkets of an
operator are written as |p) and the eigenvalues as p, so
equation (21) becomes

Pip> = plp). (o2)]
Furthermore, {p| is an eigenbra of the operator 2t
for taking the adjoint of (22) yields

PI2t = p*<pl. - (23)
One of the postulates of quantum mechanics is that
each dynamical variable of a system may be asso-

ciated with a particular linear hermitian operator such
that when it acts on the appropriate eigenkets the
eigenvalues produced are the only possible values of
the dynamical variable which may be obtained by
measurement. Hence equation (21) may be reinter-
preted as follows. A measurement of the dynamical
variable represented by # always yields the value p,
when the quantum mechanical system is in the eigen-
state |p>. No matter how many times the measurement
is made the same value p is always obtained.

If the system is not in an eigenstate of 2 but is in
some arbitrary state (i), then we can use equation. (6)
to write

W =cll) +eal2) +¢5l3> + ...
where the kets on the right are eigenkets of 2

PN = cpyll) + eapal2) + cypai3) + ... (24)
But the only possibie results of the measurement are
P1» P2, P3, €tC., 50 equation (24) has to be carefully inter-
preted. The very act of measurement must force the
quantum mechanical system to jump into one of its
eigenstates (in equation (24) one of the coefficients, c,
£oes to unity, the others to zero). This renders equation
(24) an eigenequation. The probability of obtaining the
value p, by measurement is c}/Y ¢2 and the prob-

ability of obtaining the value p, isfc%/Z c2, etc.

If we have an ensemble of identical quantum
mechanical systems all prepared in exactly the same
way, and hence all in the same arbitrary state ), then
we may define the expectation value of any dynamical
quantity as the average value of p obtained by making
precisely the same measurement once on each system
in turn. This ensemble average value of p, (&) is
clearly given by

2 2

2
<9>_Z 2p,+Z 2 pat +;"p’;l‘.., (258)
which may also be written,
Y2y
Py =
P> == (@)

Equation (25b) can be shown to be identical with
equation (25a) by substituting expressions for (| and
l¢> from equations (9) and (10) and recognizing that,
since |p) is an eigenket, {n|m) = §,,, (see equation (7))
and #|n) = p,In).

Notice the vertical bar of the ket in the numerator
has been omitted to indicate that & acts on the ket.
When jis) is normalized we may use equation (12b) in
(25b) to obtain

(P) = Y|2y). (25¢)
It should be noted that a single measurement cannot

yield {2}, it is an ensemble average with each member
of the ensemble in the same initial state.

4. Hermitian Operators

In general the eigenvalues of linear operators are
complex numhbers, but dynamical variables such as
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position, momentum, or energy always yield real
numbers when they are measured. So only those oper-
ators which have real eigenvalues may be associated
with dynamical variables, such operators are called
hermitian operators. [This does not mean that linear
operators with complex eigenvalues are not useful in
quantum mechanics, on the contrary, the annihilation
and creation operators, sometimes called the lowering
and raising operators, play an important role in quan-
tum mechanics in such diverse fields as quantum optics
and NMR.] A necessary and sufficient condition for
the eigenvalues of an operator to be real is that the
operator must be equal to its own adjoint, i.e.

P = 2.

This self-adjoint property of hermitian operators
may be demonstrated as foliows: Multiply equation
(22) from the left by {p| to obtain

~LplZp> = p<plp>-.

Similarly multiply equation (23) from the right with |p)
to obtain

(26)

<pPtip) = p*<plp). - @7
If p is real then the left-hand sides of equations (26) and
(27) are equal

. {p2tp)> = {p|Pp>

indicating that # = %%,
The hermitian property of an operator is usually in-
dicated by writing equation (28) as

BPlpy = p

where it is assumed that |p) is normalized.
The expectation value for an hermitian operator
becomes from equations (25¢), (28) and (29)

(P = YI|2W>.

(28)

(29)

(30)

5. Matrix Operators

All dynamical variables may be associated with
linear hermitian operators. These operators obey a set
of algebraic laws which are the same as the laws of
matrix algebra, hence the operators of quantum
mechanics may be represented by square hermitian
matrices. This presentation of quantum mechanics is
called matrix mechanics and is the presentation used
in the major part of this article.

Matrix mechanics requires kets to be represented by
column matrices and bras by row matrices. This can
be illustrated by considering the inner (or scalar) prod-
uct of a ket with its corresponding bra. This was pre-
viously defined as {yJ/>. Hence, using equations (6)
and (10)

W = leil? +leal® + eyl + ..

This result may be obtained by considering (|| to be
the row matrix

(€3))

and jy> to be the column matrix

ie. > =ciI>+c,l2> + 33>+ ...

H
x]
)

(32

AU+ A2+ 23+ ...
(33)

and

Yl

1]

[e} & ¢ ...3
LYy = [eteset .. Iy
€2

C3

=lci 2+ leal?> + les|* + ...
(34)

which is identical to equation (31).

Examples of the representation of operators as matrices

Consider the two-dimensional vector space with
orthogonal eigenkets (1) and [2).

(@) Let an arbitrary ket |b) be given by |bD =
all)> + ¢,f2)

ie. by = [ﬁ‘]
2

Let the matrix operator 2 act on |b) and transform it
into the ket |a)

If
P = [:’n Plz] (35)
21 P2
then
lay = 2|b)
becomes
@ = [Pu Pu:”:cl]
P21 P221lC:

e = [Zuﬁ +P1252]
21C1 + P23Ca

e lad = (pyie 4 piacll) + P2y + P22¢3)12). (36)
{b) If the quantum mechanical system is initially in
the state |b) then the expectation value of 2, (P, is
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given by
(P> = (b|P|b) (see equation (30)).

PIb> = l:l;n ¢y + plZCZ]
21€1 + P22C2
cy + c
APy = [t ef] I:Pn 1 T P12 2]
P21€y t P26

Now

ie. (P)=pcict + piacact + paici€l + pascycl.
(37
However, if the eigenvalues of # are real numbers,
then {b|Pb) = ((bIP|b))*, so equation (37) must be
equal to its own complex conjugate. This is only true
in general if pt;, = p,1, p¥, = p1y, and p¥; = py,.
That is the matrix elements must be related by
P;‘kj = !5]-'- (38)
Matrices with this property are called self-hermitian
" adjoint. All matrix operators which represent dynami-
cal variables possess this property. Notice the hermi-
tian adjoint of a matrix is formed by interchanging
rows and columns and taking the complex conjugate.
(c) The ket |b) is given by

) [B) = ¢ql1) + ¢,12)
-[2]
C2
Therefore the eigenket |1 is given by
(1> = U1+ 0i2)

o]
ol
Si{nilarly the eigenket |2 is given by
2> = 0l1> + 112}
-[J
1
(d) In general the matrix element p;; is given by

pi; = <2l
where (il is an eigenbra and |j) is an eigenket,

el

(39)

eg 121D =[1 0] [”“
P21

= M2

6. The Trace

Equation (37) is an expression for the expectation
value of an operator in a two-dimensional vector
spacg, i.e.

(P> = (blPIb) = pyicict + pracact + pricict +

P22l (40)
We may consider the complex number products c¢;c*
to define a matrix with elements c,;. Therefore (37) may
be rewritten as

(P> =Pp11€11 + P12€2;1 + P2iCiz + P22Cyp- (41)

*

Consider the matrix product ¢

- [le Plz:] [Cu Clz]
Par Pazjl €21 €2z
_ [Pucu + P12€21 Pt t szczz]

P21Ciy F P22€ay P21Ciz + Pa2Caz

By inspection the left-hand side of equation (41) is
given by the sum of the diagonal terms of the matrix
product 2€. This sum is called the trace of ¥ and is
written as Tr 2€.

Therefore
(P> =Tr P¥

= Tr§#. @2)

The expectation value is amenable to measurement,
therefore it must be independent of the set of eigenkets
used as the basis set for the expansion of |b). So the
trace too must be independent of the basis set chosen
for the expansion of |b). Consequently one is free to
choose the most convenient set of kets to act as the
basis set. This point will be illustrated later in the
analysis of the coupled spin $ systems.

7. Angular Momentum Operators

One of the problems of quantum mechanics is the
construction of linear hermitian operators which may
represent the dynamical variables of the quantum
mechanical system under study. When the dynamical
variable has a classical analogue the relevant operator
may be readily identified; however, when the dynami-
cal variable is essentially quantum mechan®al and has

- no classical counterpart, the identification of the

appropriate linear hermitian operator may present
some difficulties.

The intrinsic spin of an elementary particle is a
dynamic variable which does not have a classical
counterpart and consequently the identification of
square hermitian matrix operators which may repre-
sent spin is not obvious. However. one can obtain the
form of the angular momentum matrix operators.‘?!!

Classically the total angular momentum, [ofa par-
ticle about some arbitrary point is a vector quantity
given by

T=uxp 43)
where # is the position vector of the particle from the
point and p is the momentum of the particle. Hence,

for example, the angular momentum about the x-axis
is

Iy =yp. — zp,

Also the total angular momentum is related to the
component values by the relationship
P=02+0+102 (44)
The operator form of the Heisenberg Uncertainty
Principle is

4Ps — PYr = jhérs (45)
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where r and s may represent any of the cartesian coor-
dinates x, y, or z; p,, and g, are the operators represent-
ing the r component of momentumn and displacement
respectively. Equation (45) is the commutation rela-
tionship governing the position and momentum opera-
tors. If the commutator of two operators is non-zero
then no ket may be simultaneously an eigenket of both
these operators.

Using equations (43), (44) and (45) we can readily
deduce the commutation relations that govern the
angular momentum operators, viz.

[lrv [s] = Jhll (46)
where r, sand t form a cyclic permutation, and |, is the
operator representing the component of angular
momentum about the r-axis,
eg

U 1, = jhi.

I~ 1] = jhl..

or

Also
(h.1"1=0. (47)

The commutation relationships of equations (46)
and (47) determine the properties of the angular
momentum operators,?**% including by hypothesis,
spin angular momentum which has no classical
counterpart.’ Confining our attention to spin angular
momentum, equation (47) implies that a ket may be an
eigenket of /* and I,, say. This means that we can
choose a basis set such that the matrix operators repre-
senting I* and I, are both diagonal but the other spin
angular momentum operators are non-diagonal.

Considering spin § particles spectroscopic evidence
suggests that the eigenvalues of /* are }{1 + $)4? and
those of I, are +1/i and ~4h. This implies that the
matrix representations of I> may be written as

1o
0 1

and the matrix representation of I, may be written as:

l_h”l 0
2l —1f

7 =

Bl

Hence, using equations (46) and (47) we find:

Lot
2010

I
Y2l of

Thus the matrix operators which represent a spin
4 particle in the representation that renders . diagonal

are:
L= B0y
2o -1 T

RO -1
L= j= =
N _]2[] 0:, hl,,

and

NMRS. 10/] -8

- I =

K0 1
5[1 0] =l

12 = 3n? [1 0:' = K1

0 1 “8)

The eigenket which yields the eigenvalue +h/2 for
the projection of the spin angular momentum along
the z-direction is | 1) where

n>=|a>=m

(spin up case), i.e.

k{1 Of{1|_ kll
2t0 —1flof 2]of
Similarly the eigenket which yields the eigenvalue — /2

for the projection of the spin angular momentum along
the z-direction is |2) where

12> = 18> = m

(spin down case), i.e.

2o —l]--3]

Notice that the kets are in a two-dimensional space,
as expected, since [, has two non-degenerate eigenva-
lues (see subsection 1).

The spin matrix operators for a spin 1 particle in the
representation which renders 7 diagonal may be
obtained in a similar manner. The results are as fol-
lows:

(49a)

(49b)

1 ; 0 (l) 0
= =1 1
i \/2 0 1 0]
[0 -1 0]
=it 0 -1 (50)
v [0 1 o]
1 o 0]
L="h|0 0 0
[0 0 -1 J
The corresponding eigenkets for I, are
.
{1>=10
0]
07
12> =1 (51

13>=1]0
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8. The Tensor Product®*®

Consider a quantum mechanical system consisting
of one spin } particle and one spin 1 particle. The pro-
Jection of the total spin angular momentum along the
z-axis is given by
(52)

where ., and _, are the projections of the spin angu-
lar momenta of the individual particles along the z-

Lr=1L,+1,

Notice the tensor product of a 2 x 2 matrix with a
3 x 3 matrix is a 6 x 6 matrix. The tensor product is
indicated by the symbol ®.

The correct expression for [ is

lzT = (Izl ®J2) + (jl ® l:Z) (54)
where .4, and .#, are the unit matrices of vector spaces
I and 2 respectively.

Equation (54) may be considered as the coupling
together of the component vector spaces and then the

axis. addition of the contribution of each particle.
Also
[ = h '-1 0 h ,_l 0 I 00
27200 -1 h®fh=3 ?1]8’0 10
and : 001 _
['] 0 0 | 0O 0 o o0 o
l,=hlOo o 0 0 1 0O 0 0 o
0 0 —1 - f 0 o 1 0 0o o0
- 2 -1 0
R[1 0 Lo g (()) g 0 (1) 0
""Tzilo 1]+h0 0 0 o o o o ‘0 )
- 0 0 -1I L o
. . N 1 0 o
But this last matrix addition is not defined so the 5oL, =k [1 0
simplistic argument given above must be invalid. 1@ =141, 1 ® 0 0 0
The matrix operator [, is defined in a two-dimen- - 0 0 -1
sional vector space appertaining to the spin } particle, ”1 0 0 0 0 0"
vector space 1. The matrix operator I, is defined in a
three-dimensional vector space associated with the 0 0 0 0 0 0
spin 1 particle, vector space 2. The quantum mechani- -k 0 0 -1 0 0 0
cal system which-consists of both particles requires a o 0 0 1 0 0
composite vector space which combined both com- 0 0 0 0 0 o
ponent vector spaces, vector space 3. This composite :
space is called “product space”. Operators appertain- 10 0 0 0 0 —1]
ing to the composite quantum mechanical system may ie.
be constructed from the operators which appertain to 3 0 0 0 0 0]
each component particle of the system by the appli- 2 . v
cation of the tensor product. 0 7 0 0 0 0
To form a matrix operator for vector space 3 we 0o 0 -4 0 o0 o0
must couple together vector spaces ! and 2 and add the by =1 0 0 0 3 o0 o (53)
contributions from each particle. The component vec- 0 0
tor spaces may be coupled together through tensor 0 0 0 f%
multiplication by the appropriate unit matrices. 0 0 0 "0 0 -3
The tensor product of a 2 x 2 matrix and a 3 x 3
matrix is defined as
ay by ay by, ay by, a’lzbn ay2by; ag3by;
ayybyy ayibyy ay by agyh,, A12by; a13by
hl 1 hl 2 b 13
dyp a4 b b b _|4nbsy ay by, ap by oay,by, a12by; ay3bss
® 21 22 23| — i (53)
41 G122 b b b @by ayhyy, a3 by dyb, axnh, az;bys
31 b3z b33
ay by a3 by ay by, @by ay by azbyy
« L421bsr anby; ayihyy agbyy ag,b, azzbu_

This may be written 1n a shorthand form as

by, by, b
[ a.z]® by b b =[a,.[b] alz[h]:l
a b
21 4y bsi byy by ax[b]  ay,[b]

The eigenkets for the composite system may also be
obtained from the component “eigenkets” by appli-
cation of the tensor product. The component “eigen-
kets” are given in equations (49) and (51).
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Eigenvalues of I,

[1]
0
1 l 0
|1,>=[]® ol = 342
0 0
0
0
0—
]
1
0
(27> = : ®|1|= 0 in
)= 0 =1o 3
0
0
0—
0]
0
0
. N I 1
|3T>=0®0=0 —3h
: 1
0l
—0—
0
0
0 l 0
|4T>=[1:|® 0= | 1h
[1]
0 ‘
—0—
0
0
0 0 0
?5r>=[]]® 1= 0 —3h
0
i
—0-
0
) 0
0
|6>—0®0—0 3h/2
T) &= ] = 0 1/ <.
1
0
L1

Notice |17 is an cigenket of I_; the eigenvalue being
3h/2, etc.

9. The Density Matrix'?°27

In subsection 4 we obtained an expression for the
expectation value of a dynamical variable when the
state of the quantum mechanical system could be de-
scribed by a single ket /). A system can only be de-
scribed by a single ket if we have as much knowledge
of the system as is permitted by quantum mechanics,
the system is then said to be in a pure state.

Consider a quantum mechanical system whose state
cannot be described by a single ket because we have
insufficient knowledge of the system. The system is said
to be in a mixed state and it is best described by stating
the probability g, of the system being in the state i >.

In this case the expectation value of any operator
may be obtained from a generalization of equation

3.
(P = ZLQ.«(?.«) = ;w(llll?lw

where . g, = 1 because the g,’s are probabilities.
w .

(36)

Equation (56) implies that we construct an ensemble
with quantum mechanical systems in various states |{)
weighted according to their probabilities 4y The
expectation value is therefore a kind of double ensem-
ble average; once over the possible eigenvalues of 2,
and once over the weighted possible states of the sys-
tem. The first average is a typical quantum mechanical
average and is represented by the angled brackets, the
second is a typical statistical average and is repre-
sented by the bar.

Using equation (6) we may express i) as a series of
eigenkets

W =3 culr). (57
Therefore the expectation value for an ensemble of
systems all in the same state |y is given by

<‘|}W> =Z z C:rcw:<r|gls>

where equations (37), (10), and (6) have been used.
Therefore, using equation (56), we obtain an expression
for the expectation value of an ensemble of systems in
a mixed state.

<~7> = z qu\acﬁycws@lg‘h)
v or s

= Z Z (g 9 cw.s> Prs

where c}, ¢y, has been identified as the element ¢,,, of
some square matrix C, and equation (39) has been used
to identify the matrix element p,, of the matrix opera-
tor 2.

Let
%:‘Iw Cyrs = Py (58)
Therefore equation (56) may be rewritten as
(P) = % qQlF) = ;%ﬁnpn
and by comparison with equation (41)
(P) = Trp? = TrPp. (59)

p is called the density matrix operator, its great signifi-
cance is illustrated in equation (59) in that it enables
the easy computation of the expectation values of
observables. When the density matrix is employed in
describing an ensemble of similar systems equation
(58) may be rewritten as

n 1 X
Prs = N‘,,;l Cosr (60)
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where N is the total number of systems present, and
¢,s 18 the appropriate element of the density matrix of
the nth system.

It is clear from equations (57) and (58) that the ele-
ments of the density matrix depend upon the particular
representation used, that is on the set of eigenkets used
as the basis set. However, the expectation value of the
operator & obviously does not depEnd upon the choice
of basis set. Therefore Tr p2 is independent of the
choice of basis set even though p is dependent on that
choice.

The srth element of the density matnx operator is
defined by equation (58) to be

P = Z Gy Cyrs
”
= ;qwctrcdfs
= §Gw<slll/><¢lf>

= §<SI¢>qw<¢lr> (61)

But, from equation (39).
P = <slplr>
therefore

p=TW>al. ©62)

10. Properties of the Density Matrix Operators
@ Trp=1,

ie. Tr(ZW)q.;.(l//I) - T Ta W) =t
'3

(b) g is hermitian,

ie. pt = (g wmwu)’* = TWa =5

{c) p is positive definite.

The elements of the principal diagonal are probabili-
ties and so are real and positive, and, since Tr p = 1,
each of these elements must lie between zero and unity.
It may be shown that any positive definite hermitian
operator of unit trace may be considered as a density
operator in some representation or other.

(d) For a pure state

Te(p) = 1. 63)

A pure state implies that one of the g,’s is unity and
all the others are zero.

Therefore
= P> (64)
and
(BF = 1> |
= ﬁ_
Since
Trg = 1,
Tr(p)* = 1.

{¢) The density matrix ¢volves in time according 10
the “equation of motion”.

L d L _
in—p=9fp~p%’=[f,p]-

dt (63)

11. The Application of the Density Operators to an
Ensemble of Spin L Particles

From equation (59) the expectation values of the
projections of the spin angular momentum along the
spatial axes x, y and z are

Ao =Trpl, = gE .
h_
K,y =Trpl, =§s
h
Iy =Trpl, = 3% (66)

. where §,, §, and §, are the expectation values of the

appropriate projections of the spin angular momen-
tum in units of /i/2. We have chosen the representation
that renders [, diagonal, the spin operators for each
particle are thus the 2 x 2 matrix operators given by
equation (48). Hence p is also a 2 x 2 matrix operator.
The basis set of kets chosen are the eigenkets of I, given
by equation (49). .

If for any particular particle the expectation values
of all the spin projections are known, then the state of
the particle is pure and the ket may be written as
W> = c,;|L> + ¢,|2). Moreover, since the particle is in
a pure state, p = fiy> <y¥| and we may use equation (39)
to obtain the elements of the density matrix as illus-
trated below.

pur = lpl1y = (YW1 = cyc}
P12z = 1|pl2> = CLYXW12) = c\c3.

p_[:|C1|2 Clcfjl
cact leal?

The density matrix elements can be determined in

ie.

terms of s, s, and s, from the relationships
P+ par =1,
ﬁ .
Trplz = E(pll - plZ) = Esz
h h
Trpl, = 3 (P12 + p21) = Esx,
h, h
Trpl, = EJ(Plz = p21) = isy
Therefore
| T+s ose—s,
p=3 .
sx+js, 1 -5

Hence, if the state of the particle is known, then the
expectation values of the projections of thg spin angu-
lar momentum are known and consequently the ele-
ments of the density matrix are known.
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Clearly the ensemble density matrix is -
1+ 3,

5 _ 1 §x_j§y
P s g5, 1-5

where §,, §, and §, are the appropriate ensemble aver-
ages of 5, s,and s,.

Notice that Trp is still unity but

Tr(gF =31 + 52+ 2+ 52)
=31+ [5]%).

An ensemble in a pure state has each particle with
its spin aligned in the same direction (the particles are
said to be completely polarized). In this case [§] = 1
and hence Tr(p)? = 1.

In general the particles of the ensemble are not com-
pletelypolarizedand |5} < 1 and Tr(p)* < 1. Foracom-

pletely random ensemble {5| = 0 and Tr(p)® = %.

Examples
(i) _ (v o
P=lo o

Tr p = l,and Tr(p)® = 1,

.". the ensemble is in a pure state.

>

Also Trpl, = h/2 therefore each particle is
aligned with “spin up”, all particles are in the
eigen state |o) of the operator [,.

@ . [+ 0
”“[0%
Trp = 1, but Tr(p)® = 4.

Also Trpl, = 0. The ensembie is not in a pure
state, there are equal numbers of particles in the
eigenstates |o), and | 3 of the operator [,.

(iii) 5= [f :I
2

Trp=1,Trp} =1

The ensemble is in a pure state.

Also Trpl, = 0, Trpl, = #/2, Tepl, = 0.

The fact that (!> is zero indicates that there are
equal numbersof particles in the eigenstates | ),and | 8>
of the operator [,.

In each case considered the basis set used is formed
from the eigenkets of the operator {,, and moreover, in
each case p, | is proportional to the probability of find-
ing the system in the eigenket x> and p,, is propor-
tional to the probability of finding the system in the
eigenket |8).

This is a general result, the density matrix elements
along the principal diagonal are proportional to the
probability of finding a particle in the corresponding
eigenket.

[Nl

12. Ensemble of Particles in Thermal Equilibrium

Consider an cnsemble of identical weakly interact-
ing particles in thermal equilibrium, the available
energy levels being labelled E, From classical statisti-

cal mechanics, the probability of finding a particle in
the E;th energy level is
exp(—~E/kT)
| = e L (67
Pi= S exp(— EJkT) )

1

In the representation in which the energy matrix
operator is diagonal the density operator may be
written as

exp(— #/kT)

o _ 6
P Tr exp(—#/kT) (68)
where exp(— J#/kT) is understood to imply8-2%
H | HH
Tkt T ©

2, the Hamiltonian operator, is defined in equation

(1.
SECTION B

1. The Spin Hamiltonian of the Multi-spin 3 System?4

Consider an ensemble of identical molecules each
having a single spin 4 nucleus as the only magnetic
nucleus—-When this ensemble is subjected to a large
stationary magnetic field B, acting in the —z direction,
the spin Hamiltonian for each magnetic imcleus may
be written as

# = (1 — oiyB,l, (70)

where 7 is the magnetogyric ratio and I, is defined in
equation (48). This Hamiltonian represents the quan-
tum mechanical equivalent of the potential energy
(— it - B,)of a classical bar magnet of magnetic moment
jfiimmersed in a magnetic field B, . This illustrates nicely
the (essentially quantum mechanical) relationship
between the magnetic moment of a nucleus and its spin
angular momentum. This concept will be alluded to
below when we indicate that the magnitude of the
magnetization of a sample is directly proportional to
the net spin angular momentum of the sample.

By considering the spin Hamiltonian separately we
are assuming that the spin state of the nucleus is inde-
pendent of the electronic, rotational, vibrational, etc.,
states of the whole molecule. This is certainly not so.
We even make some attempt to weaken this assump-
tion by introducing the factor o, the so-called shielding
constant which is due to the shielding effect of the elec-
tron orbitals about and near the nucleus. The shielding
effect should be taken into account by introducing a
tensor quantity, &, but for fluid samples the molecules
suffer many collisions during the lifetime of excited
nuclear states, so the molecules tumble and the shield-'
ing effect may be represented by the scalar quantity
o(=4Tr 6).0%

Assuming no spin-spin coupling, the Hamiltonian
of a molecule containing two or more magnetic nuclei
is '

n
H = Z woihl,,

wy; = (1 — o,)yB, rads™!
1 . .

)
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where the subscript i describes the environment of the
ith magnetic nucleus. However, some form of spin—
spin coupling is usually present, for magnetic nucleus
n effects the electron orbitals about itself which in turn
effect the electron orbitals about magnetic nucleus
n+ 1, and so on. This interaction between the two
magnetic nuclei mand n may be represented as a scalar
product

Ve = hz";lmln']m (712)

where fil is the appropriate total spin operator and J'
is the coupling constant. The coupling constant J

which is measured in a NMR experiment is in hertz

and is related to J' by the relationship
hJ

2n
The scalar product may be expanded as
Ll = 1,0, + 3000, + 171,)
where
I7 = Lo+ jlyand ;) = 1y —jl,

For a molecule containing many magnetic nuclei the
total spin—spin coupling energy is obtained by sum-
ming over all pairs of magnetic nuclei

V=33 il I (73)

n<m
The NMR spectrum is probed by applying a small
amplitude radio-frequency magnetic field 2B, cos wt
along the x-axis thereby making the total Hamiltonian

H =Y hyBol — o)l — hy;2B,1;cos wt
i

+ XY Pl D, (74
n<m
where the matrix representations of I, and I are given
in equation (48), (This means that we have chosen the
basis set of kets to render /. diagonal.)

The linearly polarized magnetic field 2B, cos wt may
be resolved into a pair of circularly polarized fields
with equal amplitudes rotating in opposite directions
in the x-y plane.

Algebraically

(2B, cos wr)é, = B,(é,cos wt — é,sin wt)
+ By(é,cos wt + &,sin wr)

where ¢, and ¢, are unit vectors in the x and y direc-
tions, respectively. Only one of these rotating magnetic
field components has the same sense as the Larmor
precession of the nuclear magnetic moment about B,
And, provided that B, < B,. the circularly polarized
field whose sense is opposite to that of the Larmor pre-
cession produces insignificant changes in the
orientation of the magnetic moment of the spin 3 nuc-
leus. Hence the out-of-phase component can be neg-
lected and we need only consider the in-phase com-
ponent of the applied radio-frequency magnetic field.
This field contributes to the energy of the magnetic nu-

clei and so it too makes a contribution to the spin
Hamiltonian. We obtain simpler algebraic expressions
for the Hamiltonian if we abandon the laboratory
reference frame and instead consider a set of cartesian
axes which rotate about the z-axis in such a sense that
the applied radio-frequency field appears to remain
fixed in magnitude and directed along the x-axis of the
rotating axes. The Hamiltonian for the molecule in the
rotating reference frame is,

X = —wﬁzlza + hzw0i12i+ kB, ZI;.'
i i i

+ Y Y b1, (79)
h<m
This expression for # may be substituted into equa-
tion (65) and, making use of the selection rules (this is
discussed in subsection 3, this section), it may be
shown that the component form of the equation of
motion of the density matrix is

! |
iy {z (@0i — (L — (L]

+h Z Tl il — (Izilzj)ll]}

i<j

j ’ + - -7+
+‘ih Y el + DIy

i<j
+ jyBy(pa — Pu) Z (V0 (76)

It should be noted that equation (76) takes no account
of the relaxation of nuclear spins.

We recall the paragraph just after equation (70} and
observe that the NMR absorption-mode spectrum line
shape is proportional to the expectation value of the
magnetization in the y direction and hence (1,)

<z [yn> = <IyT> = Tr(pIyT) (77)

The required density matrix elements can be obtained
by solving equation (76).

The treatment of the “rotating-axes” aspects of this
subsection has been of a pseudo-classical nature.3"

2. Derivation of the Bloch Equations

The solution of a particular problem using the den-
sity matrix method will illustrate the application of the
essential equations that have been derived in Section
A. As in the derivation of the Bloch equations set out
here, the calculation of line-shapes involves the correct
use of a limited number of equations.

We consider an ensemble of molecules each of which
contain one spin § nucleus as its only effective mag-
netic nucleus. Hence there is no spin-spin coupling

term and the Hamiltonian of equation (74) reduces
t0(24l

H = —wohl. — lyB, cos wtl, + hyB, sinwtl,

Note that in this subsection By, is defined in the + z di-
rection so that the Bloch equations are obtained in
their usual form.

i
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Substituting for I, I, and I, from cquation (48),

b0 0 4
H = —wph .| —fyB,coswt] |
0 -3 7 0

0 -
+ hyBy sin wt (78)
I
2
B
—wof2 - %e"‘"
S =h
)’Ble_ﬂ,,, Wo
2 2

The density matrix for an ensemble of spin 4 nuclei
may be written as
- [Pu P:z]
P2y P22

where, for convenience, the bar above the density
matrix has been omitted, although its presence
throughout the remainder of the article is to be under-
stood.

The time derivative of the density matrix is given by
equation (65). If this equation is divided through by h
we obtain

dp
9
4 p—p

(79)
where # as now written differs from the s of equa-
tion (78) by the factor 5, so J# is now expressed in rad
s ! instead of joules. It is also necessary to introduce
phenomenological terms describing the relaxation of
the density matrix elements towards their equilibrium
values in the absence of the applied radio-frequency
magnetic field. In terms of the basis set of functions

chosen, both the Hamiltonian matrix and the density"

matrix would be diagonal in the absence of the applied
radio-frequency magnetic field. So if this radio-fre-
quency field were suddenly reduced to zero the off-dia-
gonal density matrix elements would decay to zero
with a time constant of, say, T;. The diagonal density
matrix elements would decay to the new equilibrium
values with a time constant of T,. The relaxation to
equilibrium of the ofi-diagonal elements is due to inter-
actions between the spin 4 nuclei and the rest of the
system, whereas the decay of the diagonal density
matrix elements necessarily involves transitions
between states.

Including relaxation effects equation (79) can be
written as

dp

i
I—Jf(fp—ﬂf)

&

Tl TZ

+(P9-_ 1 = Paiagorat) _ Pon.

(80)

where the thermal equilibrium density matrix p° is
given by equation (68)

p° = exp(— #/kTYTr exp(— #/kT).

The subscript “diagonal” indicates that only the dia-
gonal elements are to be included, similarly the subs-
cript “off-diagonal” indicates that only the off-diagonal
elements are to be included.

Equating matrix elements equation (80) becomes

.. B i ; I
= y‘z—‘(ﬂne It — py ) — T 1(Pu - P?l),
L yB, .. S
1912 = —wppy; + T‘e’ (011 = P22) —JT7 ' py3,
. B, _, .

JP21 = WoPay — ‘?le 4 pyy = p23) = jT7 'pans

sz)-
(81

.. vB - .
JP22 = —‘il(Pznejm — P e” ) =T 1(Pzz -

These equations may be regarded as a set of simul-
taneous equations with the density matrix elements as
unknowns. As indicated in subsection 1 (this section),
the observable quantities are the magnetization of the
sample in the x, y and z directions. These quantitjes are
proportional to the expectation values of the operators
representing the projections of the angular momentum
along the x, y and z directions respectively.

M Hadl D,

M Sadl,
M Dol
Therefore, using equation (59),
M,y = CTrpl,,
M,>=CTrpl,,
M,>=CTrpl,.
where C is a proportionality constant.
Now
Pz Pua
[Pn Pu]l:o f]_ 22
pl, = =
P21 P2 jli O P22 Pny
2
My ]
c
Similarly
, My ¢ (82)
Trply = jHpy; — p21) = Cy ,
M,
Trpl. = Hpy, — p22) = < 2.
c

Differentiating equation (82) with respect to time and
substituting for, first the time dependence of the den-
sity matrix clements from equation (81), and then
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expressions for the density matrix elements in terms of
(M., {M,>and <M., from equation (82), we obtain
M)y = —wodM,> + yB, cos wt(M_> )
— M /T,

(M = wodM,> + yB, sinwrM,)
= (M/T, Y

{M,> = —yB, coswt{M,>

- — yB, sinwt{M,>
- (M) ~ MDY T )

These are the Bloch equations.

(83)

3. Intramolecular Exchange

In order to study the effects of intramolecular
exchange we must include in equation (80) the effects
of exchange of magnetic nuclei between different envir-
onments in the same molecule. If magnetic nuclei
exchange environments then the initial spin ket of the
molecule i) is changed to |y, where # is called the
exchange operator. Also as will be illustrated below
#* =1. Hence, using the definition of p given in equa-
tion (64), on exchange p is transformed to #p#. If T
is the mean lifetime of the nucleus in each environment
then the rate of change of p due to exchange is
(RpR — p)/t. Therefore the effects of intramolecular
exchange may be included in equation (80) by the addi-
tion of this term.

Thus the equation of motion of the density matrix
inicluding the radio-frequency probing field and the
effects of intramolecular exchange is

dp RpR—p |
_p=¥+.][p’f]

de
Plisgonal — Pdingorat  Pot-diagonal

+ iagona iagonal _ Foff-diagona . (84

T, T, ®4)

Notice that o is expressed in rad s~ !. This equation
may be written in component form as®’ (see equation
(76)

T

nm

dp 1
d—:‘ =7 [Z Rin Prm Ry — pkl] = pu/T,

— jbu {Z (wo; — ) — ]

+h Z J;'j[(lzilzj)kk - (Izi[zj)")}

i<j

] , .
+5h Y Tl I + 11

i<j
+ jopu — pu) Z sl '(85a)
where w is the angular frequency of the applied r.f. field
and w, = yB,. Fortunately there are some simplifica-
tions which are usually applied to these equations.
Firstly, the NMR experiment is normally performed
under “slow-passage” conditions, and hence we may

set the right-hand sides of equations (84) and (85a) to
zero. Secondly, the radio-frequency field B, is neglig-
ible compared with the stationary field B,, conse-
quently the significant transitions are governed by the
usual selection rule Am, = 1 1. This means that those
density matrix elements linking energy levels between
forbidden radiative transitions may be neglected.
Finally we simplify the last term (the driving term) in
equation (85a). The diagonal elements of the density
matrix are proportional to the probability of finding a
molecule of the system in the appropriate cnergy level,
for example p;; is proportional to the probability of
finding a molecule in the third energy level. The differ-
ences between the energy levels in the NMR exper-
iment are so small compared with the Boltzmann
energy, kT, that the differences between the diagonal
clements of the density matrix may all be set equal to
the product of a constant and Am_. The driving term-
is the only term in equation (85a) that includes B, so
adjusting the constant in.this term merely alters the
vertical scale of the theoretical spectrum.

Using the slow-passage approximation equation
(85a) can be written in terms of linear frequency:

0= (Z whpnmgn;l = pkl)/f' - pu/T?
= Jjpu {Z (voi — WU - (I:.')u]}
i .
— JPu Z Jill il — (l:il:j)u]
i<j

+ i) Y Jylp I + 11
i<j .

+ jv{pue — pu) Z Usida

(85b)
wihere
r 11t 1
T 2mt’ T; 2T,
hJ,
\'=;u and JU=‘L2.

n 2n

AB Spin System Undergoing Internal Rotation

Consider the internal rotation of part of a molecule
which contains two spin 4 nuclei such-as the picryl pro-
tons of N-methyl-24.6-trinitro aniline”®?,

CH3 H
. \N/
NO» NO2
(AH H(B)
NO»

In the slow-exchange limit these protons make up an
AB quartet. The protons exchange their environment
by rotating about the C—N(HXCH,) bond. We choose
as our basis set the simple product-kets formed from
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« and f defined in subsection 7, Section A. Hence the

basis set is

-

o 1|0 _
ll!/1>—m—_0 ®lo|= ol ™=

. o]

-

1 0 1
|wz>=aﬁ=_0]®[l]= oo

10

r—o-

0 1 0
l¢3>=ﬁ«=[l]®[0]= it m, =0

0]

(o]

0 0 0
wo-m=[Te[2]-19]. m- -

1

where nucleus A is written first, and the magnetic
quantum number is given on the right. Under
exchange conditions nucleus A exchanges magnetic en-
vironment with nucleus B. Prior to rotation the basis
set is formed by writing nucleus A first, after rotation
the basis set is formed by writing nucleus B first.

15

(iii) [0] 0] 0] [o]
0becomes lieQO-:l "Ry =1
1 of i jo} T TE .
10| [ 0] o] (o]

(iv) [0] [0 [0] [o]
0 becomes 0 ieg?o =0 "Ry =1
0 o] T jo] lo|
LI 1] _1_4 ..l.J

In this case the exchange operator # is a 4 x 4
matrix, its only non-zero elements being listed above
on the right.

QO o -
(= — =1
o O -~ O
- © O

Notice how easy it is to identify the elements of the
transformation matrix when we know the initial and
final forms of the molecular spin kets. Dirac'® pre-
sents a general method for identifying the elements of
the transformation matrix.

If nucleus A exchanges with B, and then B exchanges
with A, the net result is that A and B regain their initial
magnetic environments, mathematically

Before rotation _ After rotation > = ARW
(i) (1) = ot a0t = |y =R,
(i) W2 =af Boo= 3> o=
(i) s> = Ba af = 1¥2> The pre-exchange density matrix, p, becomes #pR
(iv) Wa> = BB BB =¥ on exchange where,
1% 0 0 P11 Pz P13 Pia 1 000 Pt P13 blz Pia
RoR = 0 0 1 O)fp2r P22 P23 Pas| |0 O-1 0 _| P Pz P3z Pas
0 1 0 Of|psr P32 P33 psa|]O 1 00 P21 Pa3 P22 P2
0 0 0 1]|psr Paz Paz Pas |0 0 O 1 Par Pa3z Par Pas

Making use of the exchange operator # defined earlier
in this section the rotation can be represented in matrix
notation as,

1] 1] (1] fl"
becomes 0 1e. # 0 = o1 . R, =1
0 “lo 0 o M
Lo, ol o) Lol
(i) [07] (0] fo] o]
:) becomes ? ie. & (1) = (l) Ry, =1
10 0] [10) L0]

N.M.RS. 10/1—¢

Therefore on exchange p,, becomes p,;, p,; becomes
P43 and so on.
The Hamiltonian for the two spin § system undergo-
ing intramolecular exchange reduces to
H = —oll 5+ Lg) ¥ woal a + wopl.p
+ wr(IxA + ,xB) + JABhI:Alzl!
+ LIS 1y + 101 (86a)
where o is in rad s~ ! (see equation (75)). However J#
is usually written in terms of linear frequency, viz.
H = =Wl 5+ L)+ Vouloa + Vopl.a
+ vr(IxA + 1:8) + ‘]ABIZAIIB
+ 32415 + I13)

(86b)
where @ = 2rvand Jag = hJ)p/27. C
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M as now written differs from that of equation (86a)
by a factor of 1/2zn. Substituting values of I, L4, etc.,
as defined in equation (48) we obtain the following
matrix representations for the terms in equation (86b):

ERC )

1=»5 0"@[1 o]=0 1 o0 o
AUlo -4}l 0 0 -4 o0
0 0 0 -4l

1 0o o 0]

Izs—“ 0®[5 o] 0o -4 0 o0
o 170 —4 0o 0 1 o

0 0 0 —%]

i 0 0]

O

0 0 0 4]

0 0 0 0]

[0 + I213 = g ? (') g

0 0 0 0

and so on. Therefore the matrix representation of the
‘Hamiltonian given in equation (86b) is

Av+ JM4 )2 v/2 0
» w2 dv—-J/a Jr2 v,/2
v,/2 J52 —év—J/a v,/2
0 v,/2. v,/2 —Av + J/4

@7

where J = Jag, Av =13(voa + vog) — v, and &v =
$(voa ~ vog) From equation (77) the NMR spectrum
line shape is proportional to

to give the following equations:
, v JY J
.l[(Pn - Pzz)é + (5" - Z)Pnz + 5913

J P12
Av + ) ] -
( P12 T,

+ P13 —IPn =0,
T

, . v, J J
J[(Pu - 933)5' + ("‘5" - Z)Pn + =P

2
J p
(s Pon] - 22
" P12 — P13 =0,

T

s v, J J
J[(Pzz - p44)‘2‘ - <¢SV - Z) P24 — 5.034

J p
#(-ar e 3o - B2

+ P3a ;Pu =0,

. v, J J
J(pas — Pu)'z- +{ov+ 3)P3¢ 3P

J
+(mare 3] - B2

+ P P (88b)

T

These equations can be solved to obtain the required
density matrix elements. Substitution of these elements

into equation (88a) gives {J,r>. A graph of (I,T)l

against v is the observed “absorption mode” NMR
spectrum. This particular example is worked out in full
in Section C.

<IyT> =Tr pIyT

j j 0 -1 -1 0
, 0o -2 , o 1| .

Ip= 1= 2@]01_10® 2=£1 0 0 -1
G 0 1 0 1 j 211 o0 o0 -

I 0 A
2 2 0 1 1 0

S Teplyy = 3(p12 + 1y + Pra + P34 — P2y — P31~ Paz = Pa3)

_ = Im(py, + P31 + Paz + Pa3)
since p is hermitian,
Trplyr = —Im(py; + py3 + P24 + P3a) (88a)

The sign is irrelevant since p,,
trarily.

The Hamiltonian matrix of equation (87) may now
be used in equation (84), and the simplifications
described in the paragraph afier equation (85a) made,

— P, Will be set arbi-

Multi-spin System Undergoing Internal Rotation

The mathematical manipulations required to obtain
the line-shape function are really no more complicated
in multi-spin cases than they are in the two spin § case.

&
T



