

THE
T0
COMPUTING:

Wi mee . PROBLEMS
[|AND

BN SOLUTIONS

edited by Fred Gruenberger

1967
THOMPSON BOOK COMPANY
Washington, D.C.

ACADEMIC PRESS
London

an informatics inc, publication

Copyright © 1967 by informatics, inc.

All rights reserved. No part of this book may be reproduced or utilized
in any form or by any means, electronic or mechanical, including photo-
copy, recording, or by any information and retrieval system without per-
mission in writing from the publisher.

Sole agent for the entire world (except North and South America):

ACADEMIC PRESS
Berkeley Square House
Berkeley Square
London, W.1

Library of Congress Catalog Card No. 67-30073

Printed in the United States of America

WHY THIS BOOK?

DR. WALTER F. BAUER

Many believe that the development of on-line systems is part of a
continuous evolution of data processing technology. Others believe that
on-line computing represents a technological revolution —a singular event
in the history of data processing. It is probably neither. Some may argue
that the first maintenance console with its blinking lights on the computer
in the early 1950’s was the beginning of the on-line display. There is
certainly merit to this argument. Still others may argue that, on the other
hand, the sudden increase in usage and interest of this new concept con-
stitutes more of a revolution than any other event in the development of
data processing.

There is hardly any question, however, that the development of on-line
systems constitutes a quantum jump in the evolving technology, if only
from a standpoint of the interest which the data processing community

A%

has shown in it, for to a great extent, it is people and what they think
which greatly influences the course of these events. Another apparently
unimpeachable view is that on-line systems technology will be the vehicle,
or at least the catalyst, to catapult the data processing industry to a level
of $20 billion annual sales in the next ten years. On-line systems bring the
computer to the user. This will have a profound effect in the proliferation
of computer use.

But aside from the business and historical factors, on-line systems bring
to the picture new problems and new factors in the design and imple-
mentation of computer systems. Because of the many new technical fac-
tors, and because there is an immediacy to the need for developing know-
ledge about these systems, there is in turn, a need for a book of this
type. This is basically why we, at Informatics, decided to publish this
book. We believe that the book can provide a much needed, useful tool
to assist in disseminating knowledge about these new systems. To be
sure, not all questions concerning on-line systems are answered by the
papers published herein. The papers, however, cover many areas and re-
present a kind of snapshot of the state of this modern technology.

We, at Informatics, prefer the title ‘““on-line” to ‘“‘real-time’’ or ‘“‘time-
sharing.” Real-time, we believe, is an outdated term whereas time-sharing
is narrow and reflects more the computer’s status than the status of the
user who is on-line to the computer in these new systems.

This then, is a collection of papers written by Informatics technical
staff members. Although the papers were written over a one or two year
period of time, they were brought to focus by a symposium which was
sponsored by Informatics in conjunction with UCLA in 1965, and by a
series of seminars, “On-Line Computing Methodology,” which were
given by Informatics in 1966. The papers are written by working experts;
not by observers of the technical scene and remote from it. We believe
it is especially appropriate that Informatics publish this book since, from
the beginning of our business activities, we have been highly oriented
toward these systems, and an overwhelming percentage of the activity
of the company is thus directed.

It has been estimated that, by the year 1975, nearly all computers in
this country will be ““on-line” in the sense of being part of an electronics
system, or being attached to instrumentation such as communications
and display devices. It is our hope that this book makes a contribution
to the technical knowledge required.

Vi

Contents

What Is On-Line?

FRED GRUENBERGER. v o sonsssvsss ciisnsss i souss sssassssass s |

Time-Sharing and Multiprocessing Terminology...........ccccceeeveeiuerennnn. 7
ROBERT A. COLILLA

On-Line Software —the Problems..........ccoouiviiiiiuiiieeeeeeeeeeseeeeeeeeens e 15
ROBERT R. WHITE

Display Software Technology.........cc.ocecvuviivviiiieiiiiiiieceeee e e 2
GEORGE COLLINS

Hardware for On-Line.......ooouuuiiiieieeee e eeeeeee e eiees oo 39

WILSON COOPER and ROBERT HECKATHORNE

Software—Some ANSWETS.........ooouuiiieieeeeee e 65
ROBERT R. WHITE

Conversational COMPULING..........ooouireeeeeeeeeeoeeo oo 71
FRED GRUENBERGER

Cost Effectiveness of Time-Shared Computing Systems.................... 79
WALTER F. BAUER and RICHARD H. HiLL

A Survey of CRT Display Consolescooiiiiiiin... 107
HAROLD S. CORBIN

To Be or Not to Be On-Line: Some Problem Situations................ 119
FRED GRUENBERGER

Terminal-Oriented Software: Promise and Problems..............ovvviin.. 125
WERNER L. FRANK

How the Computing World Went On-Line (A History of
1967 Through [978).cc.cceoiiiiiiieieee e, 183
Francis V. WAGNER

Experiences in Offering On-Line Computing Power........................... 195
JAMES D. BABcock

SUMmING Tt UP.ciiiiiiiiiiiiicceee e 205
FRED GRUENBERGER

WHAT IS ON-LINE?

FRED GRUENBERGER

THIS BOOK deals with on-line use of digital computers. On-line is
not a fixed point in the world of computing; it is a continuum; you can
have more or less of it. It deals with the capability of a computer system
to react to external demands; the two principal variables that we deal
with are time and dollars.

Figure 1 shows, in gross form, the relation of these two variables. To
perform any task with a computer, some programming and systems work
must be done; this is the threshold. If, now, the task is processed in the
traditional batch mode, one has what might be considered the antithesis
of on-line; that is, the computer system is highly unresponsive to its
external demands. The situation might be characterized by the typical
use of an IBM 704 in 1957 —for each task, the user had control of the

1

2 What Is On-Line?

entire machine, and each task had its own cycle of setup, production,
recovery, and degradation.

The continuum of on-line represents all attempts, by whatever means,
to make the system more efficient in terms of work performed and in
responsiveness. A tiny first step in that direction is the continuous flow
processing scheme involving a monitor and a direct coupled computer
system. Such a system isn’t responsive in the sense usually used in on-
line work, but it does tend to increase efficiency and it can (I’m picking
my words carefully) reduce the turnaround time significantly.

For most applications, that’s the point: We seek to cut the response
time of the machine, and we are willing to pay something to do it. At one
time it was common to suggest cutting the response time to the ultimate,
for which the term ‘“‘real time” was used. That term is not much used any
more. It implied a response time of nearly zero; that is, the actions of
the computer were in synchronization with actual events. Such a situation
is necessary, for example, in controlling the path of a satellite as it is
launched. Actually, the computer and the event must be out of step by
some small increment of time: computers are fast, but not infinitely so.
Figure 1 suggests that the nearer one approaches to real time, the greater
the cost, to the extent that true real-time response is reserved to the
military or to some agency with extraordinary demands and a budget to
match. (It has been pointed out that for some applications, such as the
sale of a seat on an airplane, it can be considered that the event being
controlled actually takes place inside the computer, in some real sense.
In such a case, one has, indeed, a real-time situation.)

TIME

THRESHHOLD DOLLARS ———

Figure 1. THE COST OF RESPONSIVENESS FOR AN ON-LINE SYSTEM.

What Is On-Line? 3

But on-line usually demands more than simply a quick response. To be
interactive to the requirements of humans or other machines, an on-line
system must be able to accommodate interrupts whose arrival in time is
unpredictable. The lowering of the response time will increase the costs;
the additional constraints will also introduce new complexities into the
system. The hardware and software problems that arise are the subjects
of later chapters.

THE NATURE OF ON-LINE PROCESSING

The swing to on-line use of computers (and it is reasonable, in some
sense, to predict that the great bulk of all computing work will be on-line
within a few years) has already had one beneficial effect; namely, that it
has forced system designers to think in terms of the users for a change,
and to human engineer their product.

Let me illustrate what I mean by describing something that is common
to nearly every traditional batch processing system. Suppose, in such an
atmosphere, you prepare a short program in assembly language and sub-
mit it to the system. You may get back a symbolic listing, for a 10-line
code, of a dozen pages, some of which bear useful, readable information,
such as your original code, its binary equivalent (the machine language
code), a symbol table, an octal core dump, and the like. Your job card
(in a monitor system) will be repeated back to you; you may have some
error messages; and there will be an accounting summary to show how
you used the machine’s time. You will also get, in all likelihood, a lot
of printed information that, to you, is complete gibberish, usually marked
by dollar signs or other strange symbols. Your error messdges may be
of the form “Error 342 on line 12,” or, worse, “Error in phase 2,”” and
no one in your shop can tell you what those messages mean. There are
systems in operation that furnish error messages of this type on every
run, including those that are in apple-pie order. Now, if you show such
a listing to the in-house system programmers, you will be told the follow-
ing, in order:

1. Don’t worry about it.

2. We always get that.

3. We don’t know what it means either.
4. We don’t know how to get rid of it.

You are told, in other words, to live with this nonsense and not to make
afuss overit.

4 What ls On-Line?

Generally, on-line work, particularly when it involves graphic displays,
can’t tolerate this sloppiness. If nothing else, every extraneous piece of
information represents a waste of time, and time is just what on-line
systems try to conserve. But, more importantly, the useless information
is more glaringly apparent in an on-line system, and the designers are
motivated to engineer it out. The output of on-line systems tends to get
nice and clean and more useful to the user.

WHAT ON-LINE IS

If it is not entirely clear what on-line use of a computer is, it must be
even less clear what new problems it generates and to what extent our
industry has been able to live with and handle those problems. Clear-cut
lines between hardware and software tend to blur, and cost analysis
methods of where to put the dollars for an optimum solution are still
lacking. As always, the pioneers have paid a large price to find out, the
hard way, a few answers to guide those who follow.

Some of the flavor (and jargon) of on-line can be gained by a homely
analogy. Imagine that you are attehding a series of talks about on-line
work. If each speaker had his material carefully prepared and delivered
it as prepared, we would have a situation analogous to batch processing
(and the talk could be given via a videotape player). But a good talk is
given in an on-line atmosphere; there is interaction between the speaker
and his audience. The speaker may think of something and comment on
it, which is akin to real time. He may have interrupts and may, in fact,
trigger them by polling the audience. It is not uncommon to experience
an interrupt during an interrupt, leading to second level and third level
interrupts and requiring a scheduling algorithm and priorities. (The anal-
ogy is quite good here. Do you answer questions in the order in which
they’re asked, or in some priority order, or according to a scheme that
disposes of the trivial questions first?) The speaker must be able to
detect errors in the questions and to correct errors. If a second expert
is on hand to field some of the questions, we’d have multiprocessing or
parallel processing of information. And please note: it’s all nonrepro-
ducible.

THE SHAPE OF THE ON-LINE WORLD

On-line computing has countless aspects, with every promise of more
to come. It includes conversational computing as a subset, and that rich
field called computer graphics. Its chief tool is time-sharing, which is

What Is On-Line? 5

almost a field in itself. On-line work expands the area of usefulness of
the computer manyfold; the new problems it brings are exciting and
challenging. It may be that on-line work offers the key to the solution of
its own (and other) problems through the concept of on-line programming.
It would be worth considering that new area a bit.

As the programming profession raised itself from the morass of
absolute octal, through symbolic assemblers, on up to compilers and
problem-oriented languages, each new advance was heralded as the ulti-
mate answer: Now anyone could program. As a measure of the strength
of that claim, recall, for each level of language, the extent to which the
programmer could devote himself to his problem, as opposed to the
attention he had to devote to the language and the computer system. In
the early language/computer combinations (say, the SOAP days on the
650), this ratio was around 40% for the problem and 60% for the system.
More recent programming systems may have succeeded in reversing the
ratio, so that the user devotes only 40% of his time to the constraints
of the system, and has 60% left to use on his problem.

On-line work has two areas in which this ratio improves significantly:
namely, on-line programming (in which interactive use of the computer
aids the normal programming process) and conversational computing
(in which the interaction between man and machine becomes almost
totally directed toward problem solution, and programming as such fades
into the background). It may well be that in these two areas, the ratio
approaches 90:10, with the 10% devoted to the details and constraints
of the system. It has been said that in conversational computing the user,
for the first time, is allowed —and encouraged —to explore the solution
space directly, rather than having to guess where it lies and explore
large areas around it. Putting it in cruder terms, the man with the problem
can drive for the number he wants, instead of demanding 10,000 numbers
on either side of it.

Usually, the virtues of on-line work (and particularly time-sharing)
stress the economics of the total system: the improved balance between
efficiencies of man and machine —and these virtues will all be real, as
we learn how to handle all the new system problems that arise. But it
seems to me that the greatest virtue of on-line work is the emphasis it
has placed on neat, clean interaction with human beings. It holds a prom-
ise of helping, more than any other development in the field, to fulfill
Hamming’s dictum: ‘““The purpose of computing is insight, not numbers.”

TIME-SHARING AND
MULTIPROCESSING TERMINOLOGY

ROBERT A. COLILLA

IN THE GENERAL AREAS of time-sharing, multiprogramming, and
multiprocessing, some terms in current use are very imprecise. It is
hoped that as a result of this paper, some of the meanings will be clarified
and, perhaps, a step gained in the direction of standardized usage.

When one thinks of time-sharing, some well-known systems immediate-
ly come to mind. Among these are MAC at MIT, the SDC Command
Research Laboratory system, the ATLAS time-sharing system at
Cambridge, and the RAND JOSS system. The MAC and SDC systems
are similar in overall approach, but JOSS and the ATLAS system differ
enough from them and from each other to merit special attention. All
four systems are characterized generally by the fact that the central
processor is not required to complete one job before starting another.

7

8 Time-Sharing and Multiprocessing Terminology

Three of the above systems have an on-line, perhaps real-time, character
in that communication between users and machines is made through on-
line consoles. Since this is significant to the notion of time-sharing, the
character of on-line systems is discussed first.

In an on-line system, a man or some device is either supplying infor-
mation to a computer and/or waiting for the computer to supply him or
it with information. There is always the implication that time constraints
are important in the sense that either communication must occur within
very precise intervals or, at least, that frequently delayed responses will
defeat the purpose of the system. One also speaks of peripheral devices
as being on-line to a computer if there are channels connecting the peri-
pherals to the computer. Clearly the existence of a computer with an
on-line device, alone, is not sufficient to make an on-line system. If such
were the case, what system would not be on-line?

The characteristic of systems that really differentiates between those
that are on-line and those that are not is the extent to which the computer
may regulate the rate at which it accepts input data and transmits output
data, and the extent to which lack of regulatory control influences the
design of the system. In general, the less regulatory control a computer
has over input/output rates and the more influence this lack of control
has on the system design, the more on-line a system becomes.

In particular, when a system is such that the computer has practically
no control over its 1/O rates and where system design is entirely oriented
around ensuring that the computer is ready to receive and transmit in
time, then that system is usually called real-time. Real-time systems are,
therefore, those on-line systems that manifest the extreme aspects of
on-lineness.

It should be clear from the preceding that neither on-line nor real-time
necessarily suggests any of the salient features of time-sharing. On-line
systems require neither many users nor human users to be qualified as
on-line. As was stated earlier, however, some time-sharing systems do
have an on-line character. Many users supply information to a computer,
and it is required that a time-sharing system be designed to respond to
the many users at frequent intervals. To get a better look at the term time-
sharing and its companion term multiprogramming, it is good to recall
some recent computer history.

TIME-SHARING AND MULTIPROGRAMMING

With the advent of asynchronous input/output operations in the late
fifties, it became possible to perform simultaneous operation of a com-

Time-Sharing and Multiprocessing Terminology 9

puter’s central processor and its I/O processors. Programmers im-
mediately set themselves to the task of using this new hardware capa-
bility to maximum advantage. Initially this meant better organization of
individual programs. Input/output operations were strategically placed
to achieve maximum use of the central processor. It did not take long,
however, for the idea to be extended to that of operating two programs
“simultaneously’” so that one performed input/output operations while
the other used the central processor. The ATLAS scheduling system
carried the idea to its greatest extent. In ATLAS, all jobs are fed into the
system as soon as they appear. A scheduling program selects those jobs
having input/output characteristics which will tend to put as many of the
computer components into motion as is possible. The objective of the
ATLAS scheduling system is to ‘“maintain the fullest possible useful
activity in those parts of the computing system which can function simul-
taneously; that is, to reduce to a minimum periods of idleness in any part
of the system which is required for further use.”!

Since, in the implementation, the central processor is required to
transfer control frequently from one program to another without neces-
sarily waiting for any of the programs to terminate, the terms multi-
programming and parallel programming arose. The latter is rarely used
anymore. Also since portions of programs are sharing the central proces-
sor sequentially in time with all the other program portions, the term
time-sharing arose.

As the above techniques were being developed, people were_experi-
menting with the idea of connecting many electric typewriters to a com-
puter and using them as on-line 1/O devices. It was recognized at the
outset that if men were going to use these typewriters as on-line devices,
there would be a lot of very slow input/output operations. Not only
would programs be delayed because of the slowness of the transfer rates
of these devices, but they would be further delayed by the users’ far
slower rates of typing. Time-sharing is the logical technique to employ
for this situation.

Time-sharing, however, is now embedded in an on-line environment
and, as in all on-line environments, there are special time constraints
imposed on the design. Whereas previously it was only necessary to
switch from program to program to maximize utilization of all the com-
ponents of the hardware, in the on-line environment there is the additional
requirement to pass control to the jobs of the different users at frequent
intervals so as not to ignore any user for any substantial length of time
lest he become disenchanted with the system. With this additional

10 Time-Sharing and Multiprocessing Terminology

demand, even if a single job program were exercising the components
of the computer to their greatest extent with maximum efficiency, that
program would have to be suspended periodically in order to make the
system available to the other users.

This additional aspect to the notion of tinie—sharing is quite significant.
It is so significant, in fact, that the requirement to respond to all users
of the system has become the major characteristic of time-sharing sys-
tems and the term has become identified with this characteristic almost
to the exclusion of the previous notion — that of maximizing utilization of
all the components of the hardware. The term time-sharing, therefore,
is used in both of these two senses.

The meaning of multiprogramming has also changed somewhat. This
change is a direct result of the changing meaning of time-sharing. Whereas
previously one might have described multiprogramming as the operation
of a central processor that executes a number of programs in fractured
fashion for the purpose of maximizing the use of the components of
hardware, it would now be described without the last motive-supplying
phrase. That is, the reason for performing the fractured operation is
no longer part of the description.

MULTIPROGRAMMING AND MULTIPROCESSING

As is usual in developing a concept, it is as important to say what the
concept is not, as it is to say what it is. The term multiprogramming is
often coupled with the term multiprocessing, with the implication that
the two terms mean related but different things. It should be stated first
that the processing part of multiprocessing refers to processor and not to
process. Multiprocessing suggests the simultaneous operation of a num-
ber of processors. In distinction, multiprogramming is confined to the
operation of a single processor. In fact, it makes much more sense to
talk about a multiprogrammed processor than it does to talk about a
multiprogrammed computer or system.

The notion of a processor is basic enough to multiprogramming and
multiprocessing to merit special attention. Despite any realization in
hardware, a processor is conceptually a device that operates serially.
It is this character of a processor that gives birth to the notion of multi-
programming. Multiprogramming can be said to be that operation of a
serial processor which permits the execution of a number of programs in
such a way that none of the programs need be completed before another
is started or continued.

Time-Sharing and Multiprocessing Terminology 11

As was said before, multiprocessing implies more than one processor;
yet it has to imply more than just this for otherwise any group of simul-
taneously operating computers would qualify as a multiprocessing sys-
tem. Bright® has added the requirement that all the processors must have
a common, jointly addressable memory. It also seems necessary to re-
quire that no processor be dependent on another processor in order to
operate. Another distinction can be noted here. Multiprogramming is, at
least at present a software notion. Multiprocessing, on the other hand,
so far is exclusively a hardware notion. In searching for a possible soft-
ware meaning for multiprocessing, one finds the following: Suppose one
has a single job and a number of processors. Suppose, further, that the
Job can be divided into a number of parts, some of which can or have to be
performed simultaneously on different processors, but some of which
also must wait for the completion of other parts before they can be
executed. Multiprocessing can be defined to be the ability to execute
this divided job successfully.

To look at this in a slightly different way, multiprogramming can be
said to be the task of fitting a single serial processor for many jobs, and
multiprocessing is the task of fitting many serial processors for a single
job. Such a definition, however, is more than most people have in mind
when speaking of multiprocessing. This software notion could be called
divided job processing. It may be added that divided job processing does
not really require the involvement of more than one processor to have
meaning. There are people who indeed define multiprocessing as being
divided job processing irrespective of the number of processors involved.
At this time, however, it is perhaps best to leave multiprocessing a hard-
ware notion and wait to see if any software notion develops.

EXTENDED NOTIONS

It was said earlier that a processor is a device that performs instruc-
tions serially. Although it was implied that the instructions of concern
were machine instructions, that does not have to be the case exclusively.
One may think in terms of an extended machine just as well. If, for ex-
ample, one thinks in terms of FORTRAN instructions, one can define
a FORTRAN processor as a device for performing FORTRAN instruc-
tions serially. One can then multiprogram this processor by fitting it for
a number of FORTRAN jobs. Similarly one may think in terms of many
FORTRAN processors operating simultaneously to achieve a multi-
processing system.

