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Preface

In a certain sense this book has been twenty-five years in the writing, since I first struggled
.with the foundations of the subject as a graduate student. It has taken that long to develop
a deep appreciation of what Gibbs was attempting to convey to us near the end of his life
and to understand fully the same ideas as resurrected by E.T. Jaynes much later. Many
classes of students were destined to help me sharpen these thoughts before I finally felt
confident that, for me at least, the foundations of the subject had been clarified sufficiently.

More than anything, this work strives to address the following questions: What 1s
statistical mechanics? Why is this approach so extraordinarily effective in describing bulk
matter in terms of its constituents? The response given here is in the form of a very definite
point of view—the principle of maximum entropy (PME). There have been earlier attempts
to approach the subject in this way, to be sure, reflected in the books by Tribus [Thermostat-
ics and Thermodyrfamics, Van Nostrand, 1961], Baierlein [Atoms and Information Theory,
Freeman, 1971}, and Hobson [Concepts in Statistical Mechanics, Gordon and Breach, 1971].
-Despite these efforts the bulk of writers on the subject, though diminishing in number, still
fail to appreciate that statistical mechanics is a special case of a general reasoning process
that appears to be optimal when ins’uﬁicient information is available. This point of view
was implicit in Boltzmann’s later writings, and certainly was made explicit by Gibbs. The
lasting contributions by these fathers of the subject lie with development of new methods
of analysis, not in the discovery of new physics. Unfortunately, the exciting new physics
was just coming to life as they passed from the scene.

It is apparent that the subjects of statistical mechanics and thermodynamics can mean
many things to many different people. Indeed, the subjects tend to arouse deep emotions
in a way unfamiliar to other areas of physics. One need only r-call the tribulations of
Robert Mayer circa 1840 in attempting to establish the first law of thermodynamics in con-
Junction with energy conservation: for his efforts he was ostracized in the community, his
medical practice ruined, and even his attempts at suicide ended in failure! Planck recorded
his own despair in his scientific autobiography. Similarly, the maximum-entropy principle,
though advocated in one form or another since Boltzmann, continues to be pilloried in
some quarters, and even characterized as ‘muddleheaded’ and ‘nonsense’. Although a dis-
tinct minority, there nevertheless are those whose very vocal response to any new attempts
at deeper insight in this area is scalding and charged with emotion—and to whose discom-
fort this volume will no doubt contribute immensely. Much of the rhetoric has already
been answered by Jaynes in his collected works on these topics (E.T. Jaynes: Papers on
Probability, Statistics and Statistical Physics, Reidel, 1983], so that little more in the way
of polemic will be offered here.

Rather, a great deal of space is devoted to discussing what statistical mechanics is,
and is not. For this reason the reader may encounter in the early chapters a number
of topics deemed elementary for what is generally a somewhat advanced book, but the
author has-found it necessary to re-examine such topics in order to maintain a certain
coherence in the Jdiscussion. Consequently, the first three chapters can be, and in fact

xiii



xiv Preface

have been used as a basis for undergraduate lectures. But the whole is directed toward
the advanced undergraduate and graduate student, with a general emphasis on quantum
statistical mechanics.

The topics treated throughout the book have been chosen to elucidate the foundations
of the subject—that, after all, is the major thrust of the work. But the foundations can
hardly be made clear without a number of detailed applications. Some of the latter tend
to be a bit different than found in the usual textbook, and may possibly yield some new
insights.

Unquestionably the student will not find here all the tools needed in order to carry out
professional research in the field. For example, numerical techniques, such as the Monte-
Carlo method, are essentially mentioned only in passing, and path-integral methods do not
receive even that much notice. It is not the intent of the work to provide the wealth of
calculational detail to be found in Fetter and Walecka [Quantum Theory of Many-Particle
Systems, McGraw-Hill, 1971], say. Rather, an attempt is made to provide some answers to
the questions raised at the beginning, from what some may consider a non-standard view.
If the book serves to generate some non-standard thought along these lines as well, one of
its purposes will have been achieved. In addition, it is also meant to serve as a foundation
for Volume II, in which the much more exciting topics of nonequilibrium phenomena are
addressed.

As a text, the book forms the basis for a solid one-semester introductory course at
the senior/graduate level. Although a number of problems have been included, they have
been chosen mainly to illustrate the discussion in the text. Many more standard problems,
particularly of the detailed calculational variety, are known and available to most lecturers
in statistical mechanies. :

I have attempted to include copious and detailed references, including those relevant to
the historical record. Moreover, this is one aspect which is somewhat novel to the literature
of physics, in that an attempt has been made to verify and supply the titles of all referenced
works. Unfortunately, after all is said and done there are still a few missing—but not many.
Aside from scholarly interest, my aim is to encourage such practice in this field, because it
is eminently useful to the reader—and sometimes even to the writer!

There are numerous people who have contributed to the completion of this work, either
directly or indirectly. Although it is not possible to provide detailed acknowledgment here, a
few nevertheless will have to bear public exposure. It is only stating the obvious when I point
to the extraordinary influence Ed Jaynes has had on my thoughts about the foundations
of statistical mechanics. His friendship, good humor, and collegiality over many years have
been greatly appreciated.

I have long been indebted to Franz Mohling for initially stimulating my interest in
statistical mechanics and continuing to generate enthusiasm through thoughtful debate. I
shall forever regret that he died without seeing this finished product, for I believe that he
had come to share a great many of the views expressed here. After insisting that I stop
climbing mountains and finish my dissertation, he climbed one too many himself.

Locating and identifying many older references would have been significantly more te-
dious without the generous assistance of Professor Lewis Pyenson, Université de Montréal,
for which I am grateful. Professor John Skilling of Cambridge University provided thought-
ful criticism of Chapter 2; no doubt some criticisms remain, but it is a better discussion for
having suffered his scrutiny. Finally, it is customary at this point to thank typists and edi-
tors for their heroic efforts—but there are none! This entire book was typeset by the author
using the marvelous. typéesetting program TgX developed by Donald Knuth. On the one
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hand, availability of computerized typesetting with microcomputers has introduced a great
deal of flexibility on the part of authors in producing highly technical books of this kind.
On the other hand, the publisher is now granted significant absolution, so that essentially
any and all defects are solely my responsibility.

W.T. Grandy, Jr.
Laramie, Wyoming
December 1986
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Chapter 1

Introduction

P henomenological thermodynamics consists primarily of a set of empirical rules and re-
lations which, for more than one hundred fifty years, has provided a correct description
of many of the macroscopic properties of bulk matter. Although the rules evolved some
during this period, once the concept of energy and its conservation was grasped, as well
as that of entropy, the rules quickly achieved their present form. With the advent of a
serious particulate view of matter, however, it was realized that the thermodynamic rules
were possibly only manifestations of the fundamental physical laws governing interactions
among the basic constituents of matter; that is, atoms and molecules. Thus, one of the
objectives of what Gibbs first called statistical mechanics is to provide an acceptable and
fundamental explanation of phenomenological thermodynamics, in both the physical and
philosophical senses. In addition, one might hope to go further and describe all physical
properties of bulk matter in this way.

A second objective of such an undertaking emerges in the form of an inverse problem.
That is, by constructing microscopic models of the underlying analytical dynamics which
lead to prediction of observable macroscopic quantities, one obtains a means for testing the
models of microscopic interactions themselves. In a sense, an understanding of few-body
behavior can be gleaned from the many-body problem by inversion.

Realization of these objectives is not necessarily straightforward, of course, and the way
is littered with pitfalls. For example, although we have a reasonable understanding of the
classical two-body problem, even eighteenth-century Newtonian physicists knew the three-
body problem to be intractable insofar as exact solutions are concerned. In this century
we have been compelled to conclude likewise for the one- and two-body quantwm problems,
and quantum field theory would have us extend our frustration to the vacuum as well!
Hence, we already know that the meaning to be given to the term ‘exact solutlons must be
consndered carefully.

Most scientists undoubtedly accept the reductionist hypothesis which asserts that all
natural phenomena are ultimately explainable in terms of the fundamental laws of physics.
But this does not mean, in Rutherford’s jocular phrase, that “all science is either physics
or stamp collecting” (e.g., Blackett, 1962; Mayr, 1982). That is, reductionism does not
imply a ‘constructionist’ hypothesis, a point emphasized quite strongly by Anderson (1972).
Vitalism has proved a bankrupt notion in biology, yet one would have difficulty predicting
the remarkable properties of DNA and the complexity of protein synthesis from quantum
mechanics alone. Similarly, and on a more basic inanimate level, no one has ever succeeded
in deriving the crystal lattice directly from the Schrédinger equation. Rather, at all levels of
matter there exist orgenizing principles differing in scale and complexity, but nevertheless
standing on their own. Thus, in another and deeper sense, statistical mechanics seeks to
uncover the organizing principles governing the structure and behavior of macroscopic, or
bulk matter.

The present chapter is devoted to summarizing much of the early work in the subject,
as well as to providing a concise history of these efforts. We begin most appropriately with

1



2 1: Introduction

a review of some formal aspects of classical mechanics.

A. Physical Foundations

Perhaps the most efficient way to describe formally a mechanical system possessing s degrees
of freedom is through the introduction of generalized coordinates (q1,...,¢,), along with
the corresponding set of generalized velocities {¢;}. By means of the Lagrangian function,
which in the simplest problems is given as

L(3,4) =T - U, (1-1)

in terms of the system kinetic and potential energies, the equations of motion for the system
can be written in the Euler-Lagrange form:

daL oL :
a@ag " ag T hheos o

Subscripts on coordinates will generally be omitted when it is desired to denote the entire
set of s quantities. .

While quite general, and a distinct advance over the Newtonian formulation, the La-
grangian method lacks a certain symmetry. Thus, it is found convenient to introduce
generalized momenta '

oL
= N s 1—3
=g (1-3)
and then carry out a Legendretransformation defined by the generating function
H(g,p) = ) pidi — L(,4) - (1~4)
=1 ' .

This defines the Hamiltonian function H which, as with L, is presumed time independent in
the sense that it does not depend on time ezplicitly. In terms of H the equations éf motion
(1-2) now take the canonical form

) )

§E ——y = — =, e R 1-5
= aps 4 dq; ! & {t-5)

!

Define the Poisson bracket for arbitrary phase functions u(g, p), v(¢,p) as

°. [8u v du v
=y (Seoy Judy - -8
[v, ] 2 [3%‘ dps  Op; 3?-'1 ’ (-6)

so that the equation of motion for any such function is just

du Ju
v [u,v] + - . (1-7)

In particular, for the choice u = H,
dH

E = O) (1-8)



A. Physical Foundations i 3

because H is time independent. If, in addition, all forces are conservative (derivable from
potential functions depending only on the coordinates ¢), then H is the total system energy:
H=T+U=E.

As in most of theoretical physics, it is intuitively pleasing to construct a geometrical
description of mechanical systems. This is readily achieved by defining a Euclidean space
of 28 dimensions in terms of all possible numerical values of the ¢; and p;, which is called
I-space, or phase space. Any fixed set of real values (q1,...,9s,P1,...,Ps) constitutes
a possible state of the system and is represented by an image point in I'. As the system
develops in time from an initial state, the image point traces out a trajectory in phase space.
All possible paths consistent with relativistic limitations comprise the set of kinematically
“possible trajectorieg (kpt), although here the discussion will be limited to nonrelativistic
mechanics.

The equations of motion (1-5) restrict the kpt to a smaller set of dynamically possible
trajectories (dpt), such that the state of the system at any one time uniquely determines
its state at any later time. That is, in an isolated system described by a Hamiltonian the
equations of motion are first-order dlﬁ‘erentxal equations. Hence, the dpt do not intersect
one another, and through each point of I' there passes one and only one dpt

In a more geometrical sense, the point P, in I' at time ty is mapped into a new point
P, at time t by the equations of motion. Equations (1-5) induce a mapping of the space
T onto itself in a continuous and one-to-one way, owing to the time-reversal invariance
of Hamilton’s equations. These mapbings form a one-parameter group of automorphisms
of phase space such that the motion is stationary. Canonical transformations form the
covariance group of the theory and, as is well known, the entire description is invariant
under the Galilean group. Of course not every mapping of the space onto itself constitutes
a motion corresponding to Eqgs.(1-5). Rather, only those transformations are to be admitted
which map dpt into other dpt.

Occasionally it is useful to consider subspaces M of T, some of which have the property
that every point of M is mapped into another point in M by the equations of motion. When'
this is the case, M is said to be an invarifint subspace of T, or an-invariant manifold. We
shall presume that all manifolds in T, invariant or not, are measurable.

Consider now any manifold Mo mapped into another manifold M, during a time 1nterval
t by the equations of motion. Then we have (Liouville, 1838)"

‘Liouville'’s Theorem. The measure of the set M, for any t, coincides with the measure of
the set M.

That is, the measure of measurable point sets in I is an invariant of the equations of motion.
This theorem is so important that it is worth stating in a more explicit way. The
measure of the manifold Mo in phase space is just the phase volume

o = dgdp, (1-9)
Mo

where the multiple integral is over all values of all the ¢; and p; in Mo. (When limits are
omitted the integration is presumed to be over all of I'.) During time t tho manifold Mo is
carried into the manifold M; with phase volume

“q, = /M dg d, Rt

and Liouville’s theorem states that
0, =0o. (1-11)
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It is left as an exercise to show that an equivalent statement is that the Jacobian of the
transformation of the coordinates (g;,p;) at time tg to those at time t is identically unity.

Liouville’s theorem leads one, in a way which will only become clear later, to an im-
portant relation between the dynamical properties of a large system and their experimental
manifestations. An essential quantity in this connection is the total phase volume compat-
ible with experimentally observable coaditions. The equation

H(¢,p) = E (1-12)

for a conservative system defines a surface of constant energy in I'. We shall almost always .
consider only such cases in which E has a finite lower bound throughout I', which can
arbitrarily be taken as zero, and the surfaces of constant energy will be labeled Sg. These
surfaces are presumed closed, and the volume contained therein finite and simply connected.
As a consequence the surfaces Sg can be viewed as hyperspheres in I'. The mappings
induced by Eqgs.(1-5) leave the surfaces of constant energy, as well as the domain contained
within two such surfaces, invariant.

Suppose the system in question is isolated and known to have a total energy E. It is
useful to consider the total phase volume contained within the corresponding surface Sg,

a(B) = / 6 — H(q, p)}dq dp, | (1-13)
where 6(z) is the unit step-function. This volume is a monotonic increasing function of E.
The differential phase volume is called the structure function, ’
_ dQ
9(E) = —% = [ §[E - H(g,p)] dq dp. (1-14)

It will be seen subsequently that g(E) plays a crucial role in the macroscopic description of
mechanical systems with many degrees of freedogn. Although it does not follow from any
of the foregoing, it is usually presumed that g(E) is also a monotonic increasing function
of E. ’

Calculation of the structure function is rather difficult in general, and it is often easier
to calculate first its Laplace transform, which we shall call the partition function:

zZ(8) = /owg(E)e'” dE, (1-15)

where S is a real parameter. This is called the ‘generating function’ by Khinchin (1949),
but it does indeed represent a kind of partitioning of phase space. An alternative expression
is obtained by substitution of Eq.(1-14) into Eq.(1-15):

2(p) = [ e#en) dgap, (1-16)

which often proves useful in ‘calculations.

The parameter 8 has no immediate physical significance for a system with few degrees
of freedom, but it will assume considerable meaning later for large systems. For now we
note that if the structure function itself is needed, and Z(8) is known, one can invert the
Laplace transform by extending f to the complex plane. Then

271 Joico

o(B)= o [ T 2By ap, (1-17)
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where ¢ is chosen so that the contour lies to the right of all singularities of Z(3).

Some insight into the meaning of g(E) can be gained from its defining equation (1-14).
On the one hand, because g(E) is always non-negative, Z(3) is logarithmically convex and
monotonic decreasing in B. It appears, therefore, that Z(8) does not possess a great deal of
interesting structure. On the other hand, Eq.(1-14) describes g(E) as a ‘density of phase’,
such that its integral yields the total phase volume contained within the hypersphere defined
by the total energy E. In this sense g(E) describes the relevant geometric structure of the
phase space for a particular mechanical system. Although the present discussion is directed
specifically toward classical systems, it is useful to digress for a moment and consider the
quantum-mechanical analog of this function.

Envision a physical volume in the shape of a cube of side L, with volume V = L3,
containing a single particle. The behavior of this particle can be described, partially, in
terms of plane-wave eigenfunctions of linear momentum with quantum numbers p = hk,
where k is the wavenumber. Imposition of periodic boundary conditions has the effect of
restricting wavenumber values to the discrete set

k = (2r/L)n = (2n/L)(inz + jn, + kn,), (1-18)
where the vector m has components 0,41,+2,.... The single-particle energy then has th;
possible values

2,2 . (27)* 2 2
E =h*k*/2m, k* = 2 (nz +ny +nl). (1-19)

Observe that, except for the very lowest energies, the energy states possess an enormous
degeneracy owing to the extraordinary number of ways a perfect square can be represented
by the sum of the squares of three integers. This suggests possible utility in defining a
density of energy states, and direct calculation from the above yields the expression

_An_ 28/%xm®/2y El/2.

o(B)= 2% =10 (1-20)

Equivalently, —_
Pz QPy SPx
An

indicating that each state in phase space occupies a volume A®. Note that Eq.(1-20) also
leads to identification of a density of momentum states:

=hY, (1-21)

dn _V -
d3k ~ (27)3 (1-22)

From this form one infers a well-kno.,.. prescription for converting sums over states to

integrals:
14 3y -
E SN (2—7r)_3 / d°k. (1-23)

n

These density-of-states functions are able to provide almost exact descriptions of the
system, except possibly at very low energies. But as L becomes very large even those
states become well approximated and the entire discrete spectrum becomes continuous as
L — oco. This is one version of the so-called infinite-volume limit, and provides a technique
in which the mathematical description of a quantum-mechanical system can be made to
appear rather similar to that of its classical counterpart.
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Prior to providing some examples of mechanical systems and their descriptions in phase
space, it will be found useful subsequently to mention here two further aspects of the
geometric formulation. Consider a subset A of I' containing a number of image points P;
at time ¢ lying on dpt of the system. Then, for a closed system evolving under the equations
of motion, it can be proved that for all ¢ and all P; in AQ there exists a T such that Py r is
in AQ. This is known as Poincaré recurrence (Poincaré, 1890), and means that every closed
classical system with a'finite number of degrees of freedom is almost periodic. In essence,
. if N is the number of degrees of freedom and ¢ the error of recurrence, then a large body
of specific studies indicates that quite generally T ~ eV,

The =econd aspect we wish to mention concerns a property of the phase volume as a
measure, originally due to Hopf (1932). Adopt a normalization such that O(E) = 1. A
system is defined as mizing if and only if, for a set M; on Sg and any other set Q in Sg,
: both of positive measure, it is true that

Jim Q(M:NQ) = QM) 02(2). ) (1-24)

That is, if a system is mixing it follows that in the limit { — oo all the dynamically
possible points in M, are distributed uniformly over Sg, and a mixing system does not
exhibit Poincaré recurrence in this limit. Sinai (1970) has demonstrated that a finite system
(N > 2) of hard spheres in a box is mixing. We shall return to further discussion of these
two results later.

It is useful to consider four specific examples so as to illustrate the application of the
phase-space formalism. Subsequently we shall see that these have been well chosen in order
to emphasize several features of interest to the later discussion.

Ezample 1. - A spherical pendulum of length r and mass m restricted to the region below
a horizontal plane through its pivot point is described by a Lagrangian

L= %mr’&z sin? @ — mgr(1 - cos ), (1-25)

where the zero of energy is taken at the equilibrium rest point, and g is the acceleration
of gravity. Form the Hamiltonian, as in Eq.(1-4), and substitute into Eq.(1-16) to
obtain the partition function:

z(p) = emfmir). (1-26)

This is certaiply a Laplace transform, so we can invert to obthin the structure function:
an?y 1 [otie dg

— p—Bmgry BE ZF 27

o(B)= Tl [ e O (1-27)

The integrand has a second-order pole at the origin and we close the contour to the
left. Evaluation is readily ccarried out by means of the residue theorem and one finds

that

oE) = 4xr

[E 6(E — mgr)(E — mgr)). (1-28)

Ezample 2. A simple linear harmonic oscillator has Hamiltonian

i

2
H=2_4

-2-;; ,CI2 . (1—29)

-
2



