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PREFACE

Our purpose is to bring together the principal elementary
methods for solving problems in maxima and minima, except for
two techniques that are treated adequately in standard textbooks.
Calculus is deliberately omitted from our discussions, as are op-
timization processes through linear programming and game theory.
In view of the many books and courses available on these subjects,
our purpose is to complement these sources, not to compete with
them. Thus there is a deliberate imbalance in this book, leaning
toward methods in algebra and geometry that are not so widely
known. Also, as the reader will readily note, our preference is often
to solve geometric problems by reformulating them in an algebraic
setting rather than by using purely geometric methods. Another
author might do it another way, but, as the old saying goes, one
man'’s fish is another man’s poisson.

Calculus is such a systematically organized subject, providing as it
does a step-by-step procedure for solving extremal problems, that its
champions often regard alternative methods as trick procedures of
limited usefulness. We attempt to counter this view by unifying these
alternative procedures as much as possible. In this way the tech-
niques can be perceived not simply as special devices of limited
usefulness but as more general methods offering wider application.
Thus we emphasize the line of argument that will accommodate
many questions, rather than the brilliant shot that polishes off one
and only one problem in splendid isolation.

Although calculus does provide a powerful and systematic tech-
nique for solving some problems in maxima and minima, the
method is not universal. There are many questions that are
awkward, if not impossible, by elementary calculus. Consider for ex-
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ample the question asked in calculus books of finding, among rec-
tangles of a given perimeter, the one with largest area. The broader
question of finding the quadrilateral of largest area among those of a
given perimeter is not well suited to elementary calculus. Such ques-
tions are grist for our mill. Thus we follow a simple maxim: If a
problem can be solved more simply by calculus, leave it to calculus.

Extremal questions are very close to problems in inequalities, so it
is not surprising that this topic pops up quite regularly. However,
our interest is not in inequalities per se, but only to the extent that
they contribute to the solution of the extremal problems.

What background is needed to read this book? It is written for an
audience at or near the maturity level of second- and third-year
students in North American universities and colleges, assuming a
good working knowledge of precalculus mathematics. Although
calculus is not a prerequisite, a prior knowledge of that subject
would enhance the reader’s comprehension.

Although various techniques from geometry are introduced, there
are three methods that are not used: orthogonal and other projec-
tions, vector analysis, and the geometry of complex numbers. These
methods could have been used to simplify some of the solutions, but
their introduction would have led us too far afield.

Chapter 1 contains some highlights of the background material
needed, with the principal subject matter of the book starting in the
second chapter. Although some readers will be able to proceed to
Chapter 2 almost directly, Section 1.1 should be given some atten-
tion since it includes some basic agreements about language and
notation.

The plan of the book is to proceed from easy problems to harder
ones. For example, consider the isoperimetric problem in the plane:
among all simple closed curves of a given length, which encloses the
maximum area? This problem is solved in Chapter 4, in Section 4.3
to be specific, under the assumption that a solution exists. We
return to the topic in Chapter 12, where the problem is solved
without assuming the existence of a solution. From a logical stand-
point these two chapters should be combined—in fact, with parts of
Chapter 4 discarded because Chapter 12 is more general in its scope.
However, the later chapter is not as easy to follow as the earlier one,
which is much more elementary.
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Chapters 2 to 6 are intended to be read in succession, each depen-
dent on the earlier ones. These chapters are prerequisites for
Chapters 7, 8 and 12, which can be read independently. Chapters 9,
10, and 11 also can be read independently, with Chapters 2 and 3 as
needed background.

There are many problems for the reader scattered through the
book. They are identified by a letter and a number; for example,
El1 is the eleventh problem in Chapter S. At the back of the book
answers are given for all problems as needed, as well as solutions for
most. The reader is urged, of course, to try the problems for herself
or himself, turning to the solutions as a last resort. There are no ex-
ercises or drill problems, because the work is intended primarily as a
resource book, not a textbook. The author has used parts of the
material in the book, however, in an experimental course several
times.

The notes at the ends of the chapters give not only sources of the
material, but also suggestions for further reading. Although some
references are listed in the body of the book, most are collected in
one master list at the end, with the authors in alphabetical order. No
attempt has been made to give a complete bibliography of the sub-
ject.

A first version of the manuscript was read by members of the com-
mittee on the Dolciani series, and by G. D. Chakerian, Basil Gor-
don, and Roy Ryden. I was very fortunate to get their constructive
suggestions, which have resulted in extensive improvements. I am
also grateful to many people for suggesting topics, problems, and
references that might have been overlooked; especially I mention M.
S. Klamkin, L. H. Lange, and the late C. D. Olds in this con-
nection.

IvaN NIVEN
University of Oregon
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CHAPTER 1

BACKGROUND MATERIAL

This chapter contains the definitions, notations, conventions and
background results needed for an understanding of the book. Al-
though for many readers it will suffice to skim this chapter, the first
section is somewhat crucial since it contains agreements about the
use of language and notation. But the really substantive discussions
of maxima and minima begin with Chapter 2, so the reader is urged
to move on to that as quickly as possible.

1.1 Language and Notation. If ¢ and b are any real numbers,
the assertion. that a is greater than b means that @ — b is positive,
and this can be written in several equivalent forms:

a>b, a—b>0, b<a b—a<0.

Similarly, the statement that a is greater than or equal to » means
that a — b is positive or zero, and we can write

a=b a—b=0, b<a b—a=<).

The notation max(a, b, c¢) denotes the largest, or the maximum,
among the real numbers a, b, c. For example

max(2, 3,5) =5, max(2, 3, —5) = 3, max(3, 3, —5) = 3.

In general, let ay, a3, ..., a, be any finite collection of real num-
bers, not necessarily all distinct. The equation

max(a,, ay, ..., a,) = a;,

where j is an integer among 1, 2, 3, ..., n, means that all the in-
equalities
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a =a, a=a; a=as ...,a;

>
j j j j = ay

hold. Similarly the minimum of a finite collection of real numbers is
denoted by

min(ay, a, ..., a,) = a,

and this means that all the inequalities
QG =a, aq =a, q =az ...,a < a,

hold.

For infinite sets of real numbers, there may or may not be a maxi-
mum or a minimum. As a simple example, there is no smallest posi-
tive real number because if r is any positive number, /2 is smaller.
If a and b are any given real numbers with a < b, the set of numbers
x satisfying

a<x<bhb (1)

has neither a maximum nor a minimum. However, this set of num-
bers does have a least upper bound, b, and a greatest lower bound,
a. An upper bound of a set of real numbers is a number which is
greater than or equal to any numnber in the set. Similarly a lower
bound is a number which is less than or equal to any number in the
set.

A set of real numbers is said to be bounded if there are constants ¢
and k such that the inequalities ¢ < x < k hold for every number x
in the set. The set is said to be bounded above if x < k holds, and
bounded below if ¢ < x holds, for every x in the set. Any bounded
set of real numbers has a unique least upper bound and a unique
greatest lower bound. This statement is not proved here, because for
our purposes we need only the very special case where the sets are
restricted to be intervals on the real line. (The x axis in analytic
geometry is a well-known illustration of the “real line.”) For exam-
ple, the set of numbers x satisfying @ < x < b forms an open
interval, denoted by (a, b).

The set of numbers x satisfying a < x < b constitutes a closed
interval denoted by [a, b]. This set of numbers has a maximum b,
which is also the least upper bound, and a minimum a, which is also
the greatest lower bound.
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The notation [a. b) denotes the interval consisting of all numbers
x satisfying ¢ < x < b. This set has a minimum «a, but no max-
imum. It has least upper bound b and greatest lower bound a, as
also does the set of x satisfying @ < x < b. This latter interval is
denoted by (a, b]. In this case the set has a maximum, b, but no
minimum.

The words “supremum” and “infimum” are often used in the
mathematical literature in place of “least upper bound’ and “great-
est lower bound,” but we shall not use these terms.

It is sometimes convenient, in seeking the maximum or the mini-
mum of a function f(x), to look instead for the minimum or max-
imum of —f(x). For example, if we know that the minimum value of
9 + x2 — 2x over all real numbers x is 8, it follows that the maxi-
mum of 2x — 9 — xZ is —8. (These results follow readily from the
identity 9 + x2 — 2x = 8 + (x — 1)) It follows also that the
minimum of 90 + x? — 2x is 89, and the minimum of 900 + 10x?
— 20x is 890.

Reciprocals can be used in the same way. Continuing the example
in the preceding paragraph, it follows also that the maximum value
of 1/(9 + x2 — 2x) over all real numbers x is 1/8.

Next we turn to some geometric conventions. For any distinct
points P and Q the notation PQ will be used in three senses, easily
distinguishable by context: the straight line PQ, meaning the in-
finite line extending in both directions; the line segment PQ,
namely, the portion of the line terminating at P at one end and Q at
the other; and the distance PQ, which is a positive number for
distinct points P and Q, so that PQ = QP. Thus a distance PQ is
never negative, and PQ = 0 iff the points coincide. (The word “iff"
is the shortened form of “if and only if.””) As an illustration of the
sense being readily determined from the context, such an equation
as PQ = RS clearly refers to the equality of two distances.

The half-line, or ray, PQ is the line beginning at P as an endpoint
and extending from P to Q and indefinitely beyond Q.

A triangle consists of three noncollinear points, say A, B, C,
together with the line segments AB, BC, AC. Thus the area of a
triangle is positive, never zero. The triangle inequality states that the
sum of the lengths of any two sides exceeds the third, for example,
AB + BC > AC. More generally, given three distinct points P, Q, R
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we have PQ + QR = PR, with equality iff the point Q lies on the
line segment PR. We say that a point Q is an interior point of a line
segment PR if it lies strictly between P and R on the segment.

For any integer n = 3, an n-gon, or polygon of n sides, consists of
a set of n distinct points Py, P,, ..., P, lying in a plane, called the
vertices, and the n line segments PP, P,P3, P3Py, ..., P, P,
P, P, called the sides, satisfying the condition that the sides have no
points in common except that each pair of adjacent sides has exactly
one vertex in common. The sides collectively form the perimeter or
boundary of the polygon, which effectively separates the exterior
points from the interior points.

A polygon is convex if the line segment joining any two points on
the polygon contains no exterior point, that is, no point lying outside
the polygon. Thus a polygon is convex iff each of its interior angles is
less than or equal to 180°. More generally, a set S of points is said to
be convex iff for every pair of points A, B in § the entire line segment
AB is contained in §.

1.2. Geometry and Trigonometry. The angle PCQ subtended at
the center C of a circle by any arc PQ is twice the angle PKQ
subtended by PQ at any point K on the complementary arc, as
shown in Figure 1.2a. It follows that 2 PKQ = «PHQ for any
points H and K lying on the same arc from P to Q. Also, a quadri-
lateral PQRS is inscribable in a circle if and only if the sum of a pair
of opposite angles is 180°. The sum of all four interior angles of a
quadrilateral is 360°. The sum of all » interior angles of an n-gon is
180(n — 2) degrees.

If P is any point on a semicircle with diameter AB, as shown in
Figure 1.2b, then 2APB = 90°. More briefly, the angle in a
semicircle is a right angle. Conversely, given any curve from A to B
such that zAPB = 90° for every point P on the curve, then the
curve is a semicircle. This converse is not so widely known, so we
give a proof. Impose a coordinate system with AB as the x axis and
the origin at the midpoint C of the segment AB. Let ¢ denote the
length BC, so that the coordinates of B and A are (c, 0) and (—c, 0).
If the coordinates of any point P on the curve are (x, y), then the
slopes of the lines PB and PA are
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y—0

y—0
and .
x—c x+ec

These are perpendicular lines, so the product of the slopes is —1,
giving

x—cx +c x2 — ¢2
H
K
5 0
Fi1G. 1.2a
P
A C B

FiG. 1.2b



