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Preface

The Network Computing System Tutorial explains how to use Version 1.5.1 of the Network
Computing System (NCS) to create heterogeneous distributed computing applications.
We’ve organized this tutorial as follows:

Chapter 1

Chapter 2
Chapter 3
Chapter 4
Chapter 5§
Chapter 6
Chapter 7
Chapter 8

Chapter 9

Discusses the basic concepts of using remote procedure calls in distrib-
uted computing and introduces the Network Computing Architecture
(NCA) and the Network Computing System (NCS).

Shows how to make a remote procedure call.

Describes the basics of distributing an application.

Explores some of the details of distributing an application.
Catalogs NCS tools for distributed application development.
Demonstrates the design of a distributed application.
Demonstrates how to revise and extend a distributed application.
Demonstrates some recovery techniques.

Describes how to use the NCS object-oriented binding model.

There is a glossary and an index at the end of the book.

About this Book

The first half of the book treats NCS as a conventional RPC system, a system that extends
the procedure call mechanism over two machines connected by a network. Distributed ap-
plications are examined as extensions of conventional applications, with an emphasis on the
features of NCS that make RPCs look like local procedure calls at the network interface.
By the end of Chapter 3, nearly all of the ideas underlying NCS have been introduced.
The features added in Chapter 4 improve the robustness and portability of applications, but
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don’t add anything fundamental to the discussion in the first three chapters. The first four
chapters include nearly all of what normally characterizes commercial RPC systems today.

Chapter 5 is a survey of the tools NCS provides an application programmer. It reviews the
Network Interface Definition Language (NIDL), the application library calls, and the NCS
exception model. It also introduces NIDL features and NCS calls not encountered in previ-
ous examples, and describes some of the NCS support software. It thus forms a supplement
to, but not a substitute for, the Network Computing System Reference Manual. By system-
atically introducing NIDL attributes, open arrays, open structures, and exception handling,
Chapter 5 simplifies the presentation of advanced topics in the second half of the book.

The second part of the book emphasizes the differences between distributed computing and
traditional single-process computing. NCS allows you to exploit those differences where
they are useful to your application and hide them where they are not. It was designed to
facilitate the building of reliable, large—scale, long-lived, portable, and extensible distrib-
uted systems. Whereas the first part of the book starts from the premise that you have a
conventional local application that would benefit from being distributed, and goes on to
show how to transparently “remote” an interface between two modules, the premise of the
second part is that you want to create a new distributed application.

Chapter 6 begins with some suggestions for partitioning an application and designing good
network interfaces. These suggestions are illustrated by creating a primitive name server, a
network server program that maps names onto unique identifiers, and building an applica-
tion around it. In Chapters 7 and 8, issues of maintenance, administration, and partial fail-
ure in distributed systems are identified in the process of extending the application of
Chapter 6.

Chapter 9 introduces the object-oriented features of NCS: the use of UUIDs as invariant
object identifiers, location transparency, and type-dependent binding of procedures. Ob-
ject-orientation is central to the Network Computing Architecture (NCA) and NCS, but
the casting of distributed computing in object-oriented terms can make both subjects
harder to learn. That is why we’ve postponed the discussion of object-oriented distributed
computing until the end of the book. Object-oriented solutions are a good fit to the prob-
lems of distributed computing, and we hope that Chapter 9 will help you take advantage of
the object-oriented features of NCS. The Network Computing System Reference Manual in-
cludes more material on object-oriented programming with NCS.

Using this Book

xiv

We assume you have built applications in the C programming language. We don’t assume
you have any experience with networking software or remote procedure call (RPC) systems.
The concepts of RPC and client/server computing as they apply to NCS are presented in
Chapter 1. The networking basics you will need to understand NCS and use it effectively
are presented in Chapter 2.
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NCS can be used with a wide variety of programming languages, operating systems, and
hardware architectures. However, it is impossible to cover in this book the full range of
programming and operating environments supported by NCS, so we’ve had to make a few
choices.

The sample programs in this book are written in C. The C language used in this book is
basically that documented in the first edition of The C Programming Language by Ker-
nighan and Ritchie (Prentice-Hall, 1978), with the addition of the void type specifier and
structure assignment, but the programs are compatible with ANSI compilers as well.

We’ve tried to keep the examples portable. Unless otherwise noted, they should compile

and run on any system that NCS runs on. Except where noted, the sample programs are

demonstrated in the text by compiling and running them on an Apollo workstation under
the Bourne shell but, aside from some differences noted in the text, the output should be
virtually identical on any other UNIX* system.

If you are not using NCS on a UNIX system, you should know that the Bourne shell is a
UNIX command line interpreter, which uses the dollar sign ($) as a standard prompt.
When a compiler command is too long to fit on a single line, we’ve divided the command
onto multiple lines with an escaped newline (a backslash, \, followed by RETURN) to con-
tinue it on the next line. By default, the Bourne shell issues the secondary prompt > ( or
>> on some systems) when expecting another line to complete a command. Thus the fol-
lowing three lines are a single compiler command to link nine object modules into a single
executable. The second dollar sign prompt ($) indicates that the command has completed.

$ cc -o dbd12a dbd12a.0 dbl2.0 dba.o \
> dbl_sstub.o db2_sstub.o dba_sstub.o \
> dba_cstub.o dba_cswtch.o util.o -Inck

$

Pathnames and command names shown in the text are correct for most UNIX systems.
The details of using NCS on various systems are described in the Network Computing Sys-
tem Reference Manual. You should also consult the Release Document for your NCS prod-
uct to learn of any changes peculiar to your system.

Sample Programs

The examples in this book are available in machine-readable form from the publisher. The
examples distribution contains all the software in this book, together with makefiles for
building the programs on UNIX systems and some additional code needed to make the ex-
amples complete programs or applications that you can run and test. Even though this
book does not contain listings of all the files in the distribution, all the software in the

*  UNIX is a registered trademark of AT&T in the U.S.A. and other countries.
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distribution that illuminates the subject of distributed programming with NCS is included in
the figures of this book.

All the code in this book and in the examples distribution is in the public domain and may
be available from other sources in addition to the publisher. If you have a copy of the
sample programs, feel free to make it available to other readers.

Related Manuals

xvi

For more information on the Network Computing Architecture and Network Computing
System, see the following documents, which we list with their Hewlett—-Packard order num-

bers:

Network Computing Architecture (010201-A01)

This book specifies the Network Computing Architecture in enough technical detail to
write a new implementation that is compatible with NCS. It is mainly intended for pro-
grammers producing a new implementation of the architecture or porting an existing im-
plementation, such as Hewlett-Packard’s NCS, to a new platform. You do not need to
read Network Computing Architecture in order to use this book. Architectural concepts
from the NCA will be introduced and explained as needed in the text.

Network Computing System Reference Manual (D-10200-C)

This book is a comprehensive programmer’s reference for NCS. You will want to consult
it whenever you have a question that is not answered in this manual, or want to learn
about features not used for the examples in this book. We will often refer to the refer-
ence when there is more to a subject than can be discussed here.

Managing NCS Software (D-11895-C)

This book explains how to set up and administer NCS software, including the Global
and Local Location Broker Daemons. It is recommended to administrators of networks
running software based on NCS. Programmers should find the information in the Re-
lease Document accompanying the NCS product sufficient for setting up the system re-
quired to compile and run the examples in this book.

The Hewlett-Packard order number for the Network Computing System Tutorial is
(D-18355-B).

The Release Document for each NCS product from Hewlett—-Packard contains installation
procedures, descriptions of new or changed features, and lists of known and fixed bugs.
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Typographic Conventions

Unless otherwise noted in the text, this manual uses the following conventions.

literal values

user—supplied values

output/source code

“C

Bold words or characters in formats and command descriptions repre-
sent commands or keywords that you must use literally. Pathnames
are also in bold. Bold words in text indicate the first use of a new
term. In interactive examples, characters that you type appear in bold.

Italic words or characters in formats and command descriptions repre-
sent values that you must supply.

Information that the system displays appears in this typeface. Exam-
ples of source code also appear in this typeface.

This indicates a program interrupt generated from the keyboard. On
most UNIX systems, you can generate an interrupt by typing C while
holding down the CTRL key.

A vertical ellipsis means that irrelevant parts of a figure or example
have been omitted.

This symbol indicates the end of a chapter or part of a manual.
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