COMPUTING
~ SYSTEM
- TUTORIAL

~TOM LYONS

Network Computing System Tutorial

Tom Lyons

HEWLETT
PACKARD

Prentice Hall
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Editorial/production supervision: Mary P. Rottino
Cover design: Lundgren Graphics
Manufacturing buyer: Kelly Behr/Susan Brunke

Copyright © 1991 by Hewlett-Packard Company.

= Published by Prentice-Hall, Inc.
A division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write:

Special Sales/College Marketing
Prentice-Hall, Inc.

College Technical and Reference Division
Englewood Cliffs, NJ 07632

UNIX is a registered trademark of AT&T in the USA and other ¢ountries.
MS-DOS® is a U.S. registered trademark of Microsoft Corporation.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not

for incidental or consequential damages in connection with the be liable for errors contained herein or
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights reserved. No part of
this document may be photocopied, reproduced or translated to another language without
the prior written consent of Hewlett-Packard Company.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set
forth in subdivision (c) (1) (i) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227.7013. Hewlett-Packard Co., 3000 Hanover St., Palo Alto, CA 94304.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 21

ISBN D0-13-E1l7242-3

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada, Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., 7okyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Preface

The Network Computing System Tutorial explains how to use Version 1.5.1 of the Network
Computing System (NCS) to create heterogeneous distributed computing applications.
We’ve organized this tutorial as follows:

Chapter 1

Chapter 2
Chapter 3
Chapter 4
Chapter 5§
Chapter 6
Chapter 7
Chapter 8

Chapter 9

Discusses the basic concepts of using remote procedure calls in distrib-
uted computing and introduces the Network Computing Architecture
(NCA) and the Network Computing System (NCS).

Shows how to make a remote procedure call.

Describes the basics of distributing an application.

Explores some of the details of distributing an application.
Catalogs NCS tools for distributed application development.
Demonstrates the design of a distributed application.
Demonstrates how to revise and extend a distributed application.
Demonstrates some recovery techniques.

Describes how to use the NCS object-oriented binding model.

There is a glossary and an index at the end of the book.

About this Book

The first half of the book treats NCS as a conventional RPC system, a system that extends
the procedure call mechanism over two machines connected by a network. Distributed ap-
plications are examined as extensions of conventional applications, with an emphasis on the
features of NCS that make RPCs look like local procedure calls at the network interface.
By the end of Chapter 3, nearly all of the ideas underlying NCS have been introduced.
The features added in Chapter 4 improve the robustness and portability of applications, but

Preface xiii

don’t add anything fundamental to the discussion in the first three chapters. The first four
chapters include nearly all of what normally characterizes commercial RPC systems today.

Chapter 5 is a survey of the tools NCS provides an application programmer. It reviews the
Network Interface Definition Language (NIDL), the application library calls, and the NCS
exception model. It also introduces NIDL features and NCS calls not encountered in previ-
ous examples, and describes some of the NCS support software. It thus forms a supplement
to, but not a substitute for, the Network Computing System Reference Manual. By system-
atically introducing NIDL attributes, open arrays, open structures, and exception handling,
Chapter 5 simplifies the presentation of advanced topics in the second half of the book.

The second part of the book emphasizes the differences between distributed computing and
traditional single-process computing. NCS allows you to exploit those differences where
they are useful to your application and hide them where they are not. It was designed to
facilitate the building of reliable, large—scale, long-lived, portable, and extensible distrib-
uted systems. Whereas the first part of the book starts from the premise that you have a
conventional local application that would benefit from being distributed, and goes on to
show how to transparently “remote” an interface between two modules, the premise of the
second part is that you want to create a new distributed application.

Chapter 6 begins with some suggestions for partitioning an application and designing good
network interfaces. These suggestions are illustrated by creating a primitive name server, a
network server program that maps names onto unique identifiers, and building an applica-
tion around it. In Chapters 7 and 8, issues of maintenance, administration, and partial fail-
ure in distributed systems are identified in the process of extending the application of
Chapter 6.

Chapter 9 introduces the object-oriented features of NCS: the use of UUIDs as invariant
object identifiers, location transparency, and type-dependent binding of procedures. Ob-
ject-orientation is central to the Network Computing Architecture (NCA) and NCS, but
the casting of distributed computing in object-oriented terms can make both subjects
harder to learn. That is why we’ve postponed the discussion of object-oriented distributed
computing until the end of the book. Object-oriented solutions are a good fit to the prob-
lems of distributed computing, and we hope that Chapter 9 will help you take advantage of
the object-oriented features of NCS. The Network Computing System Reference Manual in-
cludes more material on object-oriented programming with NCS.

Using this Book

xiv

We assume you have built applications in the C programming language. We don’t assume
you have any experience with networking software or remote procedure call (RPC) systems.
The concepts of RPC and client/server computing as they apply to NCS are presented in
Chapter 1. The networking basics you will need to understand NCS and use it effectively
are presented in Chapter 2.

Preface

NCS can be used with a wide variety of programming languages, operating systems, and
hardware architectures. However, it is impossible to cover in this book the full range of
programming and operating environments supported by NCS, so we’ve had to make a few
choices.

The sample programs in this book are written in C. The C language used in this book is
basically that documented in the first edition of The C Programming Language by Ker-
nighan and Ritchie (Prentice-Hall, 1978), with the addition of the void type specifier and
structure assignment, but the programs are compatible with ANSI compilers as well.

We’ve tried to keep the examples portable. Unless otherwise noted, they should compile

and run on any system that NCS runs on. Except where noted, the sample programs are

demonstrated in the text by compiling and running them on an Apollo workstation under
the Bourne shell but, aside from some differences noted in the text, the output should be
virtually identical on any other UNIX* system.

If you are not using NCS on a UNIX system, you should know that the Bourne shell is a
UNIX command line interpreter, which uses the dollar sign ($) as a standard prompt.
When a compiler command is too long to fit on a single line, we’ve divided the command
onto multiple lines with an escaped newline (a backslash, \, followed by RETURN) to con-
tinue it on the next line. By default, the Bourne shell issues the secondary prompt > (or
>> on some systems) when expecting another line to complete a command. Thus the fol-
lowing three lines are a single compiler command to link nine object modules into a single
executable. The second dollar sign prompt ($) indicates that the command has completed.

$ cc -o dbd12a dbd12a.0 dbl2.0 dba.o \
> dbl_sstub.o db2_sstub.o dba_sstub.o \
> dba_cstub.o dba_cswtch.o util.o -Inck

$

Pathnames and command names shown in the text are correct for most UNIX systems.
The details of using NCS on various systems are described in the Network Computing Sys-
tem Reference Manual. You should also consult the Release Document for your NCS prod-
uct to learn of any changes peculiar to your system.

Sample Programs

The examples in this book are available in machine-readable form from the publisher. The
examples distribution contains all the software in this book, together with makefiles for
building the programs on UNIX systems and some additional code needed to make the ex-
amples complete programs or applications that you can run and test. Even though this
book does not contain listings of all the files in the distribution, all the software in the

* UNIX is a registered trademark of AT&T in the U.S.A. and other countries.

Preface XV

distribution that illuminates the subject of distributed programming with NCS is included in
the figures of this book.

All the code in this book and in the examples distribution is in the public domain and may
be available from other sources in addition to the publisher. If you have a copy of the
sample programs, feel free to make it available to other readers.

Related Manuals

xvi

For more information on the Network Computing Architecture and Network Computing
System, see the following documents, which we list with their Hewlett—-Packard order num-

bers:

Network Computing Architecture (010201-A01)

This book specifies the Network Computing Architecture in enough technical detail to
write a new implementation that is compatible with NCS. It is mainly intended for pro-
grammers producing a new implementation of the architecture or porting an existing im-
plementation, such as Hewlett-Packard’s NCS, to a new platform. You do not need to
read Network Computing Architecture in order to use this book. Architectural concepts
from the NCA will be introduced and explained as needed in the text.

Network Computing System Reference Manual (D-10200-C)

This book is a comprehensive programmer’s reference for NCS. You will want to consult
it whenever you have a question that is not answered in this manual, or want to learn
about features not used for the examples in this book. We will often refer to the refer-
ence when there is more to a subject than can be discussed here.

Managing NCS Software (D-11895-C)

This book explains how to set up and administer NCS software, including the Global
and Local Location Broker Daemons. It is recommended to administrators of networks
running software based on NCS. Programmers should find the information in the Re-
lease Document accompanying the NCS product sufficient for setting up the system re-
quired to compile and run the examples in this book.

The Hewlett-Packard order number for the Network Computing System Tutorial is
(D-18355-B).

The Release Document for each NCS product from Hewlett—-Packard contains installation
procedures, descriptions of new or changed features, and lists of known and fixed bugs.

Preface

Typographic Conventions

Unless otherwise noted in the text, this manual uses the following conventions.

literal values

user—supplied values

output/source code

“C

Bold words or characters in formats and command descriptions repre-
sent commands or keywords that you must use literally. Pathnames
are also in bold. Bold words in text indicate the first use of a new
term. In interactive examples, characters that you type appear in bold.

Italic words or characters in formats and command descriptions repre-
sent values that you must supply.

Information that the system displays appears in this typeface. Exam-
ples of source code also appear in this typeface.

This indicates a program interrupt generated from the keyboard. On
most UNIX systems, you can generate an interrupt by typing C while
holding down the CTRL key.

A vertical ellipsis means that irrelevant parts of a figure or example
have been omitted.

This symbol indicates the end of a chapter or part of a manual.

Preface xvii

Acknowledgements

I want to thank Mike Kong for the Network Computing System Reference Manual, and his
early guidance in the writing of this book. Special thanks go to Kevin Ackley of Course
Six, Inc. for his close reading of several drafts, and for convincing me to write Chapter 2.
My thanks also to Nat Mishkin, Liza Martin, and Dale Labossiere of the NCS team at
Hewlett—Packard for reviewing the text, correcting errors of fact and emphasis, and answer-
ing numerous questions. I also want to express deep appreciation to Lisa Zahn and
Richard Curtis for recognizing the need for a tutorial, and allowing me the time to write
one. My sincerest thanks to Marilyn Kotwal, the editor, for her unflagging attention to lan-
guage and detail. And finally, thanks to the NCS team past and present for writing such
useful and elegant software.

Tom Lyons

xviii Preface

Chapter 1

Chapter 2

Contents

PPEEERCE oo 6155 @ 0 6 00 6 1008 €15 98 978 6 (81 8 18 6 @70 610 frm 650 3 (05 8 (80 8 @) € (8 6 678 4118 ies sl 1 B25. 4 108 i 0 18 xiii
About this BOOKttt i i e xiii
Using this BOOKottt it et i e XV
Sample Programsottt i e e e XV
Related Manualsoitttttt ittt ittt ieeeanan xvi
Typographic CONVeNntionsuotittirentennennenneneennennnss xvii
Acknowledgementsciiiiiiiii i i e e xviii

The Network Computing Architecture and Network Computing System 1
1.1 The Distributed Computing Environment 1
1.2 NCA i i et e e 2

1.2.1 Remote Procedure Callscvviinnn... 3
1.2.2 The Network Interface Definition Language 5
1.2.3 The Network Data Representation 6
1.2.4 Clients and Serverscouiiiinuinnennennennn 7
1.2.5 BIOKEIS oiisaiviieossomeines s ssome e ssdsnsnsiesssses 7
1.3 A Summary of NCA e e 8
14 NS e e e e e e 9
1.4.1 What You Need to Get Started0.... 10
1.42 NCSand NCA it it 10
Calling A Remote Procedureciieeieenenenennnnnnanenanennns 13
2.1 The rrpc_Sing_stats Call i, 13
2.1.1 RPCHandles :....ccovvevivesconisonsnssssosssanenns 14
2.1.2 UUIDsandwuuid_$nil 15
2.1.3 A Digression on Socketsoutiiiiiiiia.. 16
2.1.4 How NCS Uses Socket Addressescoovvnun. 17
2.1.5 Handlesand Bindingot 17
2.2 Compiling the Programottt 18
2.2.1 Dealingwith $s ..., 18
2.2.2 Using the NCS C Preprocessoroueeuuueenn. 19

Contents iii

2.3 Running the Programcitiiiiiienn et 19

2.4 What's Happening?ottt 20
2.5 Making Repeated Calls to a Single Server 23
2.6 How NCS Represents Socket Addressescouuunn 24
2.7 Identifying a Serverciiiiiiiiiiiiiii i 25
2.8 Specifying @ Serverc.uuiiiiiiiniiirniiiaiiei e 28
2.9 Other SEIVEIS ..ot tttn it teeennnianneseeeeeesenenns 30
Chapter 3 A Simple Distributed Applicationottt 31
3.1 A Conventional Applicationociiiiiiii i, 31
3.2 A Distributed Applicationc..otiiiiiiiiiiiiiii i 34
3.3 The Network Interface Definition File 34
331 AUribUteSt s 35

3.32 The NIDL Compilercciviitiiiiininnannann 36

3.3.3 Compiling the Stubsciiiiiiiiiiiiiinn.. 37

3.3 How Stubs Work vt iiii i 39

3.3:5 Stub Code zivinssmssimiwivia e ma v R w s H M6 40

3.4 Binding with a Generic Handle 40
3.4.1 The _bind Handle Binding Function 43

3.4.2 The _unbind Handle Releasing Function 43

3.43 Caching RPCHandlesoiiiiiiinnnnen. 43

3.4.4 Compiling the Handle Binding Code 44

3.5 Specifying Pathnames in Distributed Applications 44
3.6 The Server Codeivuiiniiinierineernneernnneennnennns 45
3.6.1 Registering with NCK i, 47

3.6.1.1 The Interface Specification 47

3.6.1.2 The Server EPV . .c.eoicsmsmonomswsassoins 47

3.6.1.3 The Manager EPV 48

3.6.1.4 The rpc_$register_mgr Call 48

3.6.1.5 The Ib_S$register Call 48

3.6.2 Servicing RPCsttt 49

3.6.3 Catching Signals and Faults, 50

3.6.4 Compiling the Server Codec.ouu.. 51

3.7 Building the Distributed Application ccvviu.n. 51
3.8 Running the Distributed Application, 54

Chapter 4 Transmittable Types, Error Reporting and Address Family Independence ... 57

4.1 Data Typesin NIDL and Ccouiiiiiiiniiiinnnnnnennan, 57
4.1.1 Pointers, Arrays, and Strings0 0. 60
4.1.2 Stubs and Prototype Declarations 63
4.2 Status Checking e 64
4.2.1 A Simple Completion Status Checker 64
4.2.2 Adding Status Checking to the Application 65
4.2.3 Rebuilding and Running the Application 70

iv Contents

Chapter 5

4.3 Address Family Independenceciiiiiiii., 72
4.3.1 Registering in Multiple Address Families 73

4.3.2 Binding in Multiple Address Families 77

A TOUP OF INES! & s ss 570 05 5001818 018 020 07w 4000 9700 55001 0110 0w e w0 0 om0 101 m ib1 0500 0 00 8 818 81
L T |) P AP e 81
5.1.1 The Formatof a NIDL File 82

5.1.2 The Interface Identifier and Interface Attribute List 83

5.1.3 Import Declarationscoouiiiuiinnnnine.n. 85

5.1.4 Constant Declarationsoooiiiiiinn, 86

5.1.5 Type Declarationsc.oviiiuinennnneeeneeennnn 87

5.1.5.1 NIDL Scalar Type Specifiers 88

5.1.5.2 Constructed Typescoviuiiuen.nn 92

5.1.5.3 Arrays, last_is and max_is 92

5.1.5.4 SEINES . v vttt e 99

5.1.5.5 STUCTUTESE! + ov v vo1 v 06 10 0 100 w101 o 6 w201 0102 w502 0 10 101030 v 70 99

5.1.5.6 URIONS voswsswsmsmomenswswomensssnnwsssns 100

5.1.5.7 POINEETS o v oisaios oo ms s osmoioisos miomssesasis 102

5.1.6 Operation Declarationscoooiiiiiinnnianns 103

5.1.6.1 Operation Attributes 103

5.1.6.2 Parameter Attributes0..... 105

5.2 Using transmit_as to Marshal an Array of Pointers 106
5.3 Invoking the NIDL Compiler, 115
5.4 A Few Last Wordson NIDL and nidl 116
5.5 The NCK LIbrarycoouiitiitiiennenienneenenneeneenennns 118
5.5:1 Thelb.$ Calls:c.osmscemssnsmsmaminswsmsosmsmssisss 120

5.52 Therpc $andrrpc_$Callsoounen 121

5.5:3 'The socket: $ Calls :u:ciwicssssarmsnsssnsnssivesings 123

554 Thewuid_$ Callscooiriiiniienrnnnnnnann. 126

5.6 Error and Fault Handling Calls o, 128
5.6.1 Establishing Cleanup Handlers 129

5.6.2 Leaving Cleanup Handlers 130

5.6.3 Releasing Cleanup Handlers 132

5.6.4 Enabling Faults on Leaving a Cleanup Handler 134

5.6.5 Inhibiting Asynchronous Faults 134

5.6.6 'The Volatile Macro ...« .uwswussmimenswsmsssnsmsssnes 135

5.6.7 Moreonstatus_$tt 136

5.6.8 Detecting Communication Faults 137

5.6.9 Using comm_status to Trap Communication Faults....... 138

5.6.10 PPFM and Signalscoviiiiiiiinennnnnenenn. 139

5.6.11 Exception Handling in Distributed Applications 140

5.7 Daemons and Support TOOIScotiuiiiiinnrnneennnnn. 141
5.7.1 The Location Brokerccoviuiieninnnnnninn. 141

5.7.1.1 The Local Location Broker Daemon 141

5.7.1.2 The Global Location Broker Daemon 141

5.7.1.3 The LB Administration Tools 142

5.7.2 The UUID Generatorcoeeueuenenennnnns. 143

5.7.3 The Status Code Interpretercvuvverrenn.n. 144

Contents v

Chapter 6 Designing a Distributed Applicationcciiiiiiiiiiiiiiiiiiia., 145

6.1 Traditional Programming with Procedure Calls 145
6.2 Programming with RPCSoitiiniiititininenenennnnannan 146
6.2.1 Narrow Interfaceso i, 146

6.2.2 Dynamic Bindingottt 147

6.2.3 Designing for NCS, 147

6.3 Using Encapsulationc.iiuittiittinneernnnnennnnans 148
6.4 Designing a Good Interfaceoititiiiiiiin., 148
6.5 A Simple Database Managercoveuvintenrennnnennnn 152
6.5.1 A Digression on Defining the Manager EPV 159

6.5:2 Rapid Prototypingssesssseasnsmamsnensnsssasss 161

6.6 The Complete Database Serverouiuiuenuennennanna. 161
6.6.1 Building the Database Daemon 168

6.6.2 Running the Database Daemon, 169

6.7 Using the Database Daemonc.oiitiininninnennnnnn. 170
6.7.1 Modifying the Message Server Program 171

6.7.2 Building and Running the User Daemon Program 180

6.7.3 Modifying the Message Client Program 182

6.7.4 Building the New Message Client Program 185

6.7.5 Putting all the Pieces Together 186

6.8 Using make to Maintain Distributed Applications 188
6.8.1 NIDL File Dependency Rules 190

6.8.2 Building the Application with make 191

Chapter 7 Developing a Distributed Applicationcoiiutiiitinnniinennnnnnnns 193
7.1 A Digression on Address Family Supportovvvnu... 193
7.2 Creating a New Interface Versionc.iiiiiiinunnnan.. 194
7.2.1 A Manager for Version 2 of the db Interface 196

7.2.2 A New Database Daemoncovuiiuunnennn 202

7.2.3 Updating the User Message Daemon 208

7.2.4 Updating the Message Sending Program 218

7.2.5 A Makefile for Version 2 of the Application 221

7.2.6 Running Version 2 of the Application 222

7.3 Supporting Obsolete Clientsoviiientinrenrennennenns 226

7.3.1 Implementing Multiple Interface Versions in a Manager ... 227
7.3.2 Exporting Multiple Versions of an Interface from a Server . 228

7.3.3 Building and Running the New Database Daemon 236

7.4 Extending an Interface:c.oviesvvnsssnoninesssosssoeeamanss 238

7.5 Adding a New Interface toa Serverc.ooviuininn.. 242

Chapter 8 Recovery Techniquesoiiitiiiiiiiiiinneenoneeennneeennnsennnns 253
8.1 Detecting Multiple Instances of a Server 253

8.2 Detecting Server Crashesccivevneiinivsoinioinenreenacnss 255

8.2.1 Using rrpc_$are_you_there 256

8.2.2 Long and Short RPC Timeouts 259

8.2.3 Calling a dba Operation from the dba Server 262

vi Contents

8.2.4 Usingthe Client EPViiiiiiiiiiinnnn 264

8.3 Adding Persistence to @ Servercciiiiiiiiiiiiinieaan 267
8.3.1 Save and Restore Functionsooovuu.. 268

8.4 Shutting Down @ Serverc.iuiiiinninivinennennennens 270
Chapter 9 Object-Oriented Distributed Computingcciiiiiiiiinnenss 273
9.1 Using the Object Identifier oo, 273
9.1.1 Binding a Handle on an Objectc.vu... 275

9.1.2 Registering an Object with NCS 276

9.1.3 Registering a User asan Object 278

9.2 Locating ObjJectsttt 281
9.2.1 The Structure of an LBEntry 281

9.2.2 TheLBLookup Callsoivvviiinnnneennnn.. 282

9.3 The NCS Object Model . . v oo vovnisrsssnesssonansvessnssseissss 283
9.3.1 Objects and Typesot vttt niiiennnnnnenn 283

9.3.2 Types and Interfacesoviiiininann.. 284

9.3.3 Object-Oriented Binding, 291

9.4 Object Orientation in Distributed Systems 305
9.4.1 Re-use with Encapsulation 306

9.4.2 Flexible BiRAINE .o vimvsomwim sousmsmessmsmsms o s as oe s 306

9.4.3 Object-Oriented Programming in the Large 306

GIOSSATY v eio vivvie o 00w s wis wimoss sin g 50 008 010 65 e auw 9760 675 0 6, 8 8 506 85§ % 5t S 6o 900 5.8 8 8 309
INAEX s e oo oooimasosasosiososesesosesnssssssscssssssssssasasssosesssss 319

Contents vii

Figures

viii

|
WO

[Y
11l
0 3 N L

NII\)NN
W=

|

|
[u
o -

uuuwu&ruuwuu

I
—_
—

I

|
—
o -

&&&A&A?&&A&A&

|
[S

U\U\U\l'llkllkh

|

Contents

The Heterogeneous Distributed Computing Environment 2
A Local Procedure Calliitinitinminennennennennenuennennennns 3
Transfer of Control in a Local Procedure Call oiuinn. 4
Transfer of Data in a Remote Procedure Call, 4
Transfer of Control in a Remote Procedure Callco.o.0. S
The Client and Server of an Interfaceo, 7
Client and Server Relationshipsc.oiuiiiiiiiiiiiiiiiiinieennns 7
Structure of the Network Computing Architectureov..nn 8
Making a Remote Procedure Call: rpcalll.c, 15
Making a Series of RPCs to the Same Server: rpcall2.c 23
Identifying a Server: rpcall3.c i 26
Specifying a Server: rpcalld.c..... it 29
The client.c Filettt 32
The manager:C File ..:::ccusvinsemonsmesinssoaemamesssnonnssanessissis 32
The ms.h File i i e 32
A Local APPUCAtION iss s s 56w sms i siseissiessssassseiosssdsssieasenssss 33
A NIDL Specification: ms.idl i 34
Translating an Interface Definition into Stub and Header Files 38
Stubs Make RPCs Appear Local to the Application Code 39
Handle Binding and Unbinding: bind.c i ... 42
Registration and Unregistration Code: server.c 46
Cleanup Handler Code: in SEFVer.Cvtiuiut it innineennnneennnns 50
The Completed Distributed Application i, 53
A Simple Network Time of Day Interface iun. 58
Client Calling wwv_current_time iiitiririninennnn. 59
A NIDL Specification: ms.idl i i 61
How a Parameter Declaration Affects String Marshaling 62
Declaration of ms_show Produced by NIDL Compiler: inms.h 63
A Function for Testing Completion Statuses: util.c 65
Completion Status Checking: bind.c iiiiiinn.. 66
Completion Status Checking: SErver.Couuiiuiittnineeennunennnnn 68
Inquiring about Supported Address Families: in server.c 74
Registering a Server on Multiple Address Families: in server.c................ 75
Unegistering a Server in Multiple Address Families: in server.c 76
Binding in Multiple Address Families: in bind.c............................ 78
The ms_string_t_unbind Function: in bind.c 79
Casting Constants when Passed to NCS Callsc0iiiiuiinnnnenn. 91
Marshaling and Unmarshaling an Open Array with max_is and last_is 95
An Argument Vector of Type char *argv[], 107
A Network Interface for Remote Command-Line Execution: rex.idl 108
Translating an Argument Vector into an Open Structure: in rex_xmit.c 111
The Array args in the Transmittable Structure of Type rex_args_t 112

= \0 00 3

wn L L
[A e U | |
(=]

—-H\OOO\IO\MASAMH

e

AN

(=%
—

[=)}
_
w N

| T e S A R A B
o -

N NN NNa92

—

Recovering an Argument Vector from an Open Structure: in rex_xmit.c 113

Data Structure Recovered by rex_argv_t_from_xmit_rep 114
Functions To Free Storage Allocated for Translation: in rex_xmit.c 114
Layout of a status_$t Valuecoiiiiiniiiiiiiiiiinnnaenn. 136
Message System Database Interface: dbl.idl o ivuintn 150
Definition of Types and Constants for the db Interface: db0.idl 151
Message Client and Server as Clients of the Database Server 152
Include Files and Global Data Structures: indbl.c 153
Private set_address and new_entry Functions: indbl.c..................... 154
Public db_register Operation: indbl.c.......... ... oot 156
Public db_unregister Operation: indbl.c v, 157
Public db_lookup Operation: in dbl.ccoiiitiiiiiiniinenennnnn. 158
The Manager EPV for the db_v1 Interface, db_vl_manager_epv: in dbl.c 158
The main Function: indbdl.cttt 162
Global Declarations: in dbdl.c...........i ittt ennennnns 163
The Initialize Function in dbdl.c, 164
The get_socket Function: indbdl.c i, 165
Registration Code: in dbdl.cttt 166
The Unregistration Code: indbdl.c i, 167
New Utility Functions: util.c0ttt 168
Declarations of Utility Functions: utilLh 169
Global Declarations: in userdl.ciuiitiiiiitiitinn e enna 171
The Initialize and get_socket Functions: in userdl.c 172
The register_name Function: in userdl.co i, 173
The bind_db_handle Function: inuserdl.c...................oiiuininan, 174
The Register Function: in userdl.c 0.0 tiiiiiinnnnennnn 175
The Unregistration Code: inuserdl.c it 177
The main Function: in userdl.c ittt 179
The ms User Manager: MS_USEr.Coueutntnenenennenonenensnsons 180
Binding a Handle on a User Name: in bindl.c 182
The ms_string_t_unbind Function: in bindl.c 183
The bind_db_handle Function: in bindl.c 184
The ms Client Code for Sending Messages: sendmsg.Cco.0uuunn. 185
Makefile for the New Message SyStemcuoviuiiunennennennennans 189
New Version of db Interface: db2.idl iiiiiiiin.., 195
New Type and Constant Declarations for db Interface: db0.idl 196
Global Declarations and Data Structures: indb2.c.......................... 197
The set_address Function: indb2.c i, 198
The new_entry Function and db_register Operation: in db2.c 199
The db_unregister Operation: indb2.c 200
The db_lookup_name Operation: indb2.cc..iiiinininnn.. 201
Definition of the Version 2 Manager EPV:indb2.cc.0..n.. 202
A Server for Version 2 of the db Interface: indbd2.c 203
The get_sockets Function: indbd2.c, 204
Server Registration Code: indbd2.ccoiiiiiiiininininnnnana, 205

Contents ix

=N 2
oo

S SN ST S

e =AW

|
[

HwW

N N W

[e=]

|
O

-0

\]\1\]\1\]\]\)\]7}\1\]\]\!\1\)\1\)\1
H B DB DB WLWWWLWWWWLWLWWLWLWWNDN
[8]

1
o

| |

ooooooooooolooooooooo
= D 00 O L & WK =

|
o -

\D\fD\O
W N =

Contents

Server Unregistration Code: in dbd2.c oiiiiiiiiiiininn,
The main Function: in dbd2.c ittt
Global Declarations and Initialize Function: in userd2.c
The get_sockets Function: in userd2.coiuiiiiiiiinninenenens
The bind_db_handles Function: in userd2.c,
The register_name Function: in userd2.c ouiunn.
The Register Function: in userd2.cciiitiiiiiiennnnenineennn
The unregister_uuid Function: in userd2.cco0n.
The Unregister Function: in userd2.ccotiiiiiiiniinennnnnn.
Function main: in userd2.Coutinuueiiteeninr e nnnreenns
The bind_db_handle Function: in bind2.c,
The ms_string_t_bind and ms_string_t_unbind Functions: in bind2.c
A Makefile for Version 2 of the Application i,
Defining Multiple Manager EPVs and a db_lookup Operation: db12.c
Multiple Manager EPVs and Other Global Declarations: in dbd12.c
The Initialize Function: in dbd12.c iiiiiiiiiinnnnn,
The get_sockets Function: in dbd12.c iuinn,
The Register Function: in dbd12.c i,
The Unregister Function: in dbd12.c i,
The main Function: in dbd12.c i
Makefile for Building the Multiple Version Database Daemon dbd12
New db_lookup_uuid Operation Added to db_v2 interface: db2.idl
Implementation of db_lookup_uuid operation: in db12.c
New Database Interface: dba.idl
Manager Module for dba Interface: dba.c i,
Header Files and Manager EPV Declarations in dbd12a.c
Global Declarations in dbd12a.cuiiiiiiinintiiiinnnnennnns
The Initialize Function in dbd12a.c i iiiiiiniinnnnnnn
The get_sockets Function in dbd12a.c
The Register Function: in dbd12a.c
The Unregister Function: indbd12a.c iiiiiiinininnnnn,
The main Function: in dbd12a.cc0iiiitiintennnnnnnnnns

A Function to Check for Multiple Database Daemons: in dbd12a.c
Testing Whether a Server is Still Responding to RPCs: in dbd12a.c............
A check_for_daemons Function That Calls server_responding: in dbd12a.c ...
Using a Short Timeout in the server_responding Function: in dbd12a.c
A server_responding Function Specialized for the dba Interface: in dbd12a.c ..
Calling a Remote Operation Directly Through the Client EPV: in dbd12a.c
Function to Save the Contents of the Name Database: in dbio.c
Function to Restore the Contents of the Name Database: in dbio.c
A New main Function to Save and Restore Database Contents: in dbd12a.c
New main Function to Enable Remote Shutdowns in dbd12a.c

Specifying an Object UUID in the ms_string_t_bind Function: in bind.c.......
Defining the User Type UUID: id_defs.h it
Defining the User Type UUID: inuserd.cc..oiiiiniinnnn..

