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Series Foreword

It is often the case that the periods of rapid evolution in the physical sciences
occur when there is a timely confluence of technological advances and improved
experimental techniques. Many physicists, computer scientists, chemists,
biologists, and mathematicians have said that such a period of rapid change is
now underway. We are currently undergoing a radical transformation in the way
we view the boundaries of experimental science. It has become increasingly
clear that the use of large-scale computation and mathematical modeling is now
one of the most important tools in the scientific and engineering laboratory. We
have passed the point where the computer is viewed as just a device for tabulat-
ing and correlating experimental data; we now regard it as a primary vehicle for
testing theories for which no practical experimental apparatus can be built.
NASA scientists speak of ‘‘numerical’’ wind tunnels, and physicists use super-
computers to see what happens during the birth of a universe.

The major technological change accompanying this new view of experimental
science is a blossoming of new approaches to computer architecture and al-
gorithm design. By exploiting the natural parallelism in scientific applications,
new computer designs show the promise of being able to solve problems whose
solutions were considered unreachable a few years ago. When coupled with the
current biennial doubling of memory capacity, supercomputers are on their way
to becoming the laboratories of much of modern science.

With the advent of fast, powerful microprocessors, a new branch of the com-
puter industry has emerged. By using large numbers of these cheap processors,
each connected to a large private memory, it is possible to build a computing
system with very impressive potential performance. If the processors are con-
nected to each other so that they can exchange messages in a reasonably efficient
manner and if the programmer can decompose his computation into a large
system of communicating processes, such a multicomputer network can be a
powerful supercomputer.

Fujimoto and Reed have written the first comprehensive treatment of the
architecture and performance modeling of this family of nonshared-memory
MIMD computing systems. Their book begins with a survey of the basic ar-
chitectural ideas behind the current generation of hypercube systems but quickly
moves into the main contribution of the volume: a foundation for the analytical
modeling and rigorous simulation of multicomputer networks. Along the way
they give a treatment of the VLSI constraints on network nodes and a survey of
the issues confronted in designing operating systems for multicomputer net-
works. The volume concludes with a detailed performance analysis of the cur-
rent crop of commercial systems.



While it is very exciting to see a book on a topic of such great current interest
to so many scientists, it is even more important to see a volume that can set the
standard for analytical study of these systems. This volume is required reading
not only for students wishing to learn about the current family of systems but
also for the architects designing the next generation of hypercube machines.

Dennis B. Gannon



Preface

The recent appearance of powerful single-chip processors and inexpensive memory has
renewed interest in the message passing paradigm for parallel computation. Much of
this interest can be traced to the construction of the CalTech Cosmic Cube, a group of
Intel 8086/8087 chips with associated memory connected as a D-dimensional
hypercube.

Following the success of the Cosmic Cube, four companies (Intel, Ametek, Ncube,
and Floating Point Systems) quickly began delivery of commercial hypercubes. These
hypercube systems are but one member of a broader class of machines, called
multicomputer networks, that consist of a large number of interconnected computing
nodes that asynchronously cooperate via message passing to execute the tasks of
parallel programs. Each network node, fabricated as a small number of VLSI chips,
contains a processor, a local memory, and (optionally) a communication controller
capable of routing messages without delaying the computation processor.

Multicomputer networks pose several important and challenging problems in
network topology selection, communication hardware design, operating systems, fault
tolerance, and algorithm design. This monograph summarizes recent results in each of
these areas, with the following emphases.

e Analytic Models of Interconnection Networks. Although the hypercube topology has
many attractive features, many other network interconnection topologies are not only
possible, but are often preferable for certain algorithm classes. Chapter two analyzes
the effectiveness of several metrics for topology evaluation and presents a new metric
based on asymptotic bound analysis. The chapter concludes with a comparison of
several proposed network topologies.

e VLSI Constraints and Communication. Whether each node of a multicomputer
network is implemented as a single VLSI component or as a printed circuit board,
packaging constraints limit the number of connections that can be made to the node,
placing an upper bound on the total I/O bandwidth available for communication links.
As more links are added to each node, less bandwidth is available for each one.
However, increasing the number of links connected to each node will usually reduce
the mean number of hops required to reach a particular destination. Chapter three
examines the balance between link bandwidth and mean hop count as the number of
links to each node varies.

e Communication Paradigms and Hardware Support. Because multicomputer
networks are limited in extent to a few cabinets, rather than a geographic area, they
require hardware, rather than software, support for message transport, routing, buffer
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management, and flow control. Chapter four evaluates design alternatives for each of
these issues and presents one possible hardware realization.

e Multicomputer Operating Systems. There are two primary approaches to parallel
processing and task scheduling on a multicomputer network. In the first, all parallel
tasks in a computation are known a priori and are mapped onto the network nodes
before the computation is initiated. The tasks remain on their assigned nodes
throughout the entire computation. In the second, the mapping of tasks onto network
nodes is done dynamically. Here, a parallel computation is defined by a dynamically
created task precedence graph where new tasks are initiated and existing tasks
terminate as the computation unfolds. Although static tasks can be scheduled at
compile time by a single processor, dynamically created tasks must be assigned to
network nodes by a distributed scheduling algorithm executing on the network.
Chapter five summarizes approaches to the static scheduling problem, analyzes the
feasibility of dynamic task scheduling, and reviews the current state of the art.

No examination of message passing systems would be complete without a discussion
of potential application algorithms. Parallel discrete event simulation represents one
extreme of the application spectrum where the task interaction pattern can be very
irregular and change greatly over the program lifetime. At the opposite extreme,
iterative partial differential equations (PDE) solvers typically iterate over a regular grid
with nearest neighbor communication among parallel tasks.

e Applications: Distributed Simulation. Simulation of complex systems imposes
extraordinary computational requirements. War games with battlefield management,
functional simulation of integrated circuits and Monte Carlo simulation of many
particle systems often require hundreds or thousands of hours on the fastest computer
systems that are currently available. Several approaches to discrete event simulation
based on parallel execution and message passing paradigms have been developed.
Chapter six surveys the state of the art in distributed simulation and discusses the
performance ramifications for multicomputer networks.

e Applications: Partial Differential Equations. Existing hypercubes have already been
widely used as testbeds for iterative, partial differential equations solvers. However,
there are many ways to partition the iteration grid into parallel tasks. For example, on
the Intel iPSC hypercube, domain partitioning by strips has been used even though strip

'More sophisticated PDE solvers exist, however, that exhibit complex, time dependent behavior.
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partitions are provably non-optimal when data transfer is used as a metric. The reason:
the high message startup costs on the iPSC favor minimization of message count rather
than the amount of data transferred. Chapter seven analyzes the interaction of problem
partitioning and architectural parameters and presents a performance model that
identifies the appropriate partitioning for a given multicomputer network.

e Commercial Hypercubes: A Performance Analysis. Four hypercube families are
now commercially available: the Intel iPSC, Ametek System/14, Ncube/ten, and FPS T
Series. Moreover, several groups are actively constructing research prototypes, notably
the JPL Mark-III at CalTech and NASA Jet Propulsion Laboratory. Chapter eight
evaluates the hardware designs and system software of the four commercial hypercubes
and the JPL Mark-III. In addition, chapter eight presents a comparative performance
study using a set of processor and communication benchmarks.
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