Scientific
- Computation
Series

Multicomputer Networks
Message-Based Parallel
Processing

o s TR R R e ST R B N T
Daniel A. Reed and
Richard M. Fujimoto

The MIT Press

Multicomputer Networks: Message-Based Parallel Processing

Daniel A. Reed and Richard M. Fujimoto

The MIT Press
Cambridge, Massachusetts
London, England

Publisher’s Note

This format is intended to reduce the cost of
publishing certain works in book form and to
shorten the gap between editorial preparation
and final publication. Detailed editing and com-
position have been avoided by photographing
the text of this book directly from the author’s
prepared copy.

Second printing, 1988
© 1987 Massachusetts Institute of Technology

All rights reserved. No part of this book may
be reproduced in any form by any electronic or
mechanical means (including photocopying, re-
cording, or information storage and retrieval)
without permission in writing from the pub-
lisher.

This book was printed and bound in the United
States of America.

Library of Congress Cataloging-in-Publication Data

Reed, Daniel A.
Multicomputer networks.

(MIT Press series in scientific computation)

Includes index.

1. Computer networks. 2. Parallel processing
(Electronic computers) 1. Fujimoto, Richard M.
II. Title. III. Series.

TKS105.5.R44 1987 004'.35 87-22833
ISBN 0-262-18129-0

Series Foreword

It is often the case that the periods of rapid evolution in the physical sciences
occur when there is a timely confluence of technological advances and improved
experimental techniques. Many physicists, computer scientists, chemists,
biologists, and mathematicians have said that such a period of rapid change is
now underway. We are currently undergoing a radical transformation in the way
we view the boundaries of experimental science. It has become increasingly
clear that the use of large-scale computation and mathematical modeling is now
one of the most important tools in the scientific and engineering laboratory. We
have passed the point where the computer is viewed as just a device for tabulat-
ing and correlating experimental data; we now regard it as a primary vehicle for
testing theories for which no practical experimental apparatus can be built.
NASA scientists speak of ‘‘numerical’’ wind tunnels, and physicists use super-
computers to see what happens during the birth of a universe.

The major technological change accompanying this new view of experimental
science is a blossoming of new approaches to computer architecture and al-
gorithm design. By exploiting the natural parallelism in scientific applications,
new computer designs show the promise of being able to solve problems whose
solutions were considered unreachable a few years ago. When coupled with the
current biennial doubling of memory capacity, supercomputers are on their way
to becoming the laboratories of much of modern science.

With the advent of fast, powerful microprocessors, a new branch of the com-
puter industry has emerged. By using large numbers of these cheap processors,
each connected to a large private memory, it is possible to build a computing
system with very impressive potential performance. If the processors are con-
nected to each other so that they can exchange messages in a reasonably efficient
manner and if the programmer can decompose his computation into a large
system of communicating processes, such a multicomputer network can be a
powerful supercomputer.

Fujimoto and Reed have written the first comprehensive treatment of the
architecture and performance modeling of this family of nonshared-memory
MIMD computing systems. Their book begins with a survey of the basic ar-
chitectural ideas behind the current generation of hypercube systems but quickly
moves into the main contribution of the volume: a foundation for the analytical
modeling and rigorous simulation of multicomputer networks. Along the way
they give a treatment of the VLSI constraints on network nodes and a survey of
the issues confronted in designing operating systems for multicomputer net-
works. The volume concludes with a detailed performance analysis of the cur-
rent crop of commercial systems.

While it is very exciting to see a book on a topic of such great current interest
to so many scientists, it is even more important to see a volume that can set the
standard for analytical study of these systems. This volume is required reading
not only for students wishing to learn about the current family of systems but
also for the architects designing the next generation of hypercube machines.

Dennis B. Gannon

Preface

The recent appearance of powerful single-chip processors and inexpensive memory has
renewed interest in the message passing paradigm for parallel computation. Much of
this interest can be traced to the construction of the CalTech Cosmic Cube, a group of
Intel 8086/8087 chips with associated memory connected as a D-dimensional
hypercube.

Following the success of the Cosmic Cube, four companies (Intel, Ametek, Ncube,
and Floating Point Systems) quickly began delivery of commercial hypercubes. These
hypercube systems are but one member of a broader class of machines, called
multicomputer networks, that consist of a large number of interconnected computing
nodes that asynchronously cooperate via message passing to execute the tasks of
parallel programs. Each network node, fabricated as a small number of VLSI chips,
contains a processor, a local memory, and (optionally) a communication controller
capable of routing messages without delaying the computation processor.

Multicomputer networks pose several important and challenging problems in
network topology selection, communication hardware design, operating systems, fault
tolerance, and algorithm design. This monograph summarizes recent results in each of
these areas, with the following emphases.

e Analytic Models of Interconnection Networks. Although the hypercube topology has
many attractive features, many other network interconnection topologies are not only
possible, but are often preferable for certain algorithm classes. Chapter two analyzes
the effectiveness of several metrics for topology evaluation and presents a new metric
based on asymptotic bound analysis. The chapter concludes with a comparison of
several proposed network topologies.

e VLSI Constraints and Communication. Whether each node of a multicomputer
network is implemented as a single VLSI component or as a printed circuit board,
packaging constraints limit the number of connections that can be made to the node,
placing an upper bound on the total I/O bandwidth available for communication links.
As more links are added to each node, less bandwidth is available for each one.
However, increasing the number of links connected to each node will usually reduce
the mean number of hops required to reach a particular destination. Chapter three
examines the balance between link bandwidth and mean hop count as the number of
links to each node varies.

e Communication Paradigms and Hardware Support. Because multicomputer
networks are limited in extent to a few cabinets, rather than a geographic area, they
require hardware, rather than software, support for message transport, routing, buffer

Preface

management, and flow control. Chapter four evaluates design alternatives for each of
these issues and presents one possible hardware realization.

e Multicomputer Operating Systems. There are two primary approaches to parallel
processing and task scheduling on a multicomputer network. In the first, all parallel
tasks in a computation are known a priori and are mapped onto the network nodes
before the computation is initiated. The tasks remain on their assigned nodes
throughout the entire computation. In the second, the mapping of tasks onto network
nodes is done dynamically. Here, a parallel computation is defined by a dynamically
created task precedence graph where new tasks are initiated and existing tasks
terminate as the computation unfolds. Although static tasks can be scheduled at
compile time by a single processor, dynamically created tasks must be assigned to
network nodes by a distributed scheduling algorithm executing on the network.
Chapter five summarizes approaches to the static scheduling problem, analyzes the
feasibility of dynamic task scheduling, and reviews the current state of the art.

No examination of message passing systems would be complete without a discussion
of potential application algorithms. Parallel discrete event simulation represents one
extreme of the application spectrum where the task interaction pattern can be very
irregular and change greatly over the program lifetime. At the opposite extreme,
iterative partial differential equations (PDE) solvers typically iterate over a regular grid
with nearest neighbor communication among parallel tasks.

e Applications: Distributed Simulation. Simulation of complex systems imposes
extraordinary computational requirements. War games with battlefield management,
functional simulation of integrated circuits and Monte Carlo simulation of many
particle systems often require hundreds or thousands of hours on the fastest computer
systems that are currently available. Several approaches to discrete event simulation
based on parallel execution and message passing paradigms have been developed.
Chapter six surveys the state of the art in distributed simulation and discusses the
performance ramifications for multicomputer networks.

e Applications: Partial Differential Equations. Existing hypercubes have already been
widely used as testbeds for iterative, partial differential equations solvers. However,
there are many ways to partition the iteration grid into parallel tasks. For example, on
the Intel iPSC hypercube, domain partitioning by strips has been used even though strip

'More sophisticated PDE solvers exist, however, that exhibit complex, time dependent behavior.

Preface

partitions are provably non-optimal when data transfer is used as a metric. The reason:
the high message startup costs on the iPSC favor minimization of message count rather
than the amount of data transferred. Chapter seven analyzes the interaction of problem
partitioning and architectural parameters and presents a performance model that
identifies the appropriate partitioning for a given multicomputer network.

e Commercial Hypercubes: A Performance Analysis. Four hypercube families are
now commercially available: the Intel iPSC, Ametek System/14, Ncube/ten, and FPS T
Series. Moreover, several groups are actively constructing research prototypes, notably
the JPL Mark-III at CalTech and NASA Jet Propulsion Laboratory. Chapter eight
evaluates the hardware designs and system software of the four commercial hypercubes
and the JPL Mark-III. In addition, chapter eight presents a comparative performance
study using a set of processor and communication benchmarks.

Acknowledgments

We would be remiss not to acknowledge the colleagues and students whose insights,
enthusiasm and suggestions shaped this work during its formative stages. In the early
years, Herbert Schwetman and Carlo Séquin directed the dissertation research
presented in chapters two, three and four. Their guidance was invaluable; we owe them
a great debt.

Many of the benchmarks in chapter eight were conducted by Dirk Grunwald while
visiting the NASA Jet Propulsion Laboratory. The evaluations of competing hypercube
architectures and insights into their performance limitations are his. His eagerness to
hypothesize and experiment embody the scientific spirit.

Members of the Concurrent Computation Project at CalTech/JPL, particularly John
Fanslow and Herb Madan, cheerfully offered advice and provided access to the JPL
Mark-III. Jack Dongarra provided access to the Intel iPSC at Argonne National
Laboratory. David Poplawski and Brenda Helminen of Michigan Technological
University graciously provided both the benchmark data and the FPS T Series example
program discussed in chapter eight.

The students in the Picasso research group were a continual source of inspiration and
delight. Without them this would not have been possible. To Dirk Grunwald, David
Bradley, Bobby Nazief, Chong Kim and Balkrishna Ramkumar, our undying gratitude.
Finally, students from the Computer Science Departments at the University of Utah and
the University of Illinois at Urbana-Champaign provided many valuable comments on
drafts of the text while they were used for classes.

Preface

During this writing Daniel Reed was supported in part by the National Science
Foundation under grants NSF DCR 84-17948, NSF DCI 86-05082 and an NSF
Presidential Young Investigator Award, and by the National Aeronautics and Space
Administration under grants NASA NAG-1-613 and NASA NAG-1-595. Richard
Fujimoto was supported by the Office of Naval Research under contract NO0014-87-
K-0184 and a University of Utah Research Grant. Both Dr. Reed and Dr. Fujimoto
were also supported by Faculty Development Awards from International Business
Machines.

Daniel A. Reed
Richard M. Fujimoto

July 1987

Contents

1.1
1.2

1.3

1:5

Series Foreword

Preface

Introduction

Multicomputer Networks: A Definition

A Parallel Computer Systems Comparison

1.2.1 Pipelined Vector Processors

1.2.2° Shared Memory MIMD Multiprocessors
1.2.2.1 The Sequent Balance 21000
1.2.2.2 Large Scale Multiprocessors

1.2.3 SIMD Computers

1.2.4 Systolic Arrays

1.2.5 Data Flow Computers

1.2.6 Multicomputer Networks

Multicomputer History

1.3.1 Early Projects

1.3.2 The Hypercube Topology

1.3.3 The Cosmic Cube and Its Descendants

Multicomputer Building Blocks

1.4.1 The Inmos Transputer

1.4.2 The Torus Routing Chip

Outline of Text

1.5.1 Communication Systems

1.5.2 Multicomputer Operating Systems

1.5.3 Multicomputer Applications

1.5.4 Performance of Existing Machines

Analytic Models of Interconnection Networks
Definitions

2.1.1 Network Connectivity

2.1.2 Network Diameter

2.1.3 Mean Internode Distance

xiii

XV

0 0 N W N

10

13
15
16
16
17
19
19
20
20
23
24
25
26
26

29
30
31
33
33

2.2
23

24

2.5

2.6
2i1
2.8

29

3.1
3.2

2.1.3.1 Uniform Message Routing - Symmetric
Interconnections

2.1.3.2 Sphere of Locality Message Routing - Symmetric
Interconnections

2.1.3.3 Decreasing Probability Message Routing - Symmetric
Interconnections

2.1.3.4 Uniform Message Routing - Asymmetric
Interconnections

2.1.4 Visit Ratios
2.1.5 Expansion Increments
Single Stage Interconnection Networks
Analyzing the Torus: An Example
2.3.1 The Binary Hypercube: A Special Case
Analysis of Single Stage Interconnection Networks
2.4.1 Implications of Network Size
2.4.2 Expansion Increment Comparison
2.4.3 Network Connectivity Comparison
2.4.4 Network Diameter Comparison
2.4.5 Mean Internode Distance Comparison
Communication Link Visit Ratios
2.5.1 Feasible Computation Quanta
2.5.2 Network Selection
Nodes with Limited Communication Bandwidth
A Comparison Based on Rankings
Network Performance at Finite Workloads
2.8.1 Asymptotic Bound Analysis
2.8.2 Product Form Queueing Networks
2.8.3 Balanced Job Bound Analysis
2.8.3.1 Approximate Intersection Points
Summary

VLSI Constraints and the Optimal Number of Ports
VLSI Constraints
Virtual Cut-Through

Contents

35

36

37

39
40
41
42
46
52
52
53
53
56
56
56
60
62
66
68
69
69
70
71
74
76
77

80
81
82

Contents

33

34

3.5

Analytic Studies

3:3:1
3.3.2

N

334

Assumptions

Model I: Cluster Nodes

3.3.2.1 Queueing Model
3.3.2.2 Delay

3.3.2.3 Bandwidth

Model II: Fixed Sized Networks
3.3.3.1 Queueing Model
3.3.3.2 Delay

3.3.3.3 Bandwidth

Summary of Analytic Results

Simulation Studies

3.4.1
342

343
344

345

Assumptions

The Application Programs

3.4.2.1 Barnwell Filter Program (global SISO, 12 tasks)
3.4.2.2 Block I/O Filter Program (local SISO, 23 tasks)
3.4.2.3 Block State Filter Program (local SISO, 20 tasks)
3.4.2.4 FFT Program (local PIPO, 32 tasks)

3.4.2.5 LU Decomposition (global PIPO, 15 tasks)
3.4.2.6 Artificial Traffic Loads (global PIPO, 12 tasks)
3.4.2.7 Characterization of the Application Programs
Issues Under Investigation

Simulation Results on Cluster Node Networks

3.4.4.1 Fully Connected Networks

3.4.4.2 Full-Ring Tree Networks

3.4.4.3 Butterfly Networks

3.4.4.4 Ring Networks

3.4.4.5 Conclusions for Cluster Node Networks
Simulation Results on Fixed Sized Networks

3.4.5.1 Lattice Topologies

3.4.5.2 Tree Topologies

3.4.5.3 De Bruijn Networks

Summary

83

83

85

86

90

91

94

95

99
103
104
107
107
108
111
111
112
113
114
116
116
119
120
121
122
123
123
127
128
128
130
131
134

4.1
4.2

4.3
4.4
4.5

4.6

4.7
4.8

5.1
5.2

Communication Paradigms and Hardware Support

Transport Mechanisms

A Virtual Circuit Based Communication System

4.2.1 Virtual Circuits

4.2.2 Virtual Channels

4.2.3 Translation Tables

4.2.4 Switch Architecture

Routing

Buffer Management

Flow Control

4.5.1 A Send / Acknowledge Protocol

4.5.2 Remote Buffer Management

Evaluation of Design Parameters

4.6.1 Number of Virtual Channels

4.6.2 Amount of Buffer Space
4.6.2.1 Buffer Space: Deadlock Considerations
4.6.2.2 Buffer Space: Performance Considerations

Complexity of th: Communication Circuitry

Summary

Multicomputer Network Operating Systems
Overview
Scheduling Static Tasks
5.2.1 A Formal Model of Static Task Scheduling
5.2.2 Static Scheduling Via Integer Programming
5.2.3 Static Scheduling Via Clustering
5.2.3.1 Initialization
5.2.3.2 Tterative Task Assignment
5.2.4 Static Scheduling Via Simulated Annealing
5.2.4.1 A Sample Problem
5.2.4.2 Minimization Criterion
5.2.4.3 Algorithm Implementation
5.2.4.4 Experiments

Contents

138
139
142
142
143
144
145
148
152
157
158
162
164
164
165
166
169
172
174

177
179
183
183
186
188
190
190
192
194
196
197
197

Contents

53

5.4

5.5

6.2

5.2.4.5 General Observations
Scheduling Dynamic Tasks
5.3.1 A Feasibility Study of Dynamic Scheduling
5.3.1.1 Task Precedence Graphs
5.3.1.2 Simulation Methodology
5.3.1.3 Simulation Experiments
5.3.1.4 General Observations
5.3.2 Dynamic Scheduling Via Gradient Planes
5.3.2.1 Creating Gradient Planes
5.3.2.2 The Gradient Plane Algorithm
5.3.2.3 Simulation Studies
5.3.2.4 General Observations
5.3.3 Dynamic Scheduling Via Waves
5.3.3.1 Management Hierarchies
5.3.3.2 Wave Scheduling Algorithm
5.3.3.3 Analysis of Wave Scheduling
Fault Tolerance
5.4.1 Recovery Methods
5.4.2 Summary

Future Directions in Operating Systems

Applications: Distributed Simulation
Simulation of Discrete Systems

6.1.1 The Causality Principle

6.1.2 What is Distributed Simulation?
6.1.3 Why is Distributed Simulation Hard?
6.1.4 An Example

6.1.5 Overview of Distributed Simulation Strategies
The Deadlock Avoidance Approach

6.2.1 The Selection Phase

6.2.2 The Computation Phase

6.2.3 The I/O Phase

6.2.4 Initialization and Termination

198
198
200
201
202
205
212
213
214
214
217
222
224
224
225
228
230
232
234
234

239
239
240
241
243
245
247
248
252
252
252
253

6.3

6.4

6.5

7.1
12

7.3
7.4
dsd

The Deadlock Detection and Recovery Approach

6:3:1
6.3.2
6.3.3
6.3.4
6.3.5

The Simulation Phase

The Dijkstra Scholten Algorithm (DSA)
The Chandy Misra Algorithm (CMA)
Deadlock Recovery

Simulation Using Deadlock Detection

The Time Warp Mechanism

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8

Assumptions

Logical Processes

Error Detection and Roll Back
Anti-Messages

Global Virtual Time

Flow Control

I/O and Runtime Errors
Termination Detection

Summary

Applications: Partial Differential Equations

Solution Techniques
Grid Partitions

7.2.1

7.2.2.

7.2.3

7.2.4

Related Work

Five Point Stencil

7.2.2.1 Rectangular Partitions
7.2.2.2 Triangular Partitions
7.2.2.3 Hexagonal Partitions
Nine Point Stencil

7.2.3.1 Rectangular Partitions
7.2.3.2 Triangular Partitions
7.2.3.3 Hexagonal Partitions
Other Stencils

Computation/Communication Ratios

Optimal Pairs of Stencil and Partition

Performance Models

Contents

253
253
254
256
258
260
261
261
261
262
263
264
265
265
265
266

268
270
273
274
275
275
276
277
278
279
280
280
281
282
283
287

Contents

7.6

8.2

7.5.1 Message Passing Analysis
7.5.2 Performance Prediction
7.5.3 Experimental Validation

Summary

Commercial Hypercubes: A Performance Analysis

Hypercube Architectures

8.1.1

8.1.4

Intel iPSC

8.1.1.1 Hardware Organization
8.1.1.2 Software Organization

Ametek System/14

8.1.2.1 Hardware Organization
8.1.2.2 Software Organization

JPL Mark-III

8.1.3.1 Hardware Organization
8.1.3.2 Software Organization

Ncube/ten

8.1.4.1 Hardware Organization
8.1.4.2 Software Organization

FPS T Series

8.1.5.1 Hardware Organization
8.1.5.2 Software Organization

Hypercube Performance Analysis

8.2.1 Performance Study I (Intel, Ametek, JPL)

8.2.2 Performance Study II (FPS T Series)

8.2.1.1 Test Environment

8.2.1.2 Processor Benchmarks

8.2.1.3 Simple Communication Benchmarks

8.2.1.4 Synthetic Communication Benchmarks

8.2.1.5 Temporal Locality
8.2.1.6 Spatial Locality
8.2.1.7 Experimental Results

8.2.2.1 Processor Benchmarks

292
295
298
303

305
307
307
307
311
317
317
319
324
325
327
328
328
330
330
331
334
335
335
336
338
341
347
348
349
350
352
353

8.3

8.4

8.2.2.2 Communication Benchmarks
8.2.2.3 FPS T Series System Balance
8.2.3 Performance Study III (Intel iPSC/VX)
Hypercube System Comparisons
8.3.1 Hardware
8.3.2 Software
8.3.3 Summary

Future Directions

Index

Contents

356
359
361
362
363
364
370
370

378

