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Preface

The Workshop on Approximation and Online Algorithms (WAOA 2003) focused
on the design and analysis of algorithms for online and computationally hard
problems. Both kinds of problems have a large number of applications aris-
ing from a variety of fields. The workshop also covered experimental research
on approximation and online algorithms. WAOA 2003 took place in Budapest,
Hungary, from September 16 to September 18. The workshop was part of the
ALGO 2003 event, which also hosted ESA 2003, WABI 2003, and ATMOS 2003.

Topics of interest for WAOA 2003 were: competitive analysis, inapproximabil-
ity results, randomization techniques, approximation classes, scheduling, coloring
and partitioning, cuts and connectivity, packing and covering, geometric prob-
lems, network design, and applications to game theory and financial problems.
In response to our call for papers we received 41 submissions. Each submission
was reviewed by at least 3 referees, who judged the papers on originality, quality,
and consistency with the topics of the conference. Based on these reviews the
program committee selected 19 papers for presentation at the workshop and for
publication in this proceedings. This volume contains the 19 selected papers and
5 invited abstracts from an ARACNE minisymposium which took place as part
of WAOA.

We would like to thank all the authors who responded to the call for papers
and the invited speakers who gave talks at the ARACNE minisymposium. We
specially thank the local organizer Janos Csirik, the members of the program
committee

— Susanne Albers (University of Freiburg)

— Evripidis Bampis (University of Evry)

Danny Chen (University of Notre Dame)

Amos Fiat (Tel Aviv University)

Rudolf Fleischer (Honk Kong University of Science and Technology)
— Pino Persiano (University of Salerno)

— Jose Rolim (University of Geneva)

Martin Skutella (Max-Planck-Institut fiir Informatik)

I

and the subreferees

— Aleksei Fishkin

— Dimitris Fotakis

— Hal Kierstead

— Arie Koster

— Michael Langberg
— Christian Liebchen
— Ulrich Meyer

— Guido Schaefer

— Guochuan Zhang
— Uri Zwick
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Algorithmen and Mehrskalenmethoden at the University of Kiel, and the Na-
tional Sciences and Engineering Research Council of Canada. We also thank
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Online Coloring of Intervals with Bandwidth

Udo Adamy! and Thomas Erlebach?®*

! Institute for Theoretical Computer Science, ETH Ziirich, 8092 Ziirich, Switzerland
adamy@inf.ethz.ch
2 Computer Engineering and Networks Laboratory, ETH Ziirich, 8092 Ziirich, Switzerland
erlebach@tik.ee.ethz.ch

Abstract. Motivated by resource allocation problems in communication net-
works, we consider the problem of online interval coloring in the case where the
intervals have weights in (0, 1] and the total weight of intersecting intervals with
the same color must not exceed 1. We present an online algorithm for this prob-
lem that achieves a constant competitive ratio. Our algorithm is a combination of
an optimal online algorithm for coloring interval graphs and First-Fit coloring, for
which we generalize the analysis of Kierstead to the case of non-unit bandwidth.

1 Introduction

Online coloring of intervals is a classical problem whose investigation has led to a num-
ber of interesting insights into the power and limitations of online algorithms. Intervals
are presented to the online algorithm in some externally specified order, and the algo-
rithm must assign each interval a color that is different from the colors of all previously
presented intervals intersecting the current interval. The goal is to use as few colors as
possible. If the maximum clique size of the interval graph is w, it is clear that w colors
are necessary (and also sufficient in the offline case [6]). Kierstead and Trotter presented
an online algorithm using at most 3w — 2 colors and showed that this is best possible
[11]. Another line of research aimed at analyzing the First-Fit algorithm, i.e., the algo-
rithm assigning each interval the smallest available color. It is known that First-Fit may
need at least 4.4 w colors [3] on some instances and is therefore not optimal. A linear
upper bound of 40 w was first presented by Kierstead [8] and later improved to 25.8 w
by Kierstead and Qin [10].

In this paper, we study a generalization of the online interval coloring problem
where each interval has a weight in (0, 1]. Motivated by applications, we refer to the
weights as bandwidth requirements or simply bandwidths. A set of intervals can be as-
signed the same color if for any point 7 on the real line, the sum of the bandwidths of its
intervals containing r is at most 1. The special case where every interval has bandwidth
1 corresponds to the original online interval coloring problem. Our problem is thus a
simultaneous generalization of online interval coloring and online bin-packing.

Our main result is an online algorithm that achieves a constant competitive ratio
for online coloring of intervals with bandwidth requirements. The algorithm partitions

* Partially supported by the Swiss National Science Foundation under Contract No. 21-63563.00
(Project AAPCN) and the EU Thematic Network APPOL II (IST-2001-32007), with funding
provided by the Swiss Federal Office for Education and Science.

R. Solis-Oba and K. Jansen (Eds.): WAOA 2003, LNCS 2909, pp. 1-12, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



2 Udo Adamy and Thomas Erlebach

the intervals into two classes and applies First-Fit to one class and the algorithm by
Kierstead and Trotter [11] to the other class. In order to analyze First-Fit in our context,
we extend the analysis by Kierstead [8] to the setting where the intervals have arbitrary
bandwidth requirements in (0, 1/2].

1.1 Applications

Besides its theoretical interest, investigating the online coloring problem for intervals
with bandwidth requirements is motivated by several applications.

First, imagine a communication network with line topology. The bandwidth of each
link is partitioned into channels, where each channel has capacity 1. The channels could
be different wavelengths in an all-optical WDM (wavelength-division multiplexing)
network or different fibers in an optical network supporting SDM (space-division multi-
plexing), for example. Connection requests with bandwidth requirements arrive online,
and each request must be assigned to a channel without exceeding the capacity of the
channel on any of the links of the connection. We assume that the network nodes do
not support switching of traffic from one channel to another channel (which is the case
if only add-drop multiplexers are used). Then a connection request from a to b corre-
sponds to an interval [a, b) with the respective bandwidth requirement, and the problem
of minimizing the number of required channels to serve all requests is just our online
coloring problem for intervals with bandwidth requirements.

A related scenario in a line network is that the connection requests have unit dura-
tions and the goal is to serve all connections in a schedule of minimum duration. In this
case, the colors correspond to time slots, and the total number of colors corresponds to
the schedule length. This is a special case of the call scheduling problem considered,
for example, in [5, 4].

Finally, an interval could represent a time period during which a job must be pro-
cessed, and the bandwidth of the interval could represent the fraction of a resource
(machine) that the job needs during its execution. At any point in time, a machine can
execute jobs whose bandwidths (here, resource requirements) sum up to at most 1. If
jobs arrive online (before the actual schedule starts) and have to be assigned to a ma-
chine immediately, with the goal of using as few machines as possible, we again obtain
our online interval coloring problem with bandwidth requirements.

1.2 Related Work

We have already discussed previous work on online coloring of intervals (without band-
width requirements) in the beginning of the introduction. A survey of results for online
graph coloring can be found in [9]. The problem of assigning colors to paths that repre-
sent connection requests in communication networks has been studied intensively due
to its motivation by all-optical WDM networks. A survey of offline results can be found
in [2]. Online path coloring results for trees and meshes are given in [1]. In these path
coloring problems, the bandwidth requirement of each path is 1, implying that no two
intersecting paths can get the same color.
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2 Preliminaries

We are given a collection Z of closed intervals over the real numbers R, where each
interval i is associated with a bandwidth requirement b(¢), where 0 < b(3) < 1. In an
online scenario these intervals are processed one by one in some externally determined
sequence. Whenever an interval ¢ arrives, the algorithm knows the previously processed
intervals and the colors assigned to them, but it knows nothing about the unprocessed
intervals arriving in the future. Based on this knowledge the algorithm irrevocably as-
signs a color f(7) to the interval 7, in such a way that for every color = and every point
r € R the sum of the bandwidths of the intervals containing r that are assigned color z
is at most 1.

We compare the performance of an online algorithm with the number of colors used
by an optimal offline algorithm, denoted by OPT. More precisely, we call an online
algorithm A c-competitive if A(Z) < ¢- OPT(Z) for all input sequences Z.

LetZ = {t1,..., 10} be the collection of intervals and let b(7;) denote the bandwidth
requirement of interval 7;,1.e. 0 < b(#;) < 1fort = 1,...,¢. See Fig. | for an example
with ¢ = 8 intervals depicted as rectangles. Their projections onto the real line are
exactly the intervals over the real numbers, and the height of a rectangle shows the
bandwidth requirement of the corresponding interval. Let (Z, <) be the partial order of
the intervals in Z, where the relation 7 < j holds if and only if the right endpoint of
interval 7 is less than the left endpoint of interval j, e.g. we have i4 < i5 in Fig. 1. Let
L C 7 be a subset of intervals. For an interval « € 7, we write 1 < L (L < 1) if for all
intervals j € L,7 < j (j < ©) holds. The neighborhood of an interval i € T is the set
of intervals in Z that are different from 7 and intersect i. It is denoted by N (7). In the
example, the neighborhood of interval i4 is N (i4) = {i2,i3}.

I 13 I [ s |

19 :
[ 1.
— L | ;
T T T T T T T T T T > R

0 1 2 3 4 5 6 7 8 9

Fig.1. The set Z = {i1,...,43} of intervals.

The density D(r | L) of L at a point 7 € R. is the sum of the bandwidths of the
intervals in L that contain the point r, i.e. D(r | L) = 37 .., b(j). The density
D(i | L) of an interval i € T with respect to L is the minimum density D(r | L) over
all points r in the interval 4, i.e. D(: | L) = min{D(r | L) : r € i}. With D(L) we
denote the maximum density of L, that is D(L) = max{D(r | L) : » € R}. In our
example shown in Fig. 1, the density D(3 | T) = b(iz) + b(i3) + b(i4). The density
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of the interval i3 with respect to Z is D(i3 | Z) = b(i2) + b(i3) and it is achieved at
the point 2 for example. Finally, the maximum density D(Z ) = b(i2) + b(is) + b(is)
is achieved at point 5.

Further, we need some notation for classifying intervals in terms of their left to
right order (Z, <). A chain C is a sequence of intervals, where ¢ < j holds for any
two consecutive intervals 7 and j in this sequence C. Therewith, we define the height
h(i | L) of an interval 7 with respect to L to be the length of the longest chain C' in L
such that C' < i. Similarly, the depth d(i | L) is the length of the longest chain C in
L such that i < C. The centrality of an interval i with respect to L is then given by
c(i | L) = min{h(i | L),d(i | L)}. Looking again at the example presented in Fig. 1,
the height of interval 74 with respect to Z is h(is | Z) = 1 since the longest chain
consists only of the interval ¢;. The corresponding depth d(i4 | Z) equals 3 because
of the chain ig < i7 < ig of length 3. Hence, the centrality c¢(i¢4 | Z) is given by
min{1,3} = 1.

Notice that for a subset L C N(j), if an interval i contains an endpoint of the
interval j then ¢(i | L) = 0, and if ¢(i | L) > 1 then the interval 7 is contained in the
interval 7, i.e. ¢ C J.

For our analysis we need two lemmas regarding the existence of an interval with
high density in a clique of intervals. The first lemma is a generalization of a lemma that
appeared in [12, 7] for the case of interval graphs, i.e. for the setting where all intervals
have unit bandwidth.

Lemma 1. Let 7 be a collection of intervals. If L is a clique in the intersection graph
of I (meaning that any two intervals in L intersect), then there exists an interval i € L

such that

D(L
D(GE|L)> D) .
2
Proof. Let L = {i1,...,1}. Since the intervals in L form a clique, there is a point

r € R that is contained in every interval in L and we have

¢

D(L) =max{D(r | L) :r € R} = Y _ b(im).

m=1

We build the sequence S of bandwidths of the intervals in L from left to right.
Whenever an interval i,, starts or ends, we append its bandwidth b(i,, ) to the sequence
S. Thus, the length of the sequence S is 2¢ since every bandwidth of intervals in L
appears twice, once for the left endpoint and once for the right endpoint. Starting from
the beginning of S, let S; be the largest initial subsequence of elements in S obeying
the condition that their sum is less than D(L)/2. Likewise, let Sy be the largest subse-
quence starting from the end of .S (going backwards) under the condition that the sum
of elements in Sy is less than D(L)/2.

Now, we claim that there exists an interval : whose bandwidth appears neither in
the subsequence S; nor in the subsequence Sy. This is the case, because otherwise
all bandwidths of intervals would appear either in S; or in S3, which, in turn, means
that their total sum would be at least D(L) contradicting the fact that each of the two
subsequences sums up to less than D(L)/2.
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Every such interval 7 has a density D(¢ | L) > D(L)/2. This follows from the
construction of the sequences S7 and S; and from the fact that in a left-to-right scan

through a clique of intervals all left interval endpoints precede all right interval end-

points. O

Lemma 2. Let L be a clique of intervals each of which is assigned to a different color.
If every interval in L has density at least p < 1 within its color class, then there exists
an interval i € L such that the density of i with respect to the union of the present color
classes is at least p - |L| /2.

Proof. This lemma can be proven similar to Lemma 1 by building a sequence S from
a left-to-right scan of the intervals in L, except that this time we append the value p
whenever an interval in L starts or ends. But we will prove it by induction on the size
of L. In the base cases |L| = 1 and |L| = 2 any interval in L has the desired property,
since |L|/2 < 1. For the induction step, let j be the interval of L with the smallest
left endpoint and let k£ be the interval of L with the largest right endpoint. Using the
induction hypothesis, we choose an interval : € L \ {j, k} such that the density of the
interval 7 with respect to the union of color classes of intervals in L \ {7, k} is at least
p-(|L|/2 — 1). Since the intervals j and k intersect, the interval ¢ is contained in j U k,
and because the intervals j and k have density p within their color classes, the density

of the interval ¢ with respect to the union of all present color classes is at least p - |L|/2.
O

Finally, if N = (n1,...,n.) is a sequence of length ¢t we denote the initial subse-
quence of IV of length k by Ny = (n1,...,nk). Theresult (nq,...,n:, n) of appending
n to the end of N is denoted by N o n.

3 The Algorithm

Our algorithm works with two sets C'; and C', of disjoint colors. Let 0 = o035 - - - be
any sequence of intervals. Each o; is associated with a bandwidth b(o;), 0 < b(0;) < 1.
Whenever an interval o; arrives, we process it according to its bandwidth b(o;).

If b(o;) < 1/2, the algorithm assigns the interval o; a color from the set C; of
colors using the First-Fit principle. The First-Fit assignment is made by coloring the
interval o; with color o, where « is the smallest color in C; such that for every r € o,
the sum of the bandwidths of intervals previously colored « and containing 7 is at most
1-— b(O’,)

If b(0;) > 1/2, the algorithm assigns the interval o; a color from the set C5 using the
optimal online interval coloring algorithm of Kierstead and Trotter [11]. Note that the
intervals having bandwidth exceeding 1/2 have the same property as intervals without
bandwidth requirement, namely, if two intervals intersect, they have to receive different
colors in a proper coloring.

We remark that the partition into two classes is indeed necessary in our approach,
because First-Fit can be arbitrarily bad for intervals with bandwidths in (0, 1] as shown
in Fig. 2.

Theorem 1. The algorithm solves the online problem of coloring intervals with band-
widths using at most 195 times as many colors as the optimal offline algorithm.
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colors bandwidths
5 ig 1
- - €
18 .
4 17 1—¢
0 1 2¢
16
3 15 1-—2¢
| : — 1 3¢ ‘
. 14 i6 8
2 i3 1—8e ‘ i1
_ 12
: | 4e
1 1 " 1 — 4e in || i3 ] @5 |] o7 ig

>

> R > R
(a) The First-Fit algorithm requires many colors (b) The optimal offline algorithm needs
for the sequence i1, %2, .. ., %9. only two colors.

Fig. 2. For bandwidth requirements in (0, 1] the First-Fit algorithm can perform arbitrarily badly.

For the proof of this theorem we need two lemmas which we will prove below. Fix
a sequence o and let Z be the set of all intervals appearing in 0. Let Z; C T be the
intervals with bandwidth at most 1/2, and let Z, C 7 be the intervals with bandwidth
exceeding 1/2. We have 7 = 7; U Zs.

Lemma 3. Ifthe number of colors that the algorithm uses from the set C is at least 2,
then this number is less than 192 times the maximum density D(Z;) of intervals in 1.

Lemma 4. The number of colors from the set C that are used by the algorithm is less
than 3 times the number of colors used by an optimal offline algorithm for coloring the
intervals in I5.

Proof. (of Theorem 1) Let OPT denote the number of colors used by an optimal offline
algorithm. Clearly, this number is at least as large as the maximum density of the inter-
vals, i.e. D(Z) < OPT. With OPT(Z;) and OPT(Z,) we denote the number of colors
assigned by an the optimal offline algorithm to the intervals in Z; and Z5, respectively.
Since OPT(Z;) and OPT(Z5) count the number of colors for restricted sets of intervals,
OPT(Z;) < OPT and OPT(Z;) < OPT hold true.

By Lemma 3, the algorithm colors the intervals in Z; using the First-Fit algorithm
with less than 192 - OPT(Z; ) many colors. This is true, because OPT(Z;) > D(Z;) and
if the First-Fit algorithm needs just one color for coloring the intervals in Z7, then also
the optimal offline algorithm needs one color.
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By Lemma 4, the algorithm colors the intervals in Z using an optimal online algo-
rithm for coloring interval graphs with less than 3 times as many colors as an optimal

offline algorithm.
Thus, the number C of colors used by the algorithm is

C <192 OPT(I,) + 3 - OPT(Zy)
<192 OPT + 3 - OPT
— 195 - OPT.

Hence, the algorithm is 195-competitive. O

Let us start with the proof of Lemma 4.

Proof. (of Lemma 4) The optimal online interval coloring algorithm uses at most 3 -
w(Z3) — 2 colors for coloring the intervals in Z5 [11]. Since the bandwidth of the in-
tervals in Z, is greater than 1/2, any two intersecting intervals must receive different
colors. Therefore any offline algorithm needs at least w(Z5) many colors for coloring
the intervals in Zs. O

Now we will prove Lemma 3, using a rather technical induction.

Proof. (of Lemma 3)

In this proof we generalize a proof of Kierstead, who proved in [8] that First-Fit
uses less than 40 w colors for interval coloring, i.e. the case where all bandwidths are 1.
We extend the proof to the case where all intervals have bandwidth at most 1/2.

The main idea of the proof is the following: If the First-Fit coloring uses x > 192 -y
colors, there is a point 7 € R where the density D(r | Z;) exceeds y. For y > D(Z;)
we would arrive at a contradiction, since—by definition of D(Z;)—there will not be
any point whose density with respect to Z; exceeds D(Z;). Therefore the number of
colors used by the First-Fit algorithm is x < 192 - D(Z;).

Let f(i) denote the color that First-Fit assigns to interval 7, and let C(q) = {i €
T : f(i) = q} be the set of intervals with color ¢. For a range of colors we denote by
Clp, q] = Up<r<qC(r) all intervals whose colors are within that range.

In order to find a point with high density in Z;, we construct a sequence I of in-
tervals iy O --- D 4, and disjoint blocks By, ..., B; of intervals such that i,,, € B,,
and the sum of densities D(i1 | By) + -+ -+ D(i, | Bm) is at least some number
Sm, form = 1,...,t. In this construction, every block B,, consists of intervals from
the neighborhood of the interval i,,—; whose colors are within a certain range. More
formally, B,, = Clx —192-7r,,, + 1,2 — 192 - 7, 1] N N (iyp—1) Where r,,, < 8,,, for
m = 1,...,t. Since the intervals in / form a decreasing sequence, the density of the
interval ¢, is large, i.e. D(i; | Clz — 192 - r, + 1,2]|) > s;. The numbers 7, and s,,
will be chosen in such a way that 192 - r,, and 192 - s,,, are integral.

In the induction step we would like to find an interval ¢, C 4; with high density
in B; 1. However, there may not be any interval with high density in B, 1, or the only
intervals with high density in B;y; may overlap i;. Before we explain below how to
deal with these cases, we introduce some more notation.

Let I = (i1,...,%;) be a sequence of intervals and let N = (njy,...,n;) be a
sequence of real numbers, where each n,, is of the form 2k=2 for some integer k > 0.
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In particular, we have n,,, > 1/4 for all m = 1,...,t. The following parameters are

defined on the pair (IV,I) for1 <m < t:

— Let s,,, be the sum of the first m numbers of the sequence NV, i.e. sp, = Z;"zl nj,

and set so = 0. Note that 4 - s,, is integral, since all n;’s are of the form 2F~2.

- Let = Sm—1 + Nm/2 < Sm, and set 7o = 0. Observe that 8 - r,,, is integral for
the same reason as above.

- Let B,,, be the disjoint blocks of intervals defined by B,,, = C[z—192-7,,,+1,2—
192 - 7—1] N N (2,—1) for m > 1, where iy = R. By, consists of all intervals in
7, that intersect the previous interval i,,_; of the sequence I and have a color in
the given range.

— Let ¢, be the centrality, and d,,, be the density of the interval 7,,, within the intervals
in By, i.€. ¢ = ¢(im | Bm) and dy, = D(ir, | Bp).

We call a pair (N, I) admissible if the following conditions hold for 1 < m < ¢:

(1) The interval 7,, is contained in the set B, i.e. i,, € Bp.

(2) The centrality of the interval i,, with respect to B,, is at least 2, i.e. ¢,,, > 2, if
m > 1.

(3) The number 1,41 > n,, 427 m+1 if m < t.

(4) The density of the interval i,,, with respect to By, is at least ny,, i.e. dpm > Ny

Notice that if (N, I) is an admissible pair, then the density of the interval i, is at
least s, i.e. D(i; | Z1) > s:. Since the blocks B,,, are disjoint, and the intervals i,, are
contained in each other by (2), the density of the interval ¢; is at least the sum of the
densities d,,,, which in turn are at least n,,, by (4). By definition s; constitutes exactly
this sum.

We shall prove the lemma by first showing that there exists an admissible pair
(N, I), and if (N, I) is such an admissible pair and the number z of used colors fulfills
x > 192 - s, then there exists an admissible pair (N’, /’) such that s}, > s;. Here and
below primes indicate elements and parameters of the new admissible pair.

For the basis of the induction we need an admissible pair. Let ¢« be any interval
colored z.

If b(i) = 1/2, then N = (1/2) and I = (i) is an admissible pair consisting of
t = 1 interval. Its parameters are as follows: n; and therefore s, equal 1/2, and r; =
ny/2 = 1/4. Since the interval ¢; = 1 is colored z, it is contained in the block B, =
Clz — 48 + 1, z]. Further its density d; in By is at least 1/2 = ny, since the interval
11 itself contributes a bandwidth b(2,) = 1/2. The conditions (2) and (3) do not play a
role fort = 1.

If (i) < 1/2, then because of First-Fit there is a point r € i, where intervals colored
z — 1 intersect, whose total bandwidth exceeds 1/2. Otherwise the interval ¢ would have
been colored z — 1. These intervals form a clique L and according to Lemma 1, there
exists an interval j € L with density D(j | L) > 1/4. Then I = (j) and N = (1/4)
is an admissible pair. Again we have to check the conditions. The numbers n; and s;
are 1/4, whereas 71 = n;/2 = 1/8. Since the interval ¢; = j is colored z — 1, it is
contained in the block By = C[z — 24 + 1, z]. The condition (4) is fulfilled, because
the density of the interval is d; > 1/4 = n;.
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Now fix an admissible pair (N, I'). We begin the process of constructing (N',I").
Let B=Clz —192- s, + 1,2 — 192 - ;] N N(3¢).

The bandwidth of the interval i, is b(i;) < 1/2. Since iy € B, the color f(i;) of
the interval i, is larger than z — 192 - r,. According to First-Fit, there exists for each
colora € [z —192- s, + 1,z — 192 - r] a point 7o, € %, such that there are intervals
with color « intersecting at 7, whose bandwidths sum up to more than 1/2. Otherwise
the interval i; would have received a smaller color. Since s; — r, = n./2, there are at
least 96 - n; places r, where intervals with total bandwidth greater than 1/2 intersect,
and according to Lemma 1, we find at least 96 - n; intervals of different colors each with
density exceeding 1/4 within its color class. Let M denote this set of intervals.

We partition M into level sets according to the left-to-right ordering of the intervals.
LetLy={ie M:h(i| M)=k<d(i@|M)}andRx={ie M:h(i|M)>k=
d(i| M)}. Foranintervali € M,i € Ly URy ori € M \U;_,(L; UR;) implies that
the centrality c(i | M) of 7 with respect to M is at least k.

By the pigeon hole principle (at least) one of the following four cases holds true.
Otherwise M would contain fewer than 96 - n; intervals.

(i) There is an interval ¢ € M with high centrality c(z | M) > 3 + [log, n.].
(ii) Thereis a large central level set, i.e. | Li| > 81,42 or |Rx| > 8n;4%* for some
ksuchthat2 < k < 2 + [log, n¢].
(iii) There is a large first level set, i.e. [L1| > 8n; or |R;| > 8n;.
(iv) There is an extra large outer level set, i.e. [Lo| > 28n, or |Ry| > 28n;.

— Case (i):
If there is an interval ¢ € M with high centrality, we extend the sequence I by this
interval ¢. The length of the sequence increases by 1. Hence, we set t' = t + 1,
iy, = i,and ny,, = 1/4, because the interval i;__; has density greater than 1/4
within its color class.
We have to show that N’ = N onj,; and I = I o i;,, form an admissible pair
(N', I'). For condition (1) we have to observe that the interval 7} ; is chosen from
Blwhlch is 'a.subset of By, because 7}, = st + ngy1/2 > st. Hence, iy, , €
B . Condition (2) holds, because ¢, ; > 3+ [logy n¢] > 2 since ny > 1/4. The
number nj ; = 1/4 = 47! = p,q2-3-lgane > ng42~¢t+1 fulfills the condition
(3), and the density di,, > 1/4 = nj,;, which establishes condition (4). The
density of the interval i}, with respect to Z; is at least s}, = s; + 1/4.

— Case (ii):

If there is a large central set, we can without loss of generality assume that |Ly| >
8n:4?~*. The other case is exactly symmetric. Note that Ly is a clique in 7,
since 4,7 € M and i < j implies that h(i | M) < h(j | M). Furthermore,
each interval in Ly has a density greater 1/4 within its color. Thus, by applying
Lemma 2 with p = 1/4 we can find an interval i € L with density D(i | B) >
n4%2~F. We extend the sequence I by this interval i and set the values t/ = ¢ + 1,
it41 = 4, and nj,; = n42~%. Note that n},, > 1/4 since n},, = n,4>~* >
7“42—2— [log, ne] > nd— logyni—1 _ 1/4_
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Again, we have to verify that N/ = N onj ; and I' = I oi;,; form an admissible
pair (N',I"). The condition (1) is satisfied, because the interval i; ., is chosen
from B, which is a subset of B} ;. since 7 ; = s; + 1y, 1/2 > s¢. The centrality
¢i41 = k > 2 and the number n; ; = n:42~* fulfill the conditions (2) and (3).
The condition (4) concerning the density of the interval i}, holds, because d; | >
% = ml 4.

Hence, the density of the interval 7}, with respect to 7; is at least sj, = s; +n, 427k,

Case (iii)

If there is a large first level set, we can without loss of generality assume that
|L1| > 8n;. For the same reason as in Case (ii) the set L, is a clique in Z;, and each
interval in L, has a density greater 1/4 within its color class. Hence, by Lemma 2
(again with p = 1/4) there exists an interval i € Ly with density D(¢ | B) > ny.
Since this interval ¢ with high density in B, ; might have a centrality of one only,
thus violating the condition (2), we replace the interval 7; with the interval <. We
sett’ =t, i} =14, and nj = 2n;.

Then the new block B; O B, U B, since r; = s;—1 + n;/2 = s,. Also the interval
i, C i, because i; has centrality 1 in the subset M of the neighborhood N (i;).
Hence, i, € B establishing the condition (1). The condition (2) simply holds,
because we have ¢, > ¢; > 2, if t > 1. For condition (3) a rough estimate suffices,
namely n > n; > n;_1427 > n/ 427 The density condition (4) is satisfied,
because d; > D(i | B) + d; > 2ny = nj.

In total, the density of the interval i}, with respect to Z; is at least s}, = s; + 1.

Case (iv)

If there is an extra large outer level set, we can without loss of generality assume
that |Lo| > 28n,. Each interval in Lo has density greater 1/4 within its color
class. Let e be the leftmost point that is contained in the interval 7, as well as in all
intervals in Ly. We define T' := B, U B. Then, the density D(e | T') of the point
e with respect to T is at least the density of the interval i; with respect to B; plus
the density of e within the set Lo. Hence, D(e | T') > D(i; | By) + D(e | Lo) >
n¢ + 7ny = 8ny, and according to Lemma 1 we find an interval j; in the clique of
intervals in 7" containing e, such that D(j, | T') > 4n,.

Additionally, we choose an interval j» from B, such that its centrality c(js | By) =
¢, — 1 and j < 1;. Note that such an interval must exist, because of the centrality
of the interval i; in B;.

Now we distinguish two cases according to the left interval endpoints of j; and
J2. Either the left endpoint of 7, lies further left, which implies that the centrality
c(j1 | T) = ¢e(j2 | T) > e — 1, or the left endpoint of the interval j; lies further
left, in which case the interval j, is contained in j;, and thus the density D(j5 |
T)2 D@1 |T) 2 4.

In either case there exists an interval ¢ € {J1, 72} in T such that D(i | T') > 4n,
and ¢(i | T) > ¢; — 1. In order to fulfill the condition (2) we have to replace either
the interval ¢; or the interval 7, _; with the new interval i depending on the centrality
c(@ | T).



