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1. Motivation, Aims
and Examples

These lectures will concentrate on (nonlinear) stochastic partial differential
equations (SPDEs) of evolutionary type. All kinds of dynamics with stochas-
tic influence in nature or man-made complex systems can be modelled by
such equations. As we shall see from the examples, at the end of this section
the state spaces of their solutions are necessarily infinite dimensional such
as spaces of (generalized) functions. In these notes the state spaces. denoted
by E. will be mostly separable Hilbert spaces, sometimes separable Banach
spaces.

There is also enormous research activity on SPDEs, where the state spaces
are not linear. but rather spaces of measures (particle systems, dynamics in
population genetics) or infinite-dimensional manifolds (path or loop spaces
over Riemannian manifolds).

There are basically three approaches to analysing SPDEs: the “martingale
(or martingale measure) approach” (cf. [Wal86]), the “semigroup (or mild
solution) approach™ (cf. [DPZ92], [DPZ96]) and the “variational approach”
(cf. [R0oz90]). There is an enormously rich literature on all three approaches
which cannot be listed here. We refer instead to the above monographs.

The purpose of these notes is to give a concise introduction to the “vari-
ational approach”, as self-contained as possible. This approach was initiated
in pioneering work by Pardoux ([Par72|,[Par75]) and further developed by
N. Krylov and B. Rozowskii in [KR79] (see also [Roz90]) for continuous mar-
tingales as integrators in the noise term and later by I. Gyongy and N. Krylov
in [GK81],[GK82],[Gy682] for not necessarily continuous martingales.

These notes grew out of a two-semester graduate course given by the second-
named author at Purdue University in 2005/2006. The material has been
streamlined and could be covered in just one semester depending on the pre-
knowledge of the attending students. Prerequisites would be an advanced
course in probability theory, covering standard martingale theory, stochas-
tic processes in R? and maybe basic stochastic integration. though the latter
is not formally required. Since graduate students in probability theory are
usually not familiar with the theory of Hilbert spaces or basic linear operator
theory, all required material from these arcas is included in the notes, most
of it in the appendices. For the same reason we minimize the general theory
of martingales on Hilbert spaces, paying, however, the price that some proofs
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about stochastic integration on Hilbert space are a bit lengthy, since they have
to be done “by bare hands”.

In comparison with [Roz90| for stmphicity we specialize to the case where
the integrator in the noise term is just a cylindrical Wiener process. But every-
thing is spelt out in a way so that it generalizes directly to continuous local
martingales. In particular, integrands are always assumed to be predictable
rather than just adapted and product measurable. The existence and unique-
ness proof (cf. Subsection 4.2) is our personal version of the one in [KR79],
[Roz90] and largely taken from [RRWO6] presented there in a more general
framework. The results on invariant measures (cf. Subsection 4.3) we could
not find in the literature for the “variational approach™. They are, however,
quite straightforward modifications of those in the “semigroup approach™ in
[DPZ96]. The examples and applications in Subsection 4.1 in connection with
the stochastic porous media equation are fairly recent and are modifications
from results in [DPRLRWO06] and [RRW06].

To keep these notes reasonably self-contained we also include a complete
proof of the finite-dimensional case in Chapter 3, which is based on the very
focussed and beautiful exposition in [Kry99], which uses the Euler approxi-
mation. Among other complementing topics the appendices contain a detailed
account of the Yamada Watanabe theorem on the relation between weak and
strong solutions (cf. Appendix E).

The structure of these notes is, as we hope, obvious from the list of con-
tents. We only would like to mention here, that a substantial part consists of
a very detailed introduction to stochastic integration on Hilbert spaces (see
Chapter 2), major parts of which (as well as Appendices A C) are taken from
the Diploma thesis of Claudia Prévot and Katja Frieler. We would like to
thank Katja Frieler at this point for her permission to do this. We also like to
thank all coauthors of those joint papers which form another component for
the basis of these notes. It was really a pleasure working with them in this
exciting area of probability. We would also like to thank Matthias Stephan
and Sven Wiesinger for the excellent typing job, as well as the participants
of the graduate course at Purdue University for spotting many misprints and
small mistakes.

Before starting with the main body of these notes we would like to give a few
examples of SPDE that appear in fundamental applications. We do this in a
very brief way, in particular, pointing out which of them can be analysed by
the tools developed in this course. We refer to the above-mentioned literature
for a more elaborate discussion of these and many more examples and their
role in the applied sciences.

Example 1.0.1 (Stochastic quantization of the free Euclidean quan-
tum field).
dX; = (A — m?) X, dt + dW,

on E C §'(RY).
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e m € [0,00) denotes “mass”,

o (W;)i>0 is a cylindrical Brownian motion on L?(R?) ¢ E (the inclusion
is a Hilbert-Schmidt embedding).

Example 1.0.2 (Stochastic reaction diffusion equations).
dX, = [AX, — XP] dt + /Q dW,
on E := LP(RY).

e () is a trace class operator on L?(R?), can also depend on X; (then Q

becomes Q(X})).
o (W})i>0 is a cylindrical Brownian motion on L?(R%).

Example 1.0.3 (Stochastic Burgers equation).
1
dX, = AX, — X, %X, +/Q daw,
agq

on E := L*([0,1]).
o {e0.1],
e () as above,
e (W})i=0 is a cylindrical Brownian motion on L*([0,1]).
Example 1.0.4 (Stochastic Navier—Stokes equation).
dX; = [VAX; — (X0, V)X,] dt + /Q AW,
on E = {r € L*(A — R?, dx) l dive =0}, AcC R?, d = 2,3, JA smooth.
e v denotes viscosity,
e A, denotes the étok(*s Laplacian,
e () as above.
o (W;)i=>0 is a cylindrical Brownian motion on L*(A — RY),
e div is taken in the sense of distributions.
Example 1.0.5 (Stochastic porous media equation).
dX; = [A\l/(.\',) + ‘I’(.\',)] dt + B(X;) dW;

on H := dual of H}(A) (:= Sobolev space of order 1 in L*(A) with Dirichlet
boundary conditions).
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e A as above,
e U & :R — R “monotone”,
e B(x): H — H Hilbert-Schmidt operator, V x € H.

The general form of these equations with state spaces consisting of functions
€ — x(&), where £ is a spatial variable, e.g. from a subset of R, looks as
follows:

AX1(§) = A(1 Xi(€). DeXi (€), DE(Xi(9) )
+ B(t, Xi(&), DeXi(€), D(Xi(€)) ) AW, .

Here D¢ and D'f mean first and second total derivatives, respectively. The
stochastic term can be considered as a “perturbation by noise”. So, clearly one
motivation for studying SPDEs is to get information about the corresponding
(unperturbed) deterministic PDE by letting the noise go to zero (e.g. replace
B by - B and let ¢ — 0) or to understand the different features occurring if
one adds the noise term.

If we drop the stochastic term in these equations we get a deterministic
PDE of “evolutionary type”. Roughly speaking this means we have that the
time derivative of the desired solution (on the left) is equal to a non-linear
functional of its spatial derivatives (on the right).

Among others (see Subsection 4.1, in particular the cases, where A is
replaced by the p-Laplacian) the approach presented in these notes will cover
Examples 1.0.2 in case d = 3 or 4. (cf. Remark 4.1.10,2. and also [RRW06]
without restrictions on the dimension) and 1.0.5 (¢f. Example 4.1.11). For
Example 1.0.1 we refer to [AR91] and for Examples 1.0.3 and 1.0.4 e.g. to
[DPZ92], [DPZ96].



2. The Stochastic Integral
in General Hilbert Spaces
(w.r.t. Brownian Motion)

This chapter is a slight modification of Chap. 1 in [FKO1].
We fix two separable Hilbert spaces (U, (. )i) and (H. (. )). The first part
of this chapter is devoted to the construction of the stochastic Ito integral

ot
/ O(s) dW(s), te[0,T],
Jo

where W (t), t € [0,T], is a Wiener process on U and ¢ is a process with
values that are linear but not necessarily bounded operators from U to H.

For that we first will have to introduce the notion of the standard Wiener
process in infinite dimensions. Then there will be a short section about mar-
tingales in general Hilbert spaces. These two concepts are important for the
construction of the stochastic integral which will be explained in the following
section.

In the second part of this chapter we will present the Ito formula and
the stochastic Fubini theorem and establish basic properties of the stochastic
integral, including the Burkholder Davis Gundy inequality.

Finally, we will describe how to transmit the definition of the stochastic
integral to the case that W(t), t € [0,77], is a cylindrical Wiener process. For
simplicity we assume that U and H are real Hilbert spaces.

2.1. Infinite-dimensional Wiener processes

For a topological space X we denote its Borel o-algebra by B(.X).

Definition 2.1.1. A probability measure g on (U,B(U)) is called Gaussian
if for all v € U the bounded linear mapping

v U — R
defined by

u— (u,v)y, ueU,
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has a Gaussian law, i.e. for all v € U there exist m := m(v) € R and o :=
o(v) € [0, 00 such that, if o(v) > 0,

(o (v)™1) (A) = u(v' € A) —— / . = dr for all A € B(R),

and, if o(v) = 0,
no (7’,)71 = (SIH(I')'

Theorem 2.1.2. A measure pu on (U. B(U)) is Gaussian if and only if
(u) = / el (o) = etmew ~3{Quuwu gy e,
U

where m € U and Q € L(U) is nonnegative, symmetric, with finite trace (see
Definition B.0.3; here L(U) denotes the set of all bounded linear operators
on U).

In this case p will be denoted by N(m,Q) where m is called mean and Q
s called covariance (operator). The measure p is uniquely determined by m
and Q.

Furthermore, for all h,g € U

/.(.r,h>u pu(dx) = (m, h)y
/((;r,h,)u — (m,h)v) ((x, 9)v — (m.g)v) p(dr) = (Qh, g)u

/||.I7 —ml} p(dz) = tr Q.

Proof. (cf. [DPZ92]) Obviously, a probability measure with this Fourier trans-
form is Gaussian. Now let us conversely assume that p is Gaussian. We need
the following:

Lemma 2.1.3. Let v be a probability measure on (U, B(U)). Let k € N be
such that -

J(;,.I')u’k vidr)<oo VzelU.
U

Then there exists a constant C' = C'(k,v) > 0 such that for all hy. ..., hp,eU
[(hy ) - (hie )| v(da) < C [hyllo - | hello
18
In particular, the symmetric k-linear form

U* 3 (hy,. ... hi) — /<hl~-">17 co(hg oy v(dr) €R

18 continuous.
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Proof. For n € N define

/‘ ‘(z.:r)u|k v(de) < n}.
U

U= O U,.

n=1

Uy = {ZGU

By assumption

Since U is a complete metric space, by the Baire category theorem, there
exists ng € N such that U,, has non-empty interior, so there exists a ball
(with centre 2y and radius rg) B(zg,ry) C U,,. Hence

/ ‘(:(, + !/..Ir)u|k v(de) <ng VYye B(0,r),
U
therefore for all y € B(0,rq)

/ |(y..r)u|k v(dr) = / [(z0 + ¥, x)u — (:()..I'>{'|k v(dr)
U U

S / |(z0 + 1/--I'>U|k v(da) + 247! / '<Z(J..Ir>,/‘k v(dz)
Ju JU

l“
S 2 ng.

Applying this for y := rgz, z € U with |z|p = 1, we obtain

J

Hence, if hy. ..., hy € U\ {0}, then by the generalized Holder inequality

/ < hy r> _ < hy. r>
U |hl|(r” U |hk|{[ . U
i h f v i h . =
< / < . J‘> v(dx) / < 5 .:1'> v(dr)
Jul\ [hilv U Jul\lhelv ™ /o

< 2%ngrg k.
and the assertion follows. O

k .k
(z..r)u‘ v(dr) < 2"71(.1'(, 5,

v(dr)

Applying Lemma 2.1.3 for &k = 1 and v := p we obtain that
Ush — /(h..r){: p(dr) e R
is a continuous linear map, hence there exists m € U such that

/ (x,h)y p(da) = (m.h) Y heH.
Ju
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Applying Lemma 2.1.3 for k = 2 and v := u we obtain that
U?> (h1,h2) +— /(m,hlﬁ,—(;n.hg)y pu(da) — (myhy)y(m, ha)y

is a continuous symmetric bilinear map, hence there exists a symmetric () €
L(U) such that this map is equal to

U? 5 (hi,ha) — (Qhy.ha)y.

Since for all h € U

(Qh, h)y = /.(.1'.11)}2, p(da) — (/h<.r,h>u /L((I.IT))H >0,

@ is positive definite. It remains to prove that @ is trace class (i.e.

trQ = Z(Q(f,.(',)u < o0

=1

for one (hence every) orthonormal basis {e; | i € N} of U, ¢f. Appendix B).
We may assume without loss of generality that ;o has mean zero, i.e. m =0
(€ U), since the image measure of p under the translation U 3 &+ o — m is
again Gaussian with mean zero and the same covariance . Then we have for
all h € U and all ¢ € (0, 0)

1 — e 2(Q@hMu — / (1 —cos(h,x)y) pu(da)
Ju

< / (1 —cos(h.x)y) p(da) +2u({x € U | |x|u > ¢})
Jjele <o)

Ly :
—/ ’(h..r>u‘z p(dr) +2p({x e U ’ [x| > (}) (2.1.1)
{lelo <}

/&

2

(since 1 — cosr < La?).-Defining the positive definite symmetric linear oper-
ator Q. on U by

<(2(.hl,hz>u = / <}Il,.lf>(f ¢ <’?2,;I'>H /1,((1.1'), /71. hg € (]..
{lelo<c}

we even have that Q. is trace class because for every orthonormal basis {e |
k € N} of U we have (by monotone convergence)

o0 " o

cCly CR)U = 'k, )5 p(dx) = | x| p(de
Z(Q ks Ch )T / Z<(A o m(dr) ~/{4.r{,-gw}lll(}/( r)

k=1 Jlzlo el =y

2
L ¢ <00,
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Claim: There exists ¢ € (0, 00) (large enough) so that @ < 2log4 Q. (mean-
ing that (Qh,h) < 2log4(Q., h,h)y for all h € U).

To prove the claim let ¢y be so big that /l,({.r eU l |zl > ('(;}) < é Let
h € U such that (Q. h.h)pr < 1. Then (2.1.1) implies

I
1; € 2(()’).’!)1 S

n 3
4’

N[ =
=~ =

hence 4 > ¢2(@hhu g0 (Qh,h);r < 2logd. If h € U is arbitrary, but
(Qeoh.h)y # 0, then we apply what we have just proved to h/(Q.,h, h),'%',- and
the claim follows for such h. If, however, (Q. h,h) = 0, then for all n € N,
(Qeonh.nh)y = 0 < 1, hence by the above (Qh.h)y < n?2log4. Therefore,
(Qeyh, h)y = 0 and the claim is proved, also for such h.

Since @, has finite trace, so has @@ by the claim and the theorem is proved,
since the uniqueness part follows from the fact that the Fourier transform is
one-to-one. g

The following result is then obvious.

Proposition 2.1.4. Let X be a U-valued Gaussian random wvariable on a
probability space (2, F. P), i.c. there exist m € U and (Q € L(U) nonnegative,
symmetric. with finite trace such that Po X ' = N(m. Q).

Then (X, u) s normally distributed for all w € U and the following state-
ments hold:

o E((X.,u)p) = (m,u)y forallue U,
e E((X —m.u)y - (X —m,v)u) = (Qu,v)y for all u,v € U,
e E(|IX —m|}) =trQ.

The following proposition will lead to a representation of a U-valued
Gaussian random variable in terms of real-valued Gaussian random variables.

Proposition 2.1.5. If Q € L(U) is nonnegative, symmetric, with finite trace
then there exists an orthonormal basis ey, k € N, of U such that

Qer = Akex, A 20, keEN,
and O is the only accumulation point of the sequence (A )gen-

Proof. See [RS72, Theorem VI.21; Theorem VI.16 (Hilbert -Schmidt theorem)).
0

Proposition 2.1.6 (Representation of a Gaussian random variable).
Let m € U and Q € L(U) be nonnegative, symmelric, with trQ < ~o. In
addition, we assume that ey, k € N, is an orthonormal basis of U consist-
mg of eigenvectors of Q with corresponding cigenvalues N\, k € N, as in
Proposition 2.1.5, numbered in decreasing order.
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Then a U-valued random wvariable X on a probability space (2, F,P) is
Gaussian with Po X1 = N(m, Q) if and only if

X = Z VABrer +m  (as objects in L*(Q2, F, P;U)),
keN

where 3., k € N, are independent real-valued random variables with Po/3), -1 =
N(0.1) for all k € N with A\ > 0. The series converges in L*(2, F. P;U).
Proof.
1. Let X be a Gaussian random variable with mean m and covariance Q.
Below we set (, ) :=(,)u.
Then X =37, (X, ex)er in U where (X, ey) is normally distributed with
mean (m, e;) and variance A\g, k € N, by Proposition 2.1.4. If we now define
_ (Xyep)—=(m.er) ¢ . -
PR ol e if £ e N with \p, >0
=0 eR else,

then we get that PO/fl\Tl = N(0,1) and X = 3", .y VASrer +m. To prove
the independence of 3, k € N, we take an arbitrary n € N and a; € R,

1 < k < n, and obtain that for c:= - 37" |\ %(’”' er)
—1, -
Seh= 3 () +e= (X 3 )
appPy = — 1 ‘A = A, € C
k=1 k=1. /\I\'
/\A ;tn AL #0

which is normally distributed since X is a Gaussian random variable. There-
fore we have that ., & € N, form a Gaussian family. Hence, to get the
independence, we only have to check that the covariance of 3; and /3.
i.j € N.i# j. with A\; # 0 # A;. is equal to zero. But this is clear since

1 P 1
E(B:iB;) = \/rjls(()& —m,e;){(X —m,e;j)) = —\/ﬁ(()r,,(",)
Ai

=2 _{ei,e5) =0
\/)\'_AJ<{ (,I>

for i # j.
Besides, the series ;| VAcBrer, n € N, converges in L?(2, F, P; U) since
the space is complete and

(HZ el 2) = Z T

k=m k=m k=m

Since >, oy Ak = trQ < oo this expression becomes arbitrarily small for
m and n large enough.



