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Preface

A linear optimization problem is the task of minimizing a linear
real-valued function of finitely many variables subject to linear con-
straints; in general there may be infinitely many constraints. This book
is devoted to such problems. Their mathematical properties are investi-
gated and algorithms for their computational solution are presented.
Applications are discussed in detail.

Linear optimization problems are encountered in many areas of appli-
cations. They have therefore been subject to mathematical analysis for a
long time. We mention here only two classical topics from this area:
the so-called uniform approximation of functions which was used as a
mathematical tool by Chebyshev in 1853 when he set out to design a crane,
and the theory of systems of linear inequalities which has already been
studied by Fourier in 1823,

We will not treat the historical development of the theory of linear
optimization in detail. However, we point out that the decisive break-
through occurred in the middle of this century. It was urged on by the
need to solve complicated decision problems where the optimal deployment
of military and civilian resources had to be determined. The availability
of electronic computers also played an important role. The principal
computational scheme for the solution of linear optimization problems,
the simplex algorithm, was established by Dantzig about 1950. In addi-
tion, the fundamental theorems on such problems were rapidly developed,
based on earlier published results on the properties of systems of linear
inequalities.

Since then, the interest of mathematicians and users in linear opti-

mization has been sustained. New classes of practical applications are
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being introduced continually and special variants of the simplex algori-
thm and related schemes have been used for the computational treatment of
practical problems of ever-growing size and complexity. The theory of
""classical" linear optimization problems (with only finitely many linear
constraints) had almost reached its final form around 1950; see e.g. the
excellent book by A. Charnes, W. W. Cooper and A. Henderson (1953).
Simultaneously there were great efforts devoted to the generalization and
extension of the theory of linear optimization to new areas. Thus non-
linear optimization problems were attacked at an early date. (This area
plays only a marginal role in our book.) Here, connections were found
with the classical theory of Lagrangian multipliers as well as to the
duality principles of mechanics. The latter occurred in the framework of
convex analysis.

At the same time the theory of infinite linear optimization came
into being. It describes problems with infinitely many variables and
constraints. This theory also found its final form rapidly; see the paper
by R. J. Duffin (1956).

A special but important class of infinite linear optimization problems
are those problems where the number of variables is finite but the number
of linear inequality constraints is arbitrary, i.e. may be infinite.

This type of problem, which constitutes a natural generalization of the
classical linear optimization problem, appears in the solution of many
concrete examples. We have already mentioned the calculation of uniform
approximation of functions which plays a major role in the construction
of computer representations of mathematical expressions. Uniform approxi-
mation can also be successfully used in the numerical treatment of differ-
ential equations originating in physics and technological problems.

Using an investigation by Haar from 1924 as a point of departure,

A. Charnes, W. W. Cooper and K. 0. Kortanek in 1962 gave the fundamental
mathematical results of the last-mentioned class of linear optimization
problems (with the exception of those questions which were already settled
by Duffin's theory).

This class of optimization problems, often called semi-infinite pro-
grams, will be the main topic of the present book. The '"classical' linear
optimization problems, called linear programs, will occur naturally as a
special case.

Whether the number of inequality constraints is finite is a matter
of minor importance in the mathematical theory of linear optimization

problems. The great advantage of treating such a general class of problems,
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encompassing so many applications, need not, fortunately, be achieved by
means of a correspondingly higher level of mathematical sophistication.

In our account we have endeavored to use mathematical tools which are as
simple as possible. To understand this book it is only necessary to mas-
ter the fundamentals of linear algebra and n-dimensional analysis. (This
theory is summarized in §2.) Since we have avoided all unnecessary mathe-
matical abstractions, geometrical arguments have been used as much as
possible. In this way we have escaped the temptation to complicate simple
matters by introducing the heavy apparatus of functional analysis.

The central concept of our book is that of duality. Duality theory
is not investigated for its own sake but as an effective tool, in particu-
lar for the numerical treatment of linear optimization problems.

Therefore all of Chapter II has been devoted to the concept of weak
duality. We give some elementary arguments which serve to illustrate
the fundamental ideas (primal and dual problems). This should give the
reader a feeling for the numerical aspects of duality. In Chapter III
we discuss some applications of weak duality to uniform approximation
where the emphasis is again placed on numerical aspects.

The duality theory of linear optimization is investigated in Chapter
IV. Here we prove theorems on the existence of solutions to the optimi-
zation problems considered. We also treat the so-called strong duality,
i.e. the question of equality of the values of the primal and dual prob-
lems. The "geometric" formulation of the dual problem, introduced here,
will be very useful for the presentation of the simplex algorithm which
is described in the chapter to follow.

In Chapter V we describe in great detail the principle of the ex-
change step which is the main building block of the simplex algorithm.
Here we dispense with the computational technicalities which dominate many
presentations of this scheme. The nature of the simplex algorithm can be
explained very clearly using duality theory and the language of matrices
and without relying on '"'simplex tableaux', which do not appear in our text.

In Chapter VI we treat the numerical realization of the simplex al-
gorithm. It requires that a sequence of linear systems of equations be
solved. Our presentation includes the stable variants of the simplex
method which have been developed during the last decade.

In Chapter VII we present a method for the computational treatment
of a general class of linear optimization problems with infinitely many
constraints. This scheme was described for the first time in Gustafson

(1970). Since then it has been successfully used for the solution of many
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practical problems, e.g. uniform approximation over multidimensional do-
mains (also with additional linear side-conditions), calculation of quad-
rature rules, control problems, and so on.

In Chapter VIII we apply the ideas of the preceding three chapters
to the special problem of uniform approximation over intervals. The
classical Remez algorithm is studied and set into the general framework
of linear optimization.

The concluding Chapter IX contains several worked examples designed
to elucidate the general approach of this book. We also indicate that the
ideas behind the computational schemes described in our book can be ap-
plied to an even more general class of problems.

The present text is a translated and extended version of Glashoff-
Gustafson (1978). Chapters VIII and IX are completely new and Chapter
IV is revised. More material has been added to Chapters III and VII.
These changes and additions have been carried out by the second author,
who is also responsible for the translation into English. Professor
Harry Clarke, Asian Institute of Technology, Bangkok, has given valuable
help with the latter task.

We hope that this book will provide theoretical and numerical in-
sights which will help in the solution of practical problems from many
disciplines. We also believe that we have clearly demonstrated our con-
viction that mathematical advances generally are inspired by work on

real world problems.
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Chapter |
Introduction and Preliminaries

§1. OPTIMIZATION PROBLEMS

Optimization problems are encountered in many branches of technology,
in science, and in economics as well as in our daily life. They appear
in so many different shapes that it is useless to attempt a uniform des-
cription of them or even try to classify them according to one principle
or another. In the present section we will introduce a few general con-
cepts which occur in all optimization problems. Simple examples will

elucidate the presentation.

(1) Example: Siting of a power plant. Five major factories are

located at. P.,P,,:«:,P A power plant to supply them with electricity

) :
is to be buili aid the groblem is to determine the optimal site for this
plant. The transmission of electrical energy is associated with energy
losses which are proportional to the amount of transmitted energy and to
the distance between power plant and energy consumer. One seeks to sel-

ect the site of the plant so that the combined energy loss is rendered

a minimum. Pl’pZ""’PS are represented by points in the plane with the
coordinates
Pr= (XpuydseesPg = (Xgh¥e) -

The distance between the two points P = (x,y), P = (x,y) is given by
= =2 -2
a@,h) = (-0 + -pie
Denote the transmitted energy quantities by El""’ES' Our siting prob-
lem may now be formulated. We seek, within a given domain G of the
plane, a point P such that the following function assumes its minimal

value at bP:
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Eld(P,Pl) + Ezd(P,PZ) et Esd(P,P s

In order to introduce some terminology we reformulate this task. We de-

fine the real-valued function f of two real variables x,y through

f(x,y) = El{(x—xl)2 + (y—yl)z}l/2 - Es{(x-xs)2 + (y-ys)z}l/z.

We then arrive at the optimization problem: Determine numbers i,§ such

that P = (x,y) € G and

f(x,y) < £(x,y) for all (x,y) € G.

.P3

Fig. 1.1. Siting of power plant

All important concepts associated with optimization problems may be
illustrated by this example: f 1is called a preference function, G is
the permissible set, and the points of G are called permissible or
feasible. Thus the optimization problem means that one should seek a
permissible point such that f assumes its minimal value with respect
to the permissible set. If such a point does exist, it is called an
optimal point (for the problem considered), or optimal solution, or
minimum point of f in G.

In the analysis of an optimization problem it is important to verify
that an optimal solution does exist, i.e. that the problem is solvable.
This is not always the case. As an illustration of this fact we note
that the functions £f,(x) = -x and £,(x) = e™™ do not have any minimum
points in the set of all real numbers. On the other hand, if an optimiza-
tion problem is solvable, a minimum point may not be unique. In many
applications it is required to determine all minimum points which the pre-

ference function has in the permissible set.
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It is of course of no use to formulate a task, appearing in econo-
mics or technology, as an optimization problem when this problem cannot
be solved. A formulation as an optimization problem is thus advantageous
only when the mathematical structure of this task can be investigated and
suitable theoretical and computational tools can be brought to bear.
Oftentimes, '"applications' te economics or management are proposed
whereby very complicated optimization problems are constructed but it is
not pointed out that neither theoretical nor numerical treatment of the
problem appears to be within reach, now or in the near future. It should
always be remembered that only some of the relevant factors can be incor-
porated when a decision problem is formulated as an optimization problem.
There are always decision criteria which cannot be quantified and whose
inclusion into a mathematical model is of doubtful value. Thus, in the
siting problem discussed above, there are many political and ecological
factors which cannot be accounted for in a mathematical model. This indi-
cates that there is, in principle, a limit of what can be gained by the
mathematization of social processes. This difficulty cannot, as a rule,
be overcome by resorting to more complicated models (control theory,
game theory, etc.) even if it sometimes may be concealed. The situation is
quite different for technical systems. Since nowadays the mathematiza-
tion and also the "optimization'" of social processes are pushed forward

with great energy, we find the critical remark above to be justified.

(2) Example: Production model. We consider a firm which produces

or consumes n goods Gl""’Gn (e.g. raw materials, labor, capital,
environmental pollutants). An activity of the firm is represented by n
numbers (al,...,an) where ar indicates the amount of good Gr which
is produced or consumed when the activity P is taking place with inten-
sity 1 (measured in suitable units). We assume that the firm can sel-
ect various activities PS. Thus the firm's technology has the property
that to each s in a fixed index set S (which may be finite or in-
finite) there are n numbers (al(s),...,an(s)). A production plan of
the firm is defined by selecting a (finite) number of activities

PS ,...,PS and prescribing that they are carried out with the intensi-
1 q
ties xl,...,xq, where x5 >0,1i=1,2,...,q. We assume that the pro-

duction process is linear, i.e. for the given production plan the amount

of good Gr which is produced or consumed is given by

ar(sl)x1 + ar(sz)x2 ...+ ar(sq)xq.
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We shall further assume that the activity Ps causes the profit (or cost)
b(s). Hence the profit achieved by the chosen production plan is given
by

b(sl)x1 + b(sz)x2 oot b(sq)xq. (3)

The optimization problem of the firm is to maximize its profit by proper
choice of its production plan, i.e. it must select finitely many activi-

ties PS ,...,PS and the corresponding intensities xl,xz,...,xq such
1 q
that the expression (3) assumes the greatest value possible.

The choice of activities and intensities is restricted by the fact
that only finite amounts of the goods Gl""’Gn are available. In
practice this is true only for some of the goods but for simplicity of
presentation we want to assume that all goods can only be obtained in

limited amounts:

. r=1,2,...,n. 4)

ar(sl)x1 + ar(sz)x2 L PP ar(sq)xq <c
Thus (4) defines n side-conditions which constrain the feasible acti-
vities and intensities. The optimization problem can thus be cast into
the form: Determine a finite subset {51,...,sq} of the index set S
and the real numbers XpseensX such that the expression (3) is rendered

a maximum under the constraints (4) and the further side-conditions

X; >0, i=1,2,...,q.

(5) Remark. A maximization problem is transformed into an equival-

ent minimization problem by multiplying its preference function by -1.

(6) The general optimization problem. Let M be a fixed set and

let f be a real-valued function defined on M. We seek an element X

in M such that
£(x) < f(x) for all x € M.

M is called the feasible or permissible set and f 1is termed the pre-
ference function. We remark here that the feasible set is, as a rule,
not explicitly given but is defined through side-conditions (often called

constraints), as in Example (2).
(7) Definition. The number v given by
v = {inf f(x) | x € M}

is called the value of the corresponding optimization problem. If M

is the empty set, i.e. there are no feasible points, the optimization
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problem is said to be inconsistent and we put v = «. If feasible points
do exist we term the optimization problem feasible or consistent. If

v = -©, the optimization problem is said to be '"unbounded from below'.
Thus every minimization problem must be in one and only one of the follow-

ing three ''states'" IC, B, UB:

IC = Inconsistent; the feasible set is empty and the value of the
problem is +w,
B = Bounded; there are feasible points and the value is finite.
UB = Unbounded; there are feasible points, the preference function

is unbounded from below, and the value is -o.

The value of a maximization problem is -« in the state IC, finite in

state B, and +« in the state UB.

§2. SOME MATHEMATICAL PREREQUISITES

The successful study of this book requires knowledge of some elemen-
tary concepts of mathematical analysis as well as linear algebra. We
shall summarize the notations and some mathematical tools in this section.

(1) Vectors. We denote the field of real numbers by R, and by R"

the n-dimensional space of all n-tuples of real numbers

X

(2)
X
n
In Rn, the usual vector space operations are defined: componentwise
addition of vectors and multiplication by scalars (i.e. real numbers).
We assume that the reader is familiar with the concepts of '"linear
independence', "basis'", and "subspace'. The zero vector of R" is

written 0. n-tuples of the form (2) are also referred to as ''points".

(3) Matrices. An m x n matrix A (m > 1) is a rectangular array

of m-n real numbers 3 @A = 1;2,0:5m; k = 1,2, ,,.,0),

3.11 8.12 cen aln

891, Bgp miE Bgy

am m2 mn
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The numbers a;, are termed the elements of the matrix A and 2 is

situated in row number i and column number k. To each given matrix A

we define its transpose AT by

all 321 “ee aml

oy 312 822 SN amz
& = . . .

aln azn - amn

Every vector x € R" may be considered an n x 1 matrix. In order to

save space we write, instead of (2),

T

X = (xl,xz,...,xn).

We note that (AT)T = A. The reader is supposed to know elementary matrix

operations (addition and multiplication of matrices).

(4) Linear mappings. Every m X n matrix A defines a linear
mapping of R" into R" whereby every vector x € R is mapped onto a

vector y € Rm via

Using the definition of matrix multiplication we find that the components

of y are to be calculated according to

Yi T 851X * 24p%, et 2y X, 1<ic<m
Denote the column vectors of A by a1,85,..05a, . Then we find
Ax = a X, +ax, *ooa a X . (6)

Equation (6) thus means that the vector y is a linear combination of

the column vectors of A.

(7) Linear systems of equations. Now let a fixed y be given in

(5). The task of determining x in (5) is one of the fundamental prob-
lems of linear algebra. (5) is called a linear system of equations with
n unknowns X1 Xgsen s Xy and m equations. We assume that the solva-
bility theory of (5) (existence and uniqueness of solutions) is known to
the reader. An example: from (6) we conclude that (5) is solvable for

each y € R™ if the column vectors of A span all of Rm, i.e. if A

has the rank m. It is equally simple to verify that (5) has at most one
solution if the column vectors of A are linearly independent. The case

when A 1is a square matrix, n X n, is of particular interest. Then (5)
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has an equal number of equations and unknowns. Then the linear system
Ax = y has a unique solution x € R"  for each y € R" if and only if
the column vectors a1,8p,.e 08 of A form a basis of Rn, i.e. are
linearly independent. Then the matrix A 1is said to be regular (or
nonsingular). In this case there exists a n x n matrix A_1 with the

properties

A Ay = x, A lx) = x, a1l x € R™.

A_1 is called the inverse of A and the linear system of equations (5)

has the unique solution

X = A-ly.

(8) Hyperplanes. A vector y € R" and a number n € R are given.
Then we denote by the hyperplane H(y;n) the set of all points x € R"
such that

T, _ -
YOX E Y X f YyXy Feet y X o= .

y 1is called the normal vector of the hyperplane. For any two vectors

x and z in H(y;n) we have

yT(x-z) = 0.
A hyperplane yTx = n partitions R" into three disjoint sets, namely
H(y;n) and the two "open half-spaces"

A {x | yTx <n}

1

A

{x | yTx > n}.

The linear system of equations (5) also admits the interpretation that
the vector x must be in the intersection of the hyperplanes H(ai;yi),
(i=1,2,...,m), where al,...,am here are the row-vectors of the matrix
A. Sets of the form A1 U H(n;y) and A2 U H(n;y) are termed closed
half-spaces. They consist of all points x € R" such that

YTX <n or YTX 2n,
respectively.

(9) Vector norms. We shall associate with each vector x € R" a
real number ||x||. The mapping x - ||x|| shall obey the following

laws:
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@) |x|] >0, a11 x € R" and |[|x|| =0 for x =0 only;
i) |ax|| = [A] |Ix|], al1 x € R", all A € R;

dii) ||x+y|| < |Ix|] + |ly|], a11 x € R, y € rR".

Then ||x|| will be called the norm of the vector.
Exercise: Show that the following mappings define vector norms on

x> [xp |+ x| el |xn|

x + max{|xll,|x |,...,[xn|}.

2

The most well-known norm is the Euclidean norm, which will be treated in

the next subsection.

(10) Scalar product and Euclidean norm. The scalar product of two

vectors x and y is defined to be the real number

The real number
|x| = ¥ Xx = (xf . xg T xrzl)l/2

is called the Euclidean norm or length or absolute value of the vector

x. The reader should verify that the mapping x —+ |x| defines a norm in

the sense of (9). It is also easy to establish the '"parallelogram law'
Ixey]? + Ix-yl? = 20x|? « [y} for a1 x,y € R,

(11) Some topological fundamentals. We define the distance between

two points x,y in R" to be given by |x-y|. The set K_(a) consist-
ing of all points whose distance to a is less than r, a fixed positive

number, is termed the open sphere with center a and radius 7r. Thus

K.(a) = {x € R" | |x-a] < r}.

We are now in a position to introduce the fundamental topological struc-
ture of R". A point a is said to be an inner point of a subset A c R"
if there is a sphere Kr(a) which 12 its entirety belongs to A,

Kr(al < A. We will use the symbol A for the set of all inner pointi of
A. A 1is also called the interior of A. A 1is termed open if A = A.
The point a 1is said to be a boundary point of the set A if every
sphere Kr(a) contains both points in A and points which do not belong
to A. The set of all boundary points of A 1is called the boundary of A
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and is denoted bd A. The union of A and its boundary is called the
closure of A and is denoted A. The set A 1is said to be closed if

A =A. The following relations always hold.

AcAc A, bdA=ASN A.
The topological concepts introduced above have been defined using the
Euclidean norm. This norm will be most often used in the sequel. How-
ever, one may define spheres in terms of other norms and in this way ar-
rive at the fundamental topological concepts ''inner points', '"open sets',
and so on, in the same manner as above. Fortunately it is possible to
prove that all norms on R" are equivalent in the sense that they gen-
erate the same topological structure on R": A set which is open with
respect to one norm remains open with respect to all other norms. In order
to establish this assertion one first verifies that if ||~||1 and ]|~[l2
are two norms on R there are two positive constants c¢ and C such
that

cl x|, f_lfxllz :_Cllx||1 for all x € R".
Based on these fundamental structures one can now define the main concept
of convergence of sequences and continuity of functions in the usual way.

We suppose here the reader is familiar with these concepts.

(12) Compact sets. A subset A c R" is said to be bounded when
there is a real number r > 0 such that A c Kr(O). Closed bounded sub-
sets of R" will be termed compact.

Compact subsets A of R" have the following important property:
Every infinite sequence {xi}i>1 of points in the set A has a conver-

ko1 If f: R* > R™ is a continuous mapping, then

the image f(A) of every compact set A is compact also. From this

gent subsequence {xi }
k

statement we immediately arrive at the following result which also may be

looked upon as an existence statement for optimization problems:

(13) Theorem of Weierstrass. Let A be a nonempty compact subset

of R and f a real-valued continuous function defined on A. Then f
assumes its maximum and minimum value on A, i.e. there exist points

Xx €A and X € A such that

f(x) = max{f(x) | x € A}

and

f(X) = min{f(x) | x € A}.

It is recommended that the reader, as an exercise, carry out the proof of

this simple but important theorem.



