Java iBBIRS (FEkR)

REILLY" Mark Richards, Richard Monson-Haefel
1R % kR & David A. Chappell &

IR

Javaid B AR5 (wam)

Java Message Services

A

Mark Rz’cbcucl's {kz ”&/ é‘ Atlohs I—Hdze ol
;}ﬁ qu:]@‘A @qpp Pl

3

O REILLY"

Beijing « Cambridge + Farnham < Kéln < Sebastopol < Taipei « Tokyo

O’Reilly Media, Inc. # A A& d kX 5 1 oAk R

REKEF HARAL

BEERmE (CIP) HiE

Java {ERS: #2hk. #3r/ () #BH (Brown,
G.) %3 . —wiA —FaR: APk, 20101
45 3C; Java Message Service, 2E

ISBN 978-7-5641-1930-0

Yoo WA TJAVA BEE - BRI - 5
IV .TP312

wh [kit 4 B 4518 CIP Bdiai s (2009) % 2056325

LR R TER & [RIRIE
B 10-2009-245 &

©2009 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University
Press, 2009. Authorized reprint of the original English edition, 2009 O'Reilly Media, Inc., the
owner of all rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3 MR W O'Reilly Media, Inc. % & 2009,

EXHPIRW A A K P RA R 2000, HE IR R Fe 4 B R Bk B A B ARSI F
—— O'Reilly Media, Inc. ¥§3% T,

WA, ABHEHAT, KBHIETRIFLRTAAETH X EH,

Java JHEIRS: B 2MR (REENRR)

MR E 7. AREGRZ: MR

oo db: B 2S Ai4a: 210096
H AR AN: L ®

5| Bik . http://press.seu.edu.cn

H,FHR{:: press@seu.edu.cn

En Rl . v v ENRI A PR 2y &

F A 78T EA x 980K 16 A&
En 2. 20.75 B3k

T . 349FF

hi R: 201041 B 1ig

ER K: 2010 41 A2E 1 RENRI

B 2. ISBN 978-7-5641-1930-0

Ef . 1~1600 it

E - . 48.005C ()

FHEBEFNRRRFGE, HAESRERSHER, GBI (FH). 025-83792328

JavaiH BRRF (wam)

Java Message Services

Foreword

For close to a decade now, I've been a fan of messaging-based systems. They offer a
degree of reliability, flexibility, extensibility, and modularity that a traditional RPC or
distributed object system simply cannot. Working with them takes a bit of adjustment,
because they don’t quite behave the same way that an architect or designer expects a
traditional n-tier system to behave. This is not to say that they’re better or worse; they’re
just different. Instead of invoking methods on objects directly, where the object can
hold conversational state or context, now the message itself has to be self-contained
and state-complete.

Which raises an important point.

For any given developer with respect to any given technology, there are four distinct
stages.

The first is the Ignorant. We may know the technology exists, or not, but beyond that
we remain entirely ignorant about its capabilities. It’s a collection of letters, at best,
often mentioned in conjunction with other technologies that may or may not matter
to what we’re doing on a daily basis.

The second is the Explorer. Something piques our curiosity, voluntarily or not. We
begin some initial forays into the jungle, perhaps downloading an implementation or
reading a few articles. We begin to understand the basic framing of where this thing
sits in the broad scheme of things and maybe how it’s supposed to work, but our hands-
on experience is generally limited to the moral equivalent of “Hello World” and a few
other samples.

The third is the Journeyman. After running many of the samples and reading a few
articles, we realize that we understand it at a basic level and begin to branch out to
writing code with it. We feel reasonably comfortable introducing it into production
code and reasonably comfortable debugging the stupid mistakes we’ll make with it.
We’'re not experts, by any means, but we can at least get the stuff to compile and run
most of the time.

The last, of course, is the Master. After building a few systems and seeing how they
react under real-world conditions, we have a deep gestalt with it and can often predict
how the tool or technology will react without even running the code. We can see how

Xi

this thing will interact with other, complementary technologies, and understand how
to achieve some truly miraculous results, such as systems that resist network outages
or machine failures. When the Java Message Service (JMS) API was first released, back
in 1999, before any noncommercial/open-source implementations were available, I
distinctly remember looking at it, thinking, “Well, it seems interesting, but it’s not
something I can use without a real implementation,” and setting my printed copy of
the specification off to one side for later perusal. My transition to Explorer and
Journeyman came a few years later, as I came to understand the power of messaging
systems, partly thanks to the few implementations out, partly thanks to my own ex-
ploration of other messaging systems (most notably MSMQ and Tibco), but mostly
due to the person who wrote this second edition of Java Message Service.

I’'m still well shy of Master status. Fortunately, both you and I know somebody who is
not.

Mark Richards has spent the last several years living the messaging lifestyle, both as an
architect and implementor as well as a leader and luminary: the first in his capacity as
a consultant, the second in his capacity as a speaker on the No Fluff Just Stuff (NFJS)
tour. He has a great “take” on the reasons for and the implications of building message-
based systems, and he brings that forth in this nearly complete rewrite of Richard
Monson-Haefel and Dave Chappell’s first edition. Even if you’re in the Ignorant stage
of JMS, Mark’s careful walkthrough of the basics, through implementation and then
the design pros and cons of messaging will bring you to the Journeyman stage fast and
leave you with the necessary structure in place to let you reach that Master stage in no
time at all.

And that, my friend, is the best anybody can ask of a book.
Happy messaging.

—Ted Neward
Principal Consultant, ThoughtWorks
December 10, 2008, Antwerp, Belgium

xii | Foreword

Preface

When I was presented with the opportunity to revise Java Message Service, 1 jumped
at the chance. The first edition, published by O’Reilly in 2000, was a bestseller and
without a doubt the definitive source for JMS and messaging in general at that time.
Writing the second edition was an exciting chance to breath new life into an already
great book and add new content that was relevant to how we use messaging today.
What I failed to fully realize when I took on the project was just how much messaging
(or, more precisely, how we use messaging) has changed in the past 10 years. New
messaging techniques and technologies have been developed, including message-
driven beans (as part of the EJB specification), the Spring messaging framework, Event-
Driven Architecture, Service-Oriented Architecture, RESTful JMS interfaces, and the
Enterprise Service Bus (ESB), to name a few. The somewhat minor book project that I
originally planned quickly turned into a major book project.

My original intent was to preserve as much of the original content as possible in this
new edition. However, based on changes to the JMS specification since the first edition
was written, as well as the development of new messaging techniques and technologies,
the original content quickly shrank. As a result, you will find that roughly 75% of this
second edition is new or revised content.

The JMS specification was updated to version 1.1 a couple of years after the printing
of the first edition of this book. While not a major change to the JMS specification, the
JMS 1.1 specification was nevertheless a significant step toward fixing some of the
deficiencies with the original JMS specification. One of the biggest changes in the spec-
ification was the joining of the queue and topic API under a unified general APL,
allowing queues and topics to share the same transactional unit of work. However, the
specification change alone was not the only factor that warranted a second edition of
the book. As the Java platform has matured, so has the way we think about messaging.
From new messaging technologies and frameworks to complex integration and
throughput requirements, messaging has changed the way we think about and design
systems, particularly over the past 10 years. These factors, combined with the specifi-
cation changes, are the reasons for the second edition.

xiii

With the exception of the Chat application found in Chapter 2, all of the sample code
has been changed to reflect more up-to-date messaging use cases and to illustrate some
additional features of JMS that were not included in the first edition.

I added several new chapters that were not included in the first edition, for obvious
reasons. You will find new sections in the first chapter on the JMS API, updated
messaging use cases, and a discussion of how messaging has changed how we design
systems. You will also find new chapters on message filtering, Java EE and message-
driven beans, Spring JMS and message-driven POJOs, and messaging design.

In addition to adding new chapters, I significantly revised the existing chapters. Because
1 updated the sample code used to illustrate various points throughout the book, I was
in turn forced to rewrite much of the corresponding text. This provided me with the
opportunity to add additional sections and topics, particularly in Chapter 4, Point-to-
Point Messaging, and Chapter 5, Publish-and-Subscribe Messaging. 1 also reversed these
chapters from the first edition with the belief that it is easier to jump into messaging
with the point-to-point messaging model using queues rather than the publish-and-
subscribe messaging model using topics and subscribers.

I hope you find the new edition of this book helpful in terms of understanding the Java
Message Service and messaging in general.

—Mark Richards

Who Should Read This Book?

This book explains and demonstrates the fundamentals of Java Message Service. It
provides a straightforward, no-nonsense explanation of the underlying technology,
Java classes and interfaces, programming models, and various implementations of the
JMS specification.

Although this book focuses on the fundamentals, it’s no “dummy’s” book. While the
JMS APl is easy to learn, the API abstracts fairly complex enterprise technology. Before
reading this book, you should be fluent with the Java language and have some practical
experience developing business solutions. Experience with messaging systems is not
required, but you must have a working knowledge of the Java language.

Organization

The book is organized into 11 chapters and 4 appendixes. Chapter 1 explains messaging
systems, messaging use cases, centralized and distributed architectures, and why JMS
is important. Chapters 2 through 6 go into detail about developing JMS clients using
the two messaging models, point-to-point and publish-and-subscribe, including how
to filter messages using message selectors. Chapters 7 and 10 should be considered
“advanced topics,” covering deployment and administration of messaging systems.
Chapter 8 provides an overview of the Java 2, Enterprise Edition (Java EE) with regard

xiv | Preface

to JMS, including coverage of message-driven beans as part of the Enterprise JavaBeans
3.0 specification. Chapter 9 covers the Spring Framework as it relates to messaging.
Finally, Chapter 11 provides some insight into many of the design considerations and
anti-patterns associated with messaging.

Chapter 1, Messaging Basics
Defines enterprise messaging and common architectures used by messaging ven-
dors. JMS is defined and explained, as are its two programming models, publish-
and-subscribe and point-to-point. Many of the use cases and real-world scenarios
for messaging are described in this chapter, as are the basics of the JMS APIL.

Chapter 2, Developing a Simple Example
Walks the reader through the development of a simple publish-and-subscribe JMS
client. .

Chapter 3, Anatomy of a JMS Message

Provides a detailed examination of the JMS message, the most important part of
the JMS APL

Chapter 4, Point-to-Point Messaging
Examines the point-to-point messaging model through the development of a sim-
ple borrower and lender JMS application. Also covers some of the finer points of
the point-to-point messaging model, including message correlation, dynamic
queues, load balancing, and queue browsing.

Chapter 5, Publish-and-Subscribe Messaging
Examines the publish-and-subscribe messaging model through the enhancement
of the borrower and lender application developed in Chapter 4. This chapter also
covers durable subscribers, nondurable subscribers, dynamic durable subscribers,
and temporary topics.

Chapter 6, Message Filtering
Provides a detailed explanation of message filtering using message selectors.

Chapter 7, Guaranteed Messaging and Transactions
Provides an in-depth explanation of advanced topics, including guaranteed mes-
saging, transactions, acknowledgments, message grouping, and failures.

Chapter 8, Java EE and Message-Driven Beans
Provides an overview of the Java 2, Enterprise Edition (Java EE) version 3.0 with
regard to JMS and includes coverage of message-driven beans (MDBs).

Chapter 9, Spring and JMS
Provides a detailed explanation of the Spring Framework with regards to JMS,
including the Spring JMS Template and message-driven POJOs (MDPs).

Chapter 10, Deployment Considerations
Provides an in-depth examination of features and issues that should be considered
when choosing vendors and deploying JMS applications.

Preface | xv

Chapter 11, Messaging Design Considerations
Provides insight into and explanation of several design considerations, including
the use of internal versus external destinations, request/reply processing, and a
discussion of some of the more common messaging anti-patterns.

Appendix A, The Java Message Service API
Provides a quick reference to the classes and interfaces defined in the JMS package.

Appendix B, Message Headers
Provides detailed information about message headers.

Appendix C, Message Properties
Provides detailed information about message properties.

Appendix D, Installing and Configuring ActiveMQ,
Provides detailed information about installing and configuring ActiveMQ to run
the examples in this book.

Software and Versions

This book covers Java Message Service version 1.1. It uses Java language features from
the Java 6 platform. Because the focus of this book is to develop vendor-independent
JMS clients and applications, I have stayed away from proprietary extensions and
vendor-dependent idioms. Any JMS-compliant provider can be used with this book;
you should be familiar with that provider’s specific installation, deployment, and run-
time management procedures to work with the examples. To find out the details of
installing and running JMS clients for a specific JMS provider, consult your JMS ven-
dor’s documentation; these details aren’t covered by the JMS specification. We have
provided the details for running the examples with ActiveMQ, a popular open source
JMS provider, in Appendix D.

The source code examples and explanation in Chapter 8 refer to the Enterprise Java-
Beans 3.0 (EJB 3) specification. The source code examples and explanation in Chap-
ter 9 refer to version 2.5 of the Spring Framework

The examples developed in this book are available through the book’s catalog page at
http:/loreilly.com/catalog/9780596522049/examples. These examples are organized by
chapter. Special source code modified for specific vendors is also provided. These
vendor-specific examples include a readme.txt file that points to documentation for
downloading and installing the JMS provider, as well as specific instructions for setting
up the provider for each example.

Conventions Used in This Book

The following typographical conventions are used in this book:

xvi | Preface

Italic
Used for filenames, pathnames, hostnames, domain names, URLs, email ad-
dresses, and new terms when they are defined.

Constant width
Used for code examples and fragments, class, variable, and method names, Java
keywords used within the text, SQL commands, table names, column names, and
XML elements and tags.

Constant width bold
Used for emphasis in some code examples.

Constant width italic
Used to indicate text that is replaceable.
W A

A
.

as
(‘t\

This icon signifies a tip, suggestion, or general note.

The term JMS provider is used to refer to a vendor that implements the JMS API to
provide connectivity to its enterprise messaging service. The term JMS client refers to
Java components or applications that use the JMS API and a JMS provider to send and
receive messages. JMS application refers to any combination of JMS clients that work
together to provide a software solution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example, “Java Message Service, Second Edition, by
Mark Richards, Richard Monson-Haefel, and David A. Chappell. Copyright 2009 Mark
Richards, 978-0-596-52204-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Preface | xvii

Safari® Books Online

Saf -3 When you see a Safari® Books Online icon on the cover of your favorite
ararl technology book, that means the book is available online through the
O'Reilly Network Safari Bookshellf.

Safari offers a solution that’s better than e-books, It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://imy.safaribooksonline.com/.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made mistakes!). Please
let us know about any errors you find, as well as your suggestions for future editions,
by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http:/flwww.oreilly.com/catalog/9780596522049/
To comment or ask technical questions about this book, send email to:
" bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and
the O’Reilly Network, see our website at:

http:/lwww.oreilly.com

Acknowledgments

These acknowledgments are from Mark Richards and refer to the second edition of this
book.

No one ever writes a book alone; rather, it is the hard work of many people working
together that produces the final result. There are many people I would like to acknowl-
edge and thank for the hard work and support they provided during the project.

wiil | Preface

First, I would like to recognize and thank my editor, Julie Steele, for putting up with
me during the project and doing such a fantastic job editing, coordinating, and every-
thing else involved with getting this book to print. I would also like to thank Richard
Monson-Haefel for doing such a great job writing the first edition of this book (along
with David Chappell), and for providing me with the opportunity to write the second
edition.

To my good friend and colleague, Ted Neward, I want to thank you for writing the
Foreword to this book during your very busy travel schedule and for providing me with
insight and guidance throughout the project. Your suggestions and guidance helped
bring this new edition together. I also want to thank my friends, Neal Ford, Scott Davis,
Venkat Subramaniam, Brian Sletten, David Bock, Nate Shutta, Stuart Halloway, Jeff
Brown, Ken Sipe, and all the other No Fluff Just Stuff (NFJS) gang, for your continued
support, lively discussions, and camaraderie both during and outside the NFJS con-
ferences. You guys are the greatest. :

I also want to thank the many expert technical reviewers who helped ensure that the
material was technically accurate, including Ben Messer, a super software engineer and
technical expert; Tim Berglund, principle software developer and owner of the August
Technology Group, LLC; Christian Kenyeres, principle technical architect at Collab-
orative Consulting, LLC; and last (but certainly not least), Ken Yu and Igor Polevoy. I
know it wasn’t easy editing and reviewing the manuscript during the holiday season
(bad timing on my part, I'm afraid), but your real-world experience, advice, comments,
suggestions, and technical editing helped make this a great book.

To the folks at the Macallan Distillery in Scotland, thank you for making the best single
malt Scotch in the world. It helped ease the pain during those long nights of writing,
especially during the winter months.

Finally, I would like to acknowledge and thank my lovely wife, Rebecca, for her con-
tinued support throughout this book project. You mean the world to me, Rebecca, and
always will.

Acknowledgments from the First Edition

These acknowledgments are carried over from the first edition of this book and are from
the original authors, Richard Monson-Haefel and David A. Chappell.

While there are only two names on the cover of this book, the credit for its development
and delivery is shared by many individuals. Michael Loukides, our editor, was pivotal
to the success of this book. Without his experience, craft, and guidance, this book
would not have been possible.

Many expert technical reviewers helped ensure that the material was technically accu-
rate and true to the spirit of the Java Message Service. Of special note are Joseph Fialli,
Anne Thomas Manes, and Chris Kasso of Sun Microsystems; Andrew Neumann and

Preface | xix

Giovanni Boschi of Progress; Thomas Haas of Softwired; Mikhail Rizkin of Interna-
tional Systems Group; and Jim Alateras of ExoLab. The contributions of these technical
experts are critical to the technical and conceptual accuracy of this book. They brought
a combination of industry and real-world experience to bear and helped to make this
the best book on JMS published today.

Thanks also to Mark Hapner of Sun Microsystems, the primary architect of Java 2,
Enterprise Edition, who answered several of our most complex questipns. Thanks to
all the participants in the JMS-INTEREST mailing list hosted by Sun Microsystems for
their interesting and informative postings.

Special appreciation goes to George St. Maurice of the SonicMQ tech writing team for
his participation in organizing the examples for the O’Reilly website.

Finally, the most sincere gratitude must be extended to our families. Richard Monson-
Haefel thanks his wife, Hollie, for supporting and assisting him through yet another
book. Her love makes everything possible. David Chappell thanks his wife, Wendy,
and their children, Dave, Amy, and Chris, for putting up with him during this endeavor.

David Chappell would also like to thank some of the members of the Progress SonicMQ
team—Bill Wood, Andy Neumann, Giovanni Boschi, Christine Semeniuk, David
Grigglestone, Bill Cullen, Perry Yin, Kathy Guo, Mitchell Horowitz, Greg O’Connor,
Mike Theroux, Ron Rudis, Charlie Nuzzolo, Jeanne Abmayr, Oriana Merlo, and
George St. Maurice—for helping to ensure that the appropriate topics were addressed,
and addressed accurately. And special thanks to George Chappell for helping him with
“split infinitives.”

xx | Preface

About the Authors

Mark Richards is an accomplished author and conference speaker working as a hands-
on SOA and enterprise architect in the financial services industry. In addition to
numerous published articles, he is the author of Java Transaction Design Strategies
(C4Media), contributing author of 97 Things Every Software Architect Should Know
(O’Reilly), and contributing author of No Fluff, Just Stuff Anthology Volumes 1 and 2
(Pragmatic Bookshelf). He is a recognized authority on messaging, Service-Oriented
Architecture, and transaction management. Mark is a regular speaker on the NFJS
Software Symposium series and speaks at conferences around the world.

Richard Monson-Haefel is the author of the first five editions of Enterprise Java
Beans (O’Reilly), the first edition of Java Message Service (O’Reilly), and is one of the
world’s leading experts and book authors on enterprise computing.

David A. Chappell is vice president and chief technologist for SOA at Oracle Corpo-
ration. He is well noted for authoring Java Web Services (O'Reilly), Professional ebXML
Foundations (Wrox), and the first edition of Java Message Service (O’Reilly).

Colophon

The animal on the cover of Java Message Service, Second Edition, is a passenger pigeon
(Ectopistes migratorius), an extinct species. In the mid-1800s, passenger pigeons were
the most numerous birds in North America. Several flocks, each numbering more than
two billion birds, lived in various habitats east of the Rocky Mountains. Flocks migrated
en masse in search of food, without regard to season, and a good food source could
keep a flock in one place for years at a time. John James Audubon observed that nearly
the entire passenger pigeon population once stayed in Kentucky for several years and
was seen nowhere else during this time.

Whole flocks roosted together in small areas, and the weight of so many birds—often
up to 90 nests in a single tree—resulted in the destruction of forests, as tree limbs and
even entire trees toppled. (The accumulated inches of bird dung on the ground didn’t
help.) Such roosting habits, combined with high infant mortality and the fact that fe-
male passenger pigeons laid a single egg in a flimsy nest, did not bode well for the long—
term survival of the species.

It was humans harvesting passenger pigeons for food, however, that drove them to
extinction. In 1855, a single operation was processing 18,000 birds per day! Not even
Audubon himself was concerned that the pace might have an adverse effect on the birds’
population, but the last passenger pigeon died in the Cincinnati Zoo in 1914.

The cover image is a 19th-century engraving from the Dover Pictorial Archive.
The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont’s
TheSansMonoCondensed.

O'Reilly Media, Inc. 4T 48

O'Reilly Media, Inc. &t 5F F7£ UNIX, X, Internet fil b 2K EBHIRAAE
SFHALI R A F, RN ZBRALIHR A .

MEHEYHY (The Whole Internet User's Guide & Catalog) (#y£H#72A LB HBIEIEH
“HHEEEENSOAR P 2 —) F GNN (KB Internet [T FIFG L M 25, &F
WebSite (& — A2 PCHIWeb IR % F%), O'Reilly Media, Inc.—H T Internet
b 3:3: 08 3R

W& BIERREEH, OReilly Media, Inc. RERENITHREILEBHERE —&—
FHRE—RER. SKSHEUHEVLE BWHR#EMELL, O'Reilly Media, Inc. RFEE
P EHLE L E &, X4 O'Reilly Media, Inc. B T — A% AR T H b H il
RIH R 754t . O'Reilly Media, Inc. fiF %GB A RLARTHZRF R, KERETRE
I AE %, O'Reilly Media, Inc. ;BF W £ B EHIEE G — {15 £AHRXE
BRIBARAER. BRWER, MALEHEFENE, OReilly Media, Inc. (R {E M1 R it
HHEFS, FH O'Reilly Media, Inc. BHM S HEALFERE, HLLOReilly
Media, Inc. AE T FEEFEMH 2B,

tH K5 BA

B THBEHLBE AR (BB R I R, ASSIEZE S A — A AR AR B RAOHTET . T
VBRI R RA AT TR | B iEhF A% A Bk T E MBI, 4.
THRYL BRI AR B8 B 2 Yot B AT R, 0 T 4B E M BAR A RAE SR i
TRRESMEHIE A, ARAK S M % E O'Reilly Meida, Inc. 35BN, $5b
S5IHILA TR R AR AR RS ER T RGRETH R A NEE, DU ER R bk
PXRAERZMA EE K, BERBHE DR S5ENES RS MR, A “F
RS BAAILE.

BANA WAL, Bro | FEREX BN AT E AR A R . RHEFHLERTREA 5
MEBRIMAERFEAMTERFR#E, SENTEERNRBERRE. LR LS
EERHEFROERLMEIL,

Bt HIR MR EN IR B 45, B4E.

o (HELHFAY Haskell) (FEEIAR)

e (EFRBWEFRAY GEEIR)

e (Java Web flR%5 . BM5E1T) (BENAR)
o (HITFRERY (BEOM)

e (fEMPerl LAARLKEHR BN B R (FENR)
o (JavaiHBIRF FTRRY (FEENAR)

o (BRAKEMEER) (RER)

* (Ruby BfELERY (RENAR)

o (EHRAMELEY (REENRR)

o (IEMIFER Cookbook) (EZENER)

e (flex 5 bison) (EENR)

