Stefano Berardi |
Mario Coppo
Ferruccio Damiani (Eds.) .

Types for
Proofs and Programs

International Workshop, TYPES 2003
Torino, Italy, April/May 2003
Revised Selected Papers

LNCS 3085

© Springer

-

| Stefano Berardi Mario Coppo
Ferruccio Damiani (Eds.)

Types for
Proofs and Programs

International Workshop, TYPES 2003
Torino, Italy, April 30 - May 4, 2003
Revised Selected Papers

. e
2 2o TS

E200404164

Springer

Volume Editors

Stefano Berardi

Mario Coppo

Ferruccio Damiani

Universita di Torino, Dipartimento di Informatica
C. Svizzera 185, 10149 Torino, Italy

E-mail: {berardi, coppo, damiani} @di.unito.it

Library of Congress Control Number: 2004106869

CR Subject Classification (1998): F.3.1, F4.1,D.3.3,1.2.3

ISSN 0302-9743
ISBN 3-540-22164-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Protago-TeX-Production GmbH
Printed on acid-free paper SPIN: 11012856 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3085

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo

Lecture Notes in Computer Science

For information about Vols. 1-2985

please contact your bookseller or Springer-Verlag

Vol. 3092: J. Eckstein, H. Baumeister (Eds.), Extreme Pro-
gramming and Agile Processes in Software Engineering.
XVI, 358 pages. 2004.

Vol. 3091: V. van Oostrom (Ed.), Rewriting Techniques
and Applications. X, 313 pages. 2004.

Vol. 3089: M. Jakobsson, M. Yung, J. Zhou (Eds.), Applied
Cryptography and Network Security. XIV, 510 pages.
2004.

Vol. 3085: S. Berardi, M. Coppo, F. Damiani (Eds.), Types
for Proofs and Programs. X, 409 pages. 2004.

Vol. 3084: A. Persson, J. Stirna (Eds.), Advanced Infor-
mation Systems Engineering. XIV, 596 pages. 2004.

Vol. 3083: W. Emmerich, A.L. Wolf (Eds.), Component
Deployment. X, 249 pages. 2004.

Vol. 3078: S. Cotin, D.N. Metaxas (Eds.), Medical Simu-
lation. X VI, 296 pages. 2004.

Vol. 3077: F. Roli, J. Kittler, T. Windeatt (Eds.), Multiple
Classifier Systems. XII, 386 pages. 2004.

Vol. 3076: D. Buell (Ed.), Algorithmic Number Theory.
X1, 451 pages. 2004.

Vol. 3074: B. Kuijpers, P. Revesz (Eds.), Constraint
Databases and Applications. XII, 181 pages. 2004.

Vol. 3073: H. Chen, R. Moore, D.D. Zeng, J. Leavitt
(Eds.), Intelligence and Security Informatics. XV, 536
pages. 2004.

Vol. 3070: L. Rutkowski, J. Siekmann, R. Tadeusiewicz,
L.A. Zadeh (Eds.), Artificial Intelligence and Soft Com-
puting - ICAISC 2004. XXV, 1208 pages. 2004. (Sub-
series LNAI).

Vol. 3066: S. Tsumoto, R. S lowiriski, J. Komorowski, J. W.
Grzymala-Busse (Eds.), Rough Sets and Current Trends
in Computing. XX, 853 pages. 2004. (Subseries LNAI).

Vol. 3065: A. Lomuscio, D. Nute (Eds.), Deontic Logic in
Computer Science. X, 275 pages. 2004. (Subseries LNAI).

Vol. 3064: D. Bienstock, G. Nemhauser (Eds.), Integer
Programming and Combinatorial Optimization. XI, 445
pages. 2004.

Vol. 3063: A. Llamosi, A. Strohmeier (Eds.), Reliable
Software Technologies - Ada-Europe 2004. XIII, 333
pages. 2004.

Vol. 3062: J.L. Pfaltz, M. Nagl, B. Béhlen (Eds.), Applica-
tions of Graph Transformations with Industrial Relevance.
XV, 500 pages. 2004.

Vol. 3060: A.Y. Tawfik, S.D. Goodwin (Eds.), Advances in
Artificial Intelligence. XIII, 582 pages. 2004. (Subseries
LNAID).

Vol. 3059: C.C. Ribeiro, S.L. Martins (Eds.), Experimental
and Efficient Algorithms. X, 586 pages. 2004.

Vol. 3058: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 233
pages. 2004.

Vol. 3056: H. Dai, R. Srikant, C. Zhang (Eds.), Advances in
Knowledge Discovery and Data Mining. XIX, 713 pages.
2004. (Subseries LNAI).

Vol. 3054: 1. Crkovic, J.A. Stafford, H.-W. Schmidt, K.
Wallnau (Eds.), Component-Based Software Engineering.
XI, 311 pages. 2004.

Vol. 3053: C. Bussler, J. Davies, D. Fensel, R. Studer
(Eds.), The Semantic Web: Research and Applications.
X111, 490 pages. 2004.

Vol. 3052: W. Zimmermann, B. Thalheim (Eds.), Abstract
State Machines 2004. Advances in Theory and Practice.
XII, 235 pages. 2004.

Vol. 3051: R. Berghammer, B. Méller, G. Struth (Eds.),
Relational and Kleene-Algebraic Methods in Computer
Science. X, 279 pages. 2004.

Vol. 3050: J. Domingo-Ferrer, V. Torra (Eds.), Privacy in
Statistical Databases. IX, 367 pages. 2004.

Vol. 3047: F. Oquendo, B. Warboys, R. Morrison (Eds.),
Software Architecture. X, 279 pages. 2004.

Vol. 3046: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1016 pages. 2004.

Vol. 3045: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1040 pages. 2004.

Vol. 3044: A. Lagan3, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1140 pages. 2004.

Vol. 3043: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1180 pages. 2004.

Vol. 3042: N. Mitrou, K. Kontovasilis, G.N. Rouskas, L.
Iliadis, L. Merakos (Eds.), NETWORKING 2004, Net-
working Technologies, Services, and Protocols; Perfor-
mance of Computer and Communication Networks; Mo-
bile and Wireless Communications. XXXIII, 1519 pages.
2004.

Vol. 3039: M. Bubak, G.D.v. Albada, PM:Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LX VI,
1271 pages. 2004.

Vol. 3038: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
1311 pages. 2004.

Vol. 3037: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXV],
745 pages. 2004.

Vol. 3036: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
713 pages. 2004.

Vol. 3035: M.A. Wimmer (Ed.), Knowledge Management
in Electronic Government. XII, 326 pages. 2004. (Sub-
series LNAI). .

Vol. 3034: J. Favela, E. Menasalvas, E. Chdvez (Eds.), Ad-
vances in Web Intelligence. XIII, 227 pages. 2004. (Sub-
series LNAI).

Vol. 3033: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.),
Grid and Cooperative Computing. XXX VIII, 1076 pages.
2004.

Vol. 3032: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.), Grid
and Cooperative Computing. XXXVII, 1112 pages. 2004.

Vol. 3031: A. Butz, A. Kriiger, P. Olivier (Eds.), Smart
Graphics. X, 165 pages. 2004.

Vol. 3030: P. Giorgini, B. Henderson-Sellers, M. Winikoff
(Eds.), Agent-Oriented Information Systems. XIV, 207
pages. 2004. (Subseries LNAI).

Vol. 3029: B. Orchard, C. Yang, M. Ali (Eds.), Innovations
in Applied Artificial Intelligence. XXI, 1272 pages. 2004.
(Subseries LNAI).

Vol. 3028: D. Neuenschwander, Probabilistic and Statis-
tical Methods in Cryptology. X, 158 pages. 2004.

Vol. 3027: C. Cachin, J. Camenisch (Eds.), Advances in
Cryptology - EUROCRYPT 2004. XI, 628 pages. 2004.

Vol. 3026: C. Ramamoorthy, R. Lee, K.W. Lee (Eds.),
Software Engineering Research and Applications. XV,
377 pages. 2004.

Vol. 3025: G.A. Vouros, T. Panayiotopoulos (Eds.), Meth-
ods and Applications of Artificial Intelligence. XV, 546
pages. 2004. (Subseries LNAI).

Vol. 3024: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3023: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 611 pages. 2004.

Vol. 3022: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3021: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 633 pages. 2004.

Vol. 3019: R. Wyrzykowski, J.J. Dongarra, M. Paprzy-
cki, J. Wasniewski (Eds.), Parallel Processing and Applied
Mathematics. XIX, 1174 pages. 2004.

Vol. 3016: C. Lengauer, D. Batory, C. Consel, M. Odersky
(Eds.), Domain-Specific Program Generation. XII, 325
pages. 2004.

Vol. 3015: C. Barakat, 1. Pratt (Eds.), Passive and Active
Network Measurement. XI, 300 pages. 2004.

Vol. 3014: F. van der Linden (Ed.), Software Product-
Family Engineering. IX, 486 pages. 2004.

Vol. 3012: K. Kurumatani, S.-H. Chen, A. Ohuchi (Eds.),
Multi-Agnets for Mass User Support. X, 217 pages. 2004.
(Subseries LNAI).

Vol. 3011: J.-C. Régin, M. Rueher (Eds.), Integration of Al
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 415 pages. 2004.

Vol. 3010: KR. Apt, F. Fages, F. Rossi, P. Szeredi, J.

Viéncza (Eds.), Recent Advances in Constraints. VIII, 285
pages. 2004. (Subseries LNAI).

Vol. 3009: F. Bomarius, H. Iida (Eds.), Product Focused
Software Process Improvement. XIV, 584 pages. 2004.

Vol. 3008: S. Heuel, Uncertain Projective Geometry.
XVII, 205 pages. 2004.

Vol. 3007: J.X. Yu, X. Lin, H. Lu, Y. Zhang (Eds.), Ad-
vanced Web Technologies and Applications. XXII, 936
pages. 2004.

Vol. 3006: M. Matsui, R. Zuccherato (Eds.), Selected Ar-
eas in Cryptography. XI, 361 pages. 2004.

Vol. 3005: G.R. Raidl, S. Cagnoni, J. Branke, D.W. Corne,
R. Drechsler, Y. Jin, C.G. Johnson, P. Machado, E. Mar-
chiori, F. Rothlauf, G.D. Smith, G. Squillero (Eds.), Ap-
plications of Evolutionary Computing. XVII, 562 pages.
2004.

Vol. 3004: J. Gottlieb, G.R. Raidl (Eds.), Evolution-
ary Computation in Combinatorial Optimization. X, 241
pages. 2004.

Vol. 3003: M. Keijzer, U.-M. O’Reilly, S.M. Lucas, E.
Costa, T. Soule (Eds.), Genetic Programming. XI, 410
pages. 2004.

Vol. 3002: D.L. Hicks (Ed.), Metainformatics. X, 213
pages. 2004.

Vol. 3001: A. Ferscha, F. Mattern (Eds.), Pervasive Com-
puting. XVII, 358 pages. 2004.

Vol. 2999: E.A. Boiten, J. Derrick, G. Smith (Eds.), Inte-
grated Formal Methods. XI, 541 pages. 2004.

Vol. 2998: Y. Kameyama, P.J. Stuckey (Eds.), Functional
and Logic Programming. X, 307 pages. 2004.

Vol. 2997: S. McDonald, J. Tait (Eds.), Advances in Infor-
mation Retrieval. XIII, 427 pages. 2004.

Vol. 2996: V. Diekert, M. Habib (Eds.), STACS 2004. X VI,
658 pages. 2004.

Vol. 2995: C. Jensen, S. Poslad, T. Dimitrakos (Eds.), Trust
Management. XIII, 377 pages. 2004.

Vol. 2994: E. Rahm (Ed.), Data Integration in the Life
Sciences. X, 221 pages. 2004. (Subseries LNBI).

Vol. 2993: R. Alur, G.J. Pappas (Eds.), Hybrid Systems:
Computation and Control. XII, 674 pages. 2004.

Vol. 2992: E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Bohm, E. Ferrari
(Eds.), Advances in Database Technology - EDBT 2004.
XVIII, 877 pages. 2004.

Vol. 2991: R. Alt, A. Frommer, R.B. Kearfott, W. Luther
(Eds.), Numerical Software with Result Verification. X,
315 pages. 2004.

Vol. 2990: J. Leite, A. Omicini, L. Sterling, P. Torroni
(Eds.), Declarative Agent Languages and Technologies.
XI1, 281 pages. 2004. (Subseries LNAI).

Vol. 2989: S. Graf, L. Mounier (Eds.), Model Checking
Software. X, 309 pages. 2004.

Vol. 2988: K. Jensen, A. Podelski (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems. XIV,
608 pages. 2004.

Vol. 2987: 1. Walukiewicz (Ed.), Foundations of Software
Science and Computation Structures. XIII, 529 pages.
2004.

Vol. 2986: D. Schmidt (Ed.), Programming Languages and
Systems. XII, 417 pages. 2004.

Preface

These proceedings contain a selection of refereed papers presented at or related
to the 3rd Annual Workshop of the Types Working Group (Computer-Assisted
Reasoning Based on Type Theory, EU IST project 29001), which was held dur-
ing April 30 to May 4, 2003, in Villa Gualino, Turin, Italy. The workshop was
attended by about 100 researchers. Out of 37 submitted papers, 25 were selected
after a refereeing process. The final choices were made by the editors.

Two previous workshops of the Types Working Group under EU IST project
29001 were held in 2000 in Durham, UK, and in 2002 in Berg en Dal (close
to Nijmegen), The Netherlands. These workshops followed a series of meetings
organized in the period 1993-2002 within previous Types projects (ESPRIT
BRA 6435 and ESPRIT Working Group 21900). The proceedings of these ear-
lier workshops were also published in the LNCS series, as volumes 806, 996,
1158, 1512, 1657, 2277, and 2646. ESPRIT BRA 6453 was a continuation of
ESPRIT Action 3245, Logical Frameworks: Design, Implementation and Expe-
riments. Proceedings for annual meetings under that action were published by
Cambridge University Press in the books “Logical Frameworks”, and “Logical
Environments”, edited by G. Huet and G. Plotkin.

We are very grateful to the members of the research group “Semantics and
Logics of Computation” of the Computer Science Department of the University
of Turin, who helped organize the Types 2003 meeting in Torino. We especially
want to thank Daniela Costa and Claudia Goggioli for the secretarial support,
Sergio Rabellino for the technical support, and Ugo de’ Liguoro for helping out
in various ways.

We also acknowledge the support from the Types Project, EU IST 29001,
which makes the Types workshops possible.

March 2004 Stefano Berardi
Mario Coppo
Ferruccio Damiani

Referees

We would like to thank the following people for their kind work in reviewing the

papers submitted to these proceedings:

Michael Abbott
Peter Aczel

Robin Adams

Yohji Akama

Fabio Alessi
Thorsten Altenkirch
Chris Andersen
Steffen van Bakel
Clemens Ballarin
Franco Barbanera
Gianpaolo Bella
Gianluigi Bellin
Stefano Berardi
Chantal Berline
Yves Bertot
Frédéric Blanqui
Kim Bruce

Iliano Cervesato
Alberto Ciaffaglione
Norman Danner
Ugo de’ Liguoro
Fer-Jan de Vries
Pietro Di Gianantonio
Peter Dybjer
Maribel Fernandez
Jean-Christophe Filliatre
Matthew Flatt
Daniel Fridlender
Herman Geuvers
Pola Giannini

Elio Giovannetti
Adam Grabowsky
Hugo Herbelin
Roger Hindley
Daniel Hirkschoff

Marieke Huisman
Pierre Lescanne
Cedric Lhoussaine
Yong Luo

Zhaohui Luo
Simone Martini
James McKinna
Marino Miculan
Christine Paulin-Mohring
Jens Palsberg
Randy Pollak
Francois Pottier
Frédéric Prost
Christophe Raffalli
Aarne Ranta

Eike Ritter
Simona Ronchi
Pino Rosolini
Luca Roversi
Frédéric Ruyer
Ivan Scagnetto
Vincent Simonet
Jan Smith

Sergei Soloviev
Bas Spitters

Dan Synek

Paul Taylor
Tarmo Uustalu
Femke van Raamsdonk
Jen von Plato
Hongwei Xi
Yamagata Yoriyuki

Table of Contents

A Modular Hierarchy of Logical Frameworks
Robin Adams

Tailoring Filter Modelst
Fabio Alessi, Franco Barbanera, Mariangiola Dezani-Ciancaglini

Locales and Locale Expressions in Isabelle/Isar
Clemens Ballarin

Introduction to PAF!, a Proof Assistant for ML Programs Verification . ..
Sylvain Baro

A Constructive Proof of Higman’s Lemma in Isabelle
Stefan Berghofer

A Core Calculus of Higher-Order Mixins and Classes
Lorenzo Bettini, Viviana Bono, Silvia Likavec

Type Inference for Nested Self Types,
Viviana Bono, Jerzy Tiuryn, Pawet Urzyczyn

Inductive Families Need Not Store Their Indices
Edwin Brady, Conor McBride, James McKinna

Modules in Coq Are and Will Be Correctccoovvuniiinnaon...
Jacek Chrzqszcz

Rewriting Calculus with Fixpoints:
Untyped and First-Order Systems...........o,
Horatiu Clirstea, Luigi Liquori, Benjamin Wack

First-Order Reasoning in the Calculus of Inductive Constructions
Pierre Corbineau

Higher-Order Linear Ramified Recurrence
Ugo Dal Lago, Simone Martini, Luca Roversi

Confluence and Strong Normalisation
of the Generalised Multiary A-Calculus
José Espirito Santo, Luis Pinto

Wellfounded Trees and Dependent Polynomial Functors................
Nicola Gambino, Martin Hyland

Classical Proofs, Typed Processes, and Intersection Types..............
Silvia Ghilezan, Pierre Lescanne

X Table of Contents

“Wave-Style” Geometry of Interaction Models in Rel
Are Graph-Like Lambda-Models i, 242
Furio Honsell, Marina Lenisa

Coercions in Hindley-Milner Systemscooiiiiiiiinoa.. 259
Robert Kiefling, Zhaohui Luo

Combining Incoherent Coercions for X-Types.............coooivnia... 276
Yong Luo, Zhaohut Luo

Induction and Co-induction in Sequent Calculus 293
Alberto Momigliano, Alwen Tiu

QArith: Coq Formalisation of Lazy Rational Arithmetic 309
Milad Niqui, Yves Bertot

Mobility Types In Cogu s s swims snsassnamsaaams saans s@ims sasae s msmis 324
Furio Honsell, Ivan Scagnetto

Some Algebraic Structures in Lambda-Calculus
with Inductive Typeso i e 338
Sergej Soloviev, David Chemouil

A Concurrent Logical Framework: The Propositional Fragment 355
Kevin Watkins, Iliano Cervesato, Frank Pfenning, David Walker

Formal Proof Sketches i 378
Freek Wiedijk

Applied Type System.oouiiiii e e 394
Hongwei Xi

Author Index 409

A Modular Hierarchy of Logical Frameworks

Robin Adams

University of Manchester
robin.adams@ma.man.ac.uk

Abstract. We present a method for defining logical frameworks as a
collection of features which are defined and behave independently of one
another. Each feature is a set of grammar clauses and rules of deduction
such that the result of adding the feature to a framework is a conservative
extension of the framework itself. We show how several existing logical
frameworks can be so built, and how several much weaker frameworks
defined in this manner are adequate for expressing a wide variety of
object logics.

1 Introduction

Logical frameworks were invented because there were a large number of differing
systems of logic, with no common language or environment for their investigation
and implementation. However, we now find ourselves in the same situation with
the frameworks themselves. There are many systems that are used as logical
frameworks, and it is often difficult to compare them or share results between
them. It is often much work to discover whether two frameworks can express the
same class of object logics, or whether one is stronger or weaker than the other. If
we are interested in metavariables, and we compare Pientka and Pfenning’s work
(1] with Jojgov’s 2], it is difficult to see which differences are due to the different
handling of metavariables, and which are due to differences in the underlying
logical framework.

To redress this situation somewhat, I humbly present the first steps towards
a common scheme within which a surprising number of different frameworks
can be fitted. We take a modular approach to the design of logical frameworks,
defining a framework by specifying a set of features, each of which is defined and
behaves independently of the others. Together, all the frameworks that can be
built from a given set of features form a modular hierarchy of logical frameworks.

We may give an informal definition of a feature thus:

A feature F is a set of grammar clauses and rules of deduction such that,
for any logical framework L, the result of adding F to L is a conservative
extension of L.

(This cannot be made a formal definition, as we do not (yet) have a notion of
“any logical framework”.)

S. Berardi, M. Coppo, and F. Damiani (Eds.): TYPES 2003, LNCS 3085, pp. 1-16, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 R. Adams

It is not surprising that features exist — one would expect, for example, that
adding a definitional mechanism to a typing system should yield a conserva-
tive extension. Perhaps more surprising is the fact that such things as lambda-
abstraction can be regarded as features. In fact, we shall show how a logical
framework can be regarded as being nothing but a set of features. More pre-
cisely, we shall define a system that we call the basic framework BF, and a
number of features that can be added to it, and we shall show how a number of
existing frameworks can be built by selecting the appropriate features.

We shall also show that most of these features are unnecessary from the
theoretical point of view — that is, a much smaller set of features suffices to
express a wide variety of object logics. These ‘unnecessary’ features may well be
desirable for implementation, of course.

It may be asked why we insist that our features always yield conservative
extensions. This would seem to be severely limiting; in one’s experience with
typing systems, rarely are extensions conservative. For typing systems in general,
this is true. But I would argue that logical frameworks are an exception. The
fact that all the features presented here yield conservative extensions is evidence
to this effect. And it would seem to be desirable when working with a logical
framework — if we add a feature to widen the class of object logics expressible,
for example, we still want the old object logics to behave as they did before.

We suggest that, if this work were taken further, it would be possible and de-
sirable to define mechanisms such as metavariables or subtyping as features, and
investigate their properties separately from one another and from any specific
framework. If we did this for metavariables, for example, we would then know im-
mediately what the properties of ELF with metavariables were, or Martin-Lof’s
Theory of Types with metavariables, or ...

2 Logical Frameworks

Let us begin by being more precise as to what we mean by a logical framework.

Broadly speaking, logical frameworks can be used in two distinct ways. The
first is to define an object logic by means of a signature, a series of declarations
of constants, equations, etc. The typable terms under that signature should then
correspond to the terms, derivations, etc. of the object logic, using contexts to
keep track of free variables and undischarged hypotheses. Examples include the
Edinburgh Logical Framework (3] and Martin-Léf’s Theory of Types [4]. We
shall call a framework used in this way a logic-modelling framework.

The second is to use the logical framework as a book-writing system, as
exemplified by the AUTOMATH family of systems [5]. The most important
judgement form in such a framework is that which declares a book correct; the
other judgement forms are only needed as auxiliaries for deriving this first form
of judgement.

These two kinds of system behave in very similar ways. Any system of one
kind can be used as a system of the other, by simply reading ‘signature’ for
‘book’, or vice versa. This is a striking fact, considering the difference in use. In

A Modular Hierarchy of Logical Frameworks 3

a system of the first kind, deriving that a signature is valid is just the first step
in using an object logic; in a book-writing system, it is the only judgement form
of importance. We shall take advantage of this similarity. Our features shall be
written with logic-modelling frameworks in mind; it shall turn out that they are
equally useful for building book-writing frameworks.

—

We consider a logical framework to consist of:

. Disjoint, countably infinite sets of variables and constants.
. A number of syntactic classes of expressions, defined in a BNF-style grammar

by a set of constructors, each of which forms a member of one class from
members of other classes, possibly binding variables.

. Three syntactic classes that are distinguished as being the classes of signa-

ture declarations, context declarations and judgement bodies. Each signature
declaration is specified to be either a declaration of a particular constant,
or of none. Similarly, each context declaration is specified to be either a
declaration of a particular variable or of none.

We now define a signature to be a finite sequence of signature declarations,
such that no two declarations are of the same constant. The domain of the
signature ¥, dom X, is then defined to be the sequence consisting of the
constants declared in X, in order. Similarly, we define a context to be a
finite sequence of context declarations, no two of the same variable, and we
define its domain similarly.

Finally, we define a judgement to be a string of one of two forms: either

X sig
or
'kyJ

where X' is a signature, I" a context, and J a judgement body.

. A set of defined operations and relations on terms. Typically, these shall

include one or more relations of reducibility and convertibility.

. The final component of a logical framework is a set of rules of deduction

which define the set of derivable judgements.

2.1 The Basic Framework BF

As is to be expected, BF is a very simple system. It allows: the declaration
of variable and constant types; the declaration of variables and constants of a
previously declared type; and the assertion that a variable or constant has the
type with which it was declared, or is itself a type.

The grammar of BF is as follows:

Term a ==z |c
Kind A ::= Type | El(a)
Signature Declaration § :=c: Aofc

Context Declaration v =z : Aof z
Judgement Body J ::=valid | Akind |[a: A

The rules of deduction of BF are given in Figure 1.

4 R. Adams

5 A kind .
- _ ¢ ¢ dom
) sig X,c: Asig
X sig I't5x A kind
—_— —— —— (z ¢ domD)
5 valid I'z: Alyx valid
I 5 valid I' 5 valid
— (c:AE€Y) —m—— (z:A€l)
I'kFxc: A I'kFxx: A
I' 5 valid 'ty a:Type
I' 5 Type kind I' 5 El(a) kind

Fig. 1. The basic framework BF

3 Features and the Modular Hierarchy

A feature that depends on the logical framework L consists of any number of
new entities: new syntactic classes, new constructors, new defined operations and
relations and new rules of deduction. The new constructors may take arguments
from new classes or those of L, bind new variables or those of L, and return
expressions in new classes or those of L. In particular, they may create new
signature declarations, context declarations and judgement bodies. Likewise, the
new defined operations and relations should be defined on both old and new
expressions, and the new rules of deduction may use both old and new judgement
forms.

A feature may also introduce redundancies. A redundancy takes an old con-
structor and declares that it is to be replaced by a certain expression. That is,
the constructor is no longer part of the grammar; wherever it appeared in a
defined operation or relation or a rule of deduction, its place is to be taken by
the given expression.

Now, if L' is any logical framework that extends L, we define the logical
framework L’ 4+ F in the obvious manner.

It should be noted that these rules of deduction are assumed to automatically
extend themselves when future features are added. For example, if a feature
contains the rule of deduction

F}—ZM:A
I'FsM=M:A

and we later introduce a new constructor for terms M, this rule is assumed to
hold for the new terms M as well as the old.

(Formally defining features in such a way that this is possible requires ex-
plicitly defining classes of meta-expressions in the manner of [6]. We shall not
go into such details here.)

Finally, we define:

A Modular Hierarchy of Logical Frameworks 5

Definition 1. A feature F that depends on the set of features {Fi, F3, .. .}isa
feature that depends on the logical framework

BF+F +F+--.

Thus, if F depends on {F1,F5,...}, we can add F to any framework in the
hierarchy that contains all of Fy, F3, Note that we do not stipulate in this
definition whether the set {Fi, F5, ...} is finite or infinite.

3.1 Parametrization

The first, and most important, of our features are those which allow the decla-
ration of variables and constants with parameters. This mechanism is taken as
fundamental by the systems of the AUTOMATH [5] family as well as PAL* [9],
but can be seen as a subsystem of almost all logical frameworks. Parametriza-
tion provides a common core, above which the different forms of abstraction
(\-abstraction with typed or untyped domains, and with - or [n-conversion,
as well as PAL*-style abstraction by let-definition) can be built as conservative
extensions.

We define a series of features: SPar (1), SPar (2), SPar (3), ..., and also
LPar (1), LPar(2), LPar (3), These extend one another in the manner
shown in Figure 2.

LPar (1) LPar(2) —— --- —— LPar (w)

BF —— SPar (1) ~ SPar(2) —— --- —— SPar (w)

Fig. 2. The initial fragment of the modular hierarchy

BF already allows the declaration of constants in kinds: ¢; : A.
LPar (1) allows the declaration of constants in first-order kinds: c3 : (z; :

Ai,...,x, ¢ Ap)A. This declaration indicates that c is a constant that takes
parameters z1 of kind Ay, ... , T, of kind A,, and returns a term ca[z1,... ,Zx]
of kind A.

LPar (2) allows the parameters themselves to have parameters: ¢z : (z; :
(.’L‘11 : A11,... y L1k, - Alkl)Al,--- s T (:vnl : Anh--- sy Tnk, - Ank")An)A.
LPar (3) allows these second-order parameters to have parameters, and so on.
Similarly for declaration of variables.

We also define the feature LPar (w) to be the union of all these features,
allowing any level of parametrization.

6 R. Adams

The sequence of features SPar (n) is similar; the only difference is that, in
SPar (n), every parameter must be in a small kind; that is, each A;, Agjy vns
above must be of the form El(a); it cannot be Type. (In SPar (n), A itself,
the rightmost kind, can be Type in the declaration of a constant, but not in a
declaration of a variable.)

The full details of these features are as follows:

Parameters in Small Kinds, SPar (n)

Grammar Before we can introduce the new grammar constructors, we need to
make a few definitions.

We define an m-th order pure context by recursion on m as follows. An m-th
order pure context is a string of the form

(z1: (A1) Elaq),... ,zx : (Ax)El(ax))

where each z; is a variable, all distinct, A; a pure context of order < m, and a;
a term. Its domain is (z1,... ,zk).
We define an abstraction to be a string of the form

[x] M

where @ is a sequence of distinct variables, and M a term. We take each member
of x to be bound within M in this abstraction, and we define free and bound
variables and identify all our expressions up to a-conversion in the usual manner.
We write "M, N, ... for arbitrary abstractions. It is important to note that these
are not first-class objects of every framework that contains SPar (n).

Now, we add the following clause to the grammar:

z[[M]

is a term, where 2 is a variable or constant, and "M a sequence of abstractions..
This clause subsumes the grammar of BF, for z() and ¢() are terms when z is
a 0-ary variable and ¢ a 0-ary constant.

We also allow declarations of the form

c: (A)A

in the signature, where ¢ is a constant, A a pure context of order < n,and A a
kind; and those of the form

z : (A)El(a)

in the context, where z is a variable, A a pure context of order < mn,and a a
term. Again, these subsume those of BF.

