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Foreword

Kummer’s work on cyclotomic fields paved the way for the development of
algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert,
Takagi, Artin and others. However, the success of this general theory has
tended to obscure special facts proved by Kummer about cyclotomic fields :
which lie deeper than the general theory. For a long period in the 20th century
this aspect of Kummer’s work seems to have been largely forgotten, except
for a few papers, among which are those by Pollaczek [Po], Artin-Hasse
[A-H] and Vandiver [Va].

In the mid 1950, the theory of cyclotomic fields was taken up again by
Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues
for number fields of the constant field extensions of algebraic geometry, and
wrote a gicat v»quence of papers investigating towers of cyclotomic fields,
and more generally, Galois extensions of number fields whose Galois group
is isomorphic to the additive group of p-adic integers. Leopoldt concentrated
- on a fixed cyclotomic field, and established various p-adic analogues of the
classical complex analytic class number formulas. In particular, this led him
to introduce, with Kubota, p-adic analogues of the complex L-functions
attached to cyclotomic extensions of the rationals. Finally, in the late 1960’s,
Iwasawa [Iw 11] made the fundamental discovery that there was a close
connection between his work on towers of cyclotomic fields and these
p-adic L-functions of Leopoldt-Kubota.

The classical results of Kummer, Stickelberger, and the Iwasawa-
Leopoldt theories have been complemented by, and received new significance
- from the following directions:

1. The analogues for abelian extensions of imaginary quadratic fields in
the context of complex multiplication by Novikov, Robert, and Coates
Wiles. Especially the latter, leading to a major result in the direction of the
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Foreword

Birch-Swinnerton-Dyer conjecture, new insight.into the explicit reciprocity
laws, and a refinement of the Kummer-Takagi theory of units to all levels.

2. The development by Coates,’ Coates—Sinnott and Lichtenbaum of an
analogous theory in the context of K-theory.

3. The development by Kubert-Lang of an analogous theory for the units
and cuspidal divisor class group of the modular function field.

4. The introduction of modular forms by Ribet in proving the converse of
Herbrand’s theorem. :

5. The connection between values of zeta functions at negative integers
and the constant terms of modular forms starting with Klingen and Siegel,
and highly developed to congruence properties of these constant terms by
Serre, for instance, leading to the existence of the p-adic L-function for
arbitrary totally real fields. A

6. The construction of p-adic zeta functions in various contexts of elliptic
curves and modular forms by Katz, Manin, Mazur, Vishik.

7. The connection with rings of endomorphisms of abelian varieties or
curves, involving complex multiplication (Shimura-Taniyama) and/or the
Fermat curve (Davenport-Hasse-Weil and more recently Gross—Rohrlich).
- There is at present no systematic introduction to the basic cyclotomic
theory. The present book is intended to fill this gap. No connection will be
made here with modular forms, the book is.kept essentially purely cyclotomic,
and as elementary as possible, although in a couple of places, we use class
field theory.

Some basic conjcctui'es remain open, notably: Vandiver’s conjecture that
h* is prime to p.

The Iwasawa-Leopoldt conjecture that the p-primary part of C~ is cyclic
over the group ring, and therefore isomorphic to the group ring modulo
the Stickelberger ideal.. For prime level, Leopoldt and Iwasawa have shown
that this is a consequence of the Vandiver conjecture. Cf. Chapter VI, §4.

Much of the cyclotomic theory extends to totally real number fields, as
theorems or conjecturally. We do not touch on this aspect of the question.
Cf. Coates’ survey paper [Co 3], and especially Shintani [Sh].

There seems no doubt at the moment that essential further progress will be
closely linked with the algebraic-geometric considerations, especially via the
Fermat and modular curves.

I am very much indebted to John Coates, Ken Ribet and David Rohrlich
for their careful reading of the manuscrxpt and for a large number of
suggestions for improvement.

New Haven, Connecticut SERGE LANG
1978 :

vi



Notation

Z(N) = integers mod N = Z/NZ.

If 4 is an abelian group, we usually denoted by A4y the elements x € 4
such that Nx = 0. Thus for a prime p, we denote by 4, the elements of order
p. However, we also use p in this position for indexing purposes, so v rely
to some extent on the context to make the intent clear. In his book, Shimura
uses A[p] for the kernel of p, and more generally, if 4 is a module
over a ring, uses A[a] for the kernel of an ideal a in 4. The brackets are
used also in other contexts, like operators, as in Lubin-Tate theory. There is
a dearth of symbols and positions, so some duplication is hard to avoid.

We let A(N) = A/NA. We let A” be the subgroup of A4 consisting of all
elements annihilated by a power of p.
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Character Sums

Character sums occur all over the place in many different roles. In this
chapter they will be used at once to represent certain principal ideals, thus
giving rise to annihilators in a group ring for ideal classes in cyclotomic fields.

They also occur as endomorphisms of abelian varieties, especially Jacob-
ians, but we essentially do not consider this, except very briefly in §6. They
occur in the computation of the cuspidal divisor class group on modular
curves in [KL 6]. The interplay between the algebraic geometry and the
theory of cyclotomic fields is one of the more fruitful activities at the moment
in number theory. ‘

§1. Character Sums Over Finite Fields
We shall use the following notation.
F = F, = finite field with ¢ elements, ¢ = p".
Z(N) = Z/NZ. 46
¢ = primitive pth root of unity in characteristic 0. Over the complex
numbers, ¢ = &2™/?,
Tr = trace from F to F;.

uy = group of Nth roots of unity.
A: F— p, the character of F given by

/I(x 2o BTr(x)_

y: F* — p,_, denotes a character of the multiplicative group.
We extend y to F by defining x(0) = 0.

The field Q(uy) has an automorphism o _; such that

o_:{—>{"L



1. Character Sums

If de Q(u,,) then the conjugate & denotes o _,0. Over the complex numbeis,
tlm is the complex conjugate.
Thc Galois group of Q(uy) over Qis 1somorphlc to Z(N)*, under the map

cr>a,
where
o.: (> (.

Jetfig be functions on F with values in a fixed algebraically closed field of
characteristic 0. We define

S(f,8) = 2 f(x)g().

x€F

We define the Fourier transform 7f by
() = Z f(x)}.(—xy) = Zf(x)s—'rt(xv)“
X€F

Then 7f is again a function on F, identified with its character group by 4,
and 7 is a linear map.

Theorem 1.1. Let f~ be the function such that f~(x) = f(—x). Then
T°f = qf~, that is

_ T*(z) = 4f(~2).
Proof. We have

T = 3 3 fM - y)M~27)
=5 fix =) 3 A=),

) .
If x # 0 then y+> A(yx) is a non-trivial character, and the sum of the
character over F is 0. Hence this last expression is

=qf(-2)

as desired.

We define the convolution /" * g between functions by the formula
(f*&)y) = 2, [y - x).
& x

A change of variabies shows that

frg=g+/



§1. Character Sums Over Finite Fields

’nleorem 1.2. For functi'ons f, g on F we have
T(f % g) = (T XTg)
T(e) = L 1f + T
LProafE %or tﬁc first formula we have
T+ = 5+ ) = 33 [0y = Di-2).
We cﬂan‘ée Ithe order of; summation, let t = y — x, y = x + ¢, and find
- Zf(x)l(—zx) Z g(DA(—zt)
= (Tf(Tg)X2),
thereb)} -pr(ﬁing the first formula.

The second formula follows from the first because 7 is an isomorphism
on the space of functions on F, so that we can write f = Tf; and g = Tg,
for some functions f;, g,. We then combine the first formula with Theorem
1.1 to get the second.

We shall be concerned with the Gauss sums (Lagrange resolvant)

S 2) = S = 2, x()Aw)

where the sum is taken over u € F*. We could also take the sum over x in F
since we defined x(0) = 0. Since 4 is fixed, we usually omit the reference to 1
‘in the notation. The Gauss sums have the following properties.

GS 0, Let y, be the trivial character 1 on F*. Then

S() = -1

This is obvious from our conventions. It illustrates right at the beginning the
pervasive fact, significant many times later, that the natural object to con-
sider is — S(y) rather than S(y) itself. We shall also write

S(1y = 51, 4),

but the cbnvention remains in force that even for the trivial character, its
value at 0_ is 0.

GS 1. For any character y # 1, we have Ty, = x(--1)S()x~*.



Ta(y) = 2, 1M —yx).

If y = 0 then Tx(y) = O (summing the multiplicative character over the
< multiplicative group). If y # 0, we make a change of variables x = —#y~%,
and we find precisely the desired value

(= DSy~ ).
GS 2. We have S(7) = x(— DSQ) and for x # 1, SIS = x(—1)g, so

SSQ) = g, for x # 1.

Proof. Note that T2%y = T(x(— 1Sz~ ") = S()S(x~')x. But we also
know that 72y = gx~. This proves GS 2, as the other statements are obvious.

Over the complex numbers, we obtain the absolute value

IS@I = ¢*.

We define the Jacobi

I, 1) = — 2, 1@l — %)

Observe the minus sign, a most useful convention. We have
4 J1,1) = —(g - 2.
GS 3. Ifx,x;, # 1 then

s
J(Xn Xz) e S(XIXB; .

In particular, J(1, x2) = J(xs, 1) = 1. If yaxa = 1 but not both x1, X2
are trivial, then ' . :

_ Tt 12) = 1a(=D).
Proof. We compute from the definitions:

SISt = 3. 3 1M + )

> > n@xaly = D)

S S e — DI + D, 10a(—2)-
x #0 2

u




§1. Character Sums Over Finite Fields

If y1x2 # 1, the last sum on the right is equal to 0. In the other sum, we inter-
change the order of summation, replace x by ux, and find

2 Xaxa(Aw) D 1a(xa(l = ),

thus proving the first assertion of GS 3. If Yixz = 1, then the last sum on the
right is equal to y,(—1)(¢ — 1), and the second assertion follows from
GS 2.

Next we give formulas showing how the Gauss sums transform under
Galois automorphisms.

GS 4. S®) = S
Proof. Raising to the pth power is an automorphism of F, and therefore
¢
Tr(x?) = Tr(x).

Thus S(x*) is obtained from S(y) by permuting the elements of F under
x > x?. The property is then obvious.

Let m be a positive integer dividing ¢ — 1, and suppose that y has order m,
meaning that

=1
Then the values of y are in Q(u,,) and
S = S, A) € Qutm, 1y)-

For any integer ¢ prime to m we have an automorphism o, of Q(un, k)
such that

6.1:(+—>{° and o, is identity on y,.
For any integer v prime to p, we have an automorphism a,,, such that
0,,:e+>¢" and @, is identity on u,.

We can select v in a given residue class mod p such that v is also prime to m.
In the sequel we usually assume tacitly that v has been so chosen, in particular
in the next property.

GS 5. 0280 = S(¢°) and 0,,50) = ¥()SG)

Proof. The first is obvious from the definitions, and the second comes by
making a change of variablc in the Gauss sum,

x> v ix.



1. Character Sums -

Observe that - :
01 A(X) = ' = g0 = Jyx).

The second property then drops out.
The diagram of fields is as follows.

Q(fms M)

Qum) Q(u,)

Q/.

From the action of the Galois group, we can see that the Gauss sum
(Lagrange resolvant) satisfies a Kummer equation.

Theorem 1.3. Assume that y has order m..

@) SG)™ lies in Q(pin)- . 50

(i) Let b be an integer prime to m, and let 6, = 6y, Then S(x)°~ % lies in
Q(tr). Sty

Proof. In each case we operate on the given expression by an automorphism

.., with an integer v prime to pm. Using GS 5, it is then obvious that the
given expression is fixed under such an automorphism, and hence lies in .

Qtm)-

§2. Stickelberger’s Theorem

In the first section, we determined the absolute value of the ‘Gauss sum.
Here, we determine the prime factorization. We shall first express a character
in terms of a canonical character determined by a prime.

Let p be a prime ideal in Q(y,-,), lying above the prime number p. The
residue class field of p is identified with F = F,. We keep the same notation
as in §1. The equation X9~ — 1 = 0 has distinct roots mod p, and hence
reduction mod p induces an isomorphism

F‘q—lfi)F‘.l = F*

Phrased another way, this means that there exists a unique character @ of

F* such that ’
~w(w)mod p = u.

This character will be called the Teichmuller character. This last equation

will also be written in the more usual form :

o(u) = u (mod p).



§2. Stickelberger’s Theorem

The Teichmuller character generates the character group of F * so any
character y is-an integral power of ®.
We let = - B
s S, n=2¢—1l
Let R be a prime ideal lying above p in Q(uq-1, ip). We use the symbol
A ~ B to mean that A/B is a uit, or the unit ideal, depending whether 4, B
-are algebraic numbers or (fractional) idqalé. We then have

p~ Bt

becausc’elé.fnentary algebraic number theory shows that p is totally ramified
in Q(¢), and p is totally ramified in Q(ug-1, iy)-
Let k be an integer, and assume first that 0 <k <q— 1. Write the
- p-adic expansion
' k=ko+kip+---+ko1p""?

with 0 < k, < p — 1. We define

s(k) = ko + ky + -+ Kn-1.

For an arbitrary integer k, we define s(k) to be periodic mod g — 1, and
 defined by the above sum in the range first assumed. For convenience, we also
define :

yk) = kol kit k!

to be the product of the k;! in the first range, and then also define y(k) by
(g — 1)-periodicity for arbitrary integers k. If the ‘dependence on g is
: desir_ed, one could write

s(k) and y.(k).
Theorem 2.1. For any integer k, we have the congruence

S(w"é, ) —1
___(s —1y® = m(mod B).

In particular,
ordg S(w=%) = s(k).

Remark. Once more, we see how much more natural the negative of the
Gauss sum turns out to be, for we have

~S(w* 2 _ 1

= g prpARoc 9

with 1 instead of —1 on the right-hand side.



