

The Design of the Management Information System

by DON Q MATTHEWS UNIVERSITY OF TULSA

REVISED EDITION

NEW YORK 1976

Copyright © Mason/Charter Publishers, Inc. 1976

All rights reserved. No part of this work covered by the copyrights hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, or taping, or information storage and retrieval systems—without written permission of the publisher.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10

Library of Congress Cataloging in Publication Data

Matthews, Don Q
The Design of the management information system.

Includes bibliographies and index.
1. Management information systems, I. Title, T58.6.M37 1976 658.4'032 76-24906 ISBN 0-88405-320-2

The Design
of the
Management
Information System

Preface to the Second Edition

This edition of *The Design of the Management Information System* retains the concepts of managing information which were so well received in the original edition. New material has been provided in such increasingly important areas as system concepts, security, privacy, interactive systems, and others. In addition, several chapters have been rearranged as a result of experience in using the material in a variety of circumstances. Discussion topics and suggested readings have been added to each chapter. The intent of the book remains the same—to promote a better understanding of management information systems.

Preface

The management information system can potentially provide a significant new dimension in management practice. However, this potential can never be fully exploited until both the operating manager and the system analyst understand the nature of these systems and participate in establishing system objectives and basic system architecture. During the course of teaching computer science at the University of Tulsa, I have found an increasing need for a better understanding of management information systems, not only for business students but also for practicing managers and experienced computer analysts. This book is directed toward that need—an understanding of the design concepts and the problems associated with the amalgamation of management practice and computer science.

In actual practice it has been difficult to realize the full potential of the management information system. The design philosophies are quite different from either manual systems or conventional computer applications. The problems associated with managing the system development and the system implementation are also unique. There is, however, an increas ing collection of design principles and administrative practices which apply to all types of organizations and to a broad range of management systems. This book does not attempt

to describe how a computer works or to define management. Rather, it attempts to describe how to devise computerized management systems which will achieve the objectives of the organization. This should provide a middle ground for the business managers as they become more concerned with computer systems and for system analysts as they become increasingly involved in complex integrated management problems.

The book is organized so it may be used for self-study or classroom instruction. The system life cycle is introduced early in the book, as an understanding of this provides aninsight into the larger system which is essential to the understanding of many design problems. The later chapters are largely self-contained so that they may be selected to fit a specific course structure or may be utilized for reference.

Grateful acknowledgment is due many associates and students who helped formulate the concepts, principles, and practices discussed, particularly the original MCS team at American Airlines. With so many people simultaneously working in this relatively new field, it is difficult to acknowledge the assistance of each. I am, however, especially grateful for the enthusiasm and confidence of Professor Anne Morrow, without which this work would never have been attempted, and to my wife, Charlotte, and my daughters, Pam and Lisa, for their continued patience and support.

	LIST OF ILLUSTRATIONS	ix
	PREFACE TO THE SECOND EDITION	xi
	PREFACE	xiii
Part One	SYSTEMS APPROACH	1
, 1	Management and the Computer—An Overview	3
	Management Systems	4
	History	6
	Management Information Systems	8
	Limitations	12
	Selected Readings	13
2	System Life Cycle	15
	Synthesis	19
	Analysis	21
	Design	25
	Implementation	27
	Maintenance	28
	Summary	29
	Discussion Topics	29
	Selected Readings	29

3	Design Considerations	31
	The Total System	32
	System Objectives	34
	Activity Reporting	36
	Data Base	37
	The Decision Process	37
	The Mainstream	42
	The Impact of Change	48
	Summary	49
	Discussion Topics	51
	Selected Readings	52
4	System Concept	53
	System Elements	54
	Feedback	55
	Control	56
	Decision Making	58
	Organization As a System	63
	Subsystems	66
	Modular Design	70
	Summary	73
	Discussion Topics	74
	Selected Readings	75
Part Two	SYSTEMS TECHNIQUE	77
5	Information Requirements	79
	Objectives	80
	Characteristics of Information	81
	Value of Information	84
	Exceptions	89
	Document Structure	91
	Interactive Systems	92
	Document Design	97
	Display Systems	105
	Summary	107
	Discussion Topics	109
	Selected Readings	109

.6	Activity Reporting	111
	Reporting Events	112
	Reporting Decisions	113
	Methods and Equipment	114
	Point-of-Sale Terminals	116
	Processing Methods	117
	Accuracy Control	118
	The Shop Order System	124
	Summary	130
	Discussion Topics	130
	Selected Readings	131
7	Data Management	133
	Data Elements	134
	Types of Data Elements	135
	Selection of Data	137
	Coding and Classification	138
	Organization and Indexing	140
	Data Base	143
	Summary	147
	Discussion Topics	147
	Selected Readings	148
Part Three	SYSTEMS ANALYSIS	149
8	Design Methods	151
	Analysis Approach	152
	Fact Finding	155
	Design Approach	157
•,	Graphic Tools	160
,	Data Matrix	164
	Precedence Charts	167
	Decision Table	171
	Management Science	173
	Quantitative Methods	175
	Systems Engineering	178
	Human Factors	179
	Simulation	180

	Automata	181
-	Summary	182
	Discussion Topics	183
	Selected Readings	184
9	System Security	187
	Reliability Goals	188
	Computer Center	189
	Communications	190
	Failure Detection	192
	File Protection	193
	Data Security	195
	Theft and Fraud	197
	Privacy	199
_	Emergency Procedures	200
	Summary	201
	Discussion Topics	202
	Selected Readings	203
10	Systems Implementation	205
	The Need for Organization	206
	Skill Requirements	207
	Work Requirements	209
	Concurrency	213
	Management Direction	214
	Project Management	215
	Testing and Implementation	219
	System Testing	220
	Testing Methods	222
	The Test Plan	224
	Operating Procedures	226
	Training	228
	Conversions	231
	Summary	232
	Discussion Topics	234
	Selected Readings	234
	INDEX	237

viii

List of Illustrations

2.1	Summary of the System Life Cycle	17
2.2	System Life Cycle	18
2.3	Examples of Design Standards	23
3.1	Management Information System Data Base	
	Relationship	38
3.2	Decision Process	39
3.3	Dispatching a Truck	40
3.4	Trucking Operation Logic Diagram	43
3.5	Trucking Operation Information Flow Chart	46
4.1	Elementary System Model	55
4.2	System Elements with Feedback	56
4.3	Control System with Memory	57
4.4	Decision Model	60
4.5	The Management Cycle	64
4.6	Elementary Information Flow	66
4.7	Information Flow Between Subsystems	67
5.1	Information Hierarchy	82
5.2	Functional Information Exchange	83
5.3	Factors in Information Requirements	87
5.4	Structured Report Levels	91
5.5	Comparison of Actual Performance to a Standard	98
5.6	Tabular Report Format	100
5.7	Exception Printing of Detail	101

List of Illustrations

5.8	Computer-prepared Bar Chart	102
5.9	Computer-prepared Line Graph	103
6.1	Basic Methods of Processing Source Data	119
6.2	Shop Order and Trigger Card	125
6.3	Shop Order Flow	126
7.1	"GOZINTO" Type of Hierarchy Code	140
7.2	Assembly Hierarchy by Part Number	142
7.3	Bill of Material Index	143
7.4	Single-source File Concept	144
7.5	Data Base Concept	145
8.1	Work Structure Diagram	159
8.2	Design Documentation Structure	160
8.3	Block Diagram	162
8.4	Typical Flow Chart Symbols	163
8.5	Procedural Flow Chart	165
8.6	System Flow Chart	165
8.7	Program Flow Chart	166
8.8	Decision Tree	167
8.9	Responsibility Matrix	168
8.10	Input-Output Chart	168
8.11	CPM/PERT Network of a Typical Design Project	170
8.12	Precedence Chart of a Typical Design Project	170
8.13	Decision Table Format	171
8.14	Example Decision Table	172
8.15	Reorder Procedure Decision Table	173
8.16	Quantitative Methods	176
9.1	Location of Remote Terminals	191
10.1	Steps in System Development	210
10.2	Systems Development Work Methods	212
10.3	Concurrent System Development	214
10.4	Project Team Organization	216
10.5	Project Manager Organization	217
10.6	Examples of System Testing Documentation	225

Part One

Systems Approach

Management and the Computer - An Overview

Modern management philosophies have become irreversibly intertwined with the computer. Organizational concepts, strategy, and decision making increasingly depend on a flow of information which can be generated only by the modern digital computer. There seems no end to the need for information about complex technology in a sophisticated society.

However, the computer is only a tool for advances in social and industrial organizations. The computer, despite its mystique, can do only what it has been instructed to do. The influence on society is the tasks for which we employ the computer-the systems which are devised by man to control his actions and their relationship with his fellow man. The computer has been the technological key to the exploitation of mathematical and scientific methodology in organizational operations. These techniques have been used to build increasingly sophisticated management systems which accurately and quickly evaluate alternatives, make decisions, and communicate information. The computer supplies the automation and speed characteristic of the systems, but beyond that it is rather incidental to the system design. It is the system itself which provides the means to achieve organizational objectives. Therefore, it must, of course, be tailored to the objectives and problems of the specific organization.

THE DESIGN OF THE MANAGEMENT INFORMATION SYSTEM

The need for information is universal. The computer terminal in the executive's office is no longer a prestige symbol but an essential work tool. The rapid availability of comprehensive and accurate information is changing many theories of organizational structure and operating practices. The impact of the computer on management in all segments of our society cannot be overemphasized.

MANAGEMENT SYSTEMS

The word "system" is common in contemporary vocabulary and is used in many fields to mean several things. We frequently hear such terms as "automation systems," "nervous systems," "social systems," "telephone systems," "weapons systems." In all these terms the word "system" does have some common connotations. One characteristic is the concept of a collection and orderly arrangement of elements or parts. A system is composed of a series or set of elements which are interconnected in such a manner that there is cooperation between the activities of the various elements, and this cooperation occurs according to some predetermined set of rules.

Business organizations have developed over a long period of time a variety of systems to provide for their survival in an increasingly complex society. There are accounting systems, production systems, inventory systems, quality systems, and many others. Each of these systems plays an important part in the planning, direction, and control of the organization—the management of the organization. These systems, however, are not at all independent; they must be coordinated and interrelated in many elaborate and subtle ways to contribute to the common objectives of the organization. In fact, the modern business organization can be said to be defined literally as a system of systems. The management system must therefore be viewed as the total of these individual systems, including their interacting mechanisms.

Either independently or collectively, these functional systems generally display all the characteristics classically as-