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PREFACE

The connection between quantum theory and classical physics was always
one of the main themes in the work of Niels Bohr. One may think of the
correspondence principle which played such a central role in his - and his
pupils’ - development of quantum physics, but also of his later works, where
he introduced semiclassical methods in the treatment of atomic penetration
and e.g. of nuclear fission. It was therefore felt appropriate to use this
subject for the first in a series of conferences held celebrating the Niels
Bohr Centennial.

Recent years have seen a very fruitful development in the theory of the
classical limit of quantum theory. This has had an impact on the description
of a large group of phenomena. The papers presented at this symposium
deal with theoretical aspects of these approximations as well as applications
to nuclear and atomic or molecular collisions, including chemical reactions
and penetration phenomena. In these fields also experimental research,
partly inspired by the semiclassical descriptions, has recently developed in
interesting directions.

It was therefore natural to take the symposium as an occasion to bring
together theoreticians and experimentalists from nuclear and atomic physics
to promote a fruitful cross-breeding of ideas and experience in these fields.

The proceedings contain the manuscripts submitted by the invited
speakers in the sequence in which they were presented at the conference.
F. Zachariasen was unable to attend the symposium, but his manuscript
is included. We are especially grateful to those contributors (G. Billing,
P. Braun-Munzinger, M.S. Child and J.P. Dahl) who were kind enough to
produce their articles at very short notice.

We wish to thank the staff members of the Niels Bohr Institute for their
help in organizing this conference and Mary Carpenter (North-Holland
Physics Publishing) for her help in preparing the camera-ready copy.

Jens Bang
Jorrit de Boer
Copenhagen, May 1985
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ON THE HISTORY OF THE SO-CALLED WKB-METHOD FROM 1817 TO 1926

Nanny FROMAN and Per Olof FROMAN

Institute of Theoretical Physics, University of Uppsala, Thunbergsvigen 3,
$-752 38 Uppsala, Sweden

The mathematical approximation method which, since the breakthrough of
quantum mechanics, is usually called the WKB-method, has really been

known for a very long time. The method describes various kinds of wave
motion in an inhomogeneous medium, where the properties change only slight—
ly over one wavelength, and also provides the connection between classical
mechanics and quantum mechanics. To a surprisingly large extent it can be
found already in an investigation by Carlini (1817) on the motion of a
planet in an unperturbed elliptic orbit. After that the method was inde-
pendently developed and used by many people. The important connection
formulas were, however, missing until Rayleigh (1912) very implicitly and
Gans (1915) somewhat more explicitly derived one of them, later rediscover-—
ed independently by Jeffreys (1923), who also derived another connection
formula (although not in quite correct form), and by Kramers (1926).

In 1817 Carlini1 treated an important problem in celestial mechanics. He
considered the motion of a planet in an elliptic orbit around the sun, with the
perturbations from all other gravitating bodies neglected. Using a polar co-
ordinate system in the plane of the planetary motion, with the origin at the
sun, one can then express the polar angle as 2mt/T plus an infinite series
containing sines of multiples of 2mt/T , where t 1is the time counted from a
perihelion position, i.e. from a moment when the planet is closest to the sun,
and T 1is the time for one revolution of the planet in its orbit. The problem
treated by Carlini was to determine the asymptotic behaviour of the coeffi-
cients of the sines in this series for large values of the summation index. In
his treatment of this problem Carlini had to investigate a function s of a
variable x . This function, which Carlini defined by a power series in x , is
proportional to the function which is now called a Bessel function of the first
kind, with the index p and the argument proportional to px . Carlini, who
needed a useful approximate formula for this function when its argument is
smaller than its order p , which tends to infinity, showed that s(x) satis-—
fies a linear, second-order differential equation containing the large para-
meter p . In this differential equation Carlini introduced a new dependent

variable y by putting

s = exp(%P fxy dx) . QD)
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Then he expanded the function y in inverse powers of p . When he introduced
this expansion inte the differential equation for y and identified terms con-—
taining the same power of 1/p , Carlini obtained recursive formulas which

give what is now usually called the WKB-approximation, with higher-order terms
included, for the solution of the differential equation satisfied by s(x)

In explicit form he gave essentially the second-order WKB-approximation for

the solution in a classically forbidden region. If we express Carlini's result
for the function s(x) in terms of the Bessel function JP(E) , where £ 1is

proportional to p , we obtain the result

1
_ _ EZ)% _ - 1 + (1 _ EZ/EZ)E]
JP(E) = P o exp{p [(1 o7 1 = 1n >
ru(-8) e [ — ] I
P P 8 (1 - £2/p?)? 2 (1 - £%/p")?

where 0<£ & <p , £&/p 1is independent of p , and p (>0) is large. Formula
(2) is essentially equivalent to the next lowest order of the asymptotic
formula derived in 1909, i.e. almost a century later, by Debye17 for the
Bessel function JP(E) when 0< & <p, &/p 1is independent of p , and

p > © . We also remark that if one follows in essential respects Carlini's
procedure to derive (2), but uses modern developments of phase-integral
technique, one can in a simple way obtain asymptotic formulas, essentially
equivalent to those derived by Debye with the aid of the more complicated
method of steepest descents.

Using the language of quantum mechanics, one can say that in the part of the
work by Carlini, which has been described above, Carlini obtained an approxi-—
mate expression for the solution of the radial Schrddinger equation in the
classically forbidden region, in the absence of a physical potential. Because
of the way in which the large parameter p appears in the differential equa-
tion for the function s(x) , Carlini's solution remains valid at x = 0 1in
any order of approximation. Carlini thus achieved automatically in any order of
approximation the result which Kramers26 achieved in the first—order WKB
~approximation by replacing 1(1+1) by (1+4)? , where 1 is the orbital
angular momentum quantum number.

In connection with a heat conduction problem, Liouville2 in 1837 treated an
ordinary, linear, second~order differential equation which he transformed into
a differential equation of the Schrddinger type by means of what one now calls
a Liouville transformation. Then he arrived at what one in quantal language now

usually calls the first-order WKB-approximation in a classically allowed region.
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In 1837 Green3 considered the motion of waves in a non—elastic fluid con-
fined in a canal with infinite extension in the x-direction and with small
breadth and depth, both of which may vary slowly in an unspecified way. The
problem is described by a partial differential equation which is of the second
order both with respect to the coordinate x and the time t . Green obtained
an approximate solution which, for the particular case when its time-dependence
is described by a sine or cosine function, reduces essentially to the first-
—order WKB-approximation in a classically allowed region.

The famous astronomer Encke, after whom a comet is named, drew Jacobi's
attention to Carlini's work, and in 1849 Jacobi®* published a paper concerning
improvements and corrections to Carlini's work. In this paper Jacobi charac-
terized Carlini's work as excellent and instructive, and he considered the
problem treated in the main part of Carlini's publication as one of the most
difficult problems of its class. Aithough Jacobi pointed out and corrected mis-
takes made by Carlimi, he also pointed out that all the essential difficulties
in the solution of the problem already had been vanquished by Carlini in 1817
and that Carlini's final result would have been correct if he had not made
trivial mistakes in his calculations.

In 1850 Jacobi published a translation into German, with critical comments
and extensions, of Carlini's investigations. In this publication Jacobi again
emphasized that, although the work by Carlini of 1817 contains many mistakes,
and the final results are incorrect, this work, because of the method used
there and the boldness of its composition, yet belongs indisputably to the most
important works concerning the determination of the values of functions of
large numbers. More than three decades after the original publication of
Carlini's work, Jacobi thus considered it highly desirable to republish it
with the necessary improvements and extensions included.

The problem in celestial mechanics, which Carlini had treated by starting
from a formula given by Lagrange, was later solved more generally and in much
simpler ways in 1856 by Scheibner6’7, who attacked the problem from quite diffe-
rent starting points. In his first paper, Scheibner6 used a peculiar and very
general method, which recommends itself by the brevity and ease of the calcula-
tions. In his second paper, Scheibner7 used Cauchy's powerful theory of
complex integration. As an indication of the importance of Scheibner's papers
we mention that, almost a quarter of a century after they had first been
published, the first paper6 , originally written in English, was republished in
German translationa, and the second paper7, originally written in German, was
republished in abbreviated formg. Scheibner thus solved the actual problem in

celestial mechanics much simpler and more satisfactorily than Carlini, but
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the more complicated investigation by Carlini yielded the very fundamental re-
sult which is now called the WKB-approximation of arbitrary order. We mention
Scheibner's work only to illuminate Carlini's treatment. The methods used by
Scheibner are otherwise not related to the history of the so—called WKB-approx—
imation.

In the second edition, published in 1895, of his well-known book on hydro-
dynamics, Lamb10 treated (on pp. 291-296) the propagation of waves in a canal
of gradually varying section on the basis of the investigation by Green3

Apparently unaware of the results obtained earlier by other authors,
de Sparre11 derived in 1898 essentially what is now called the second-order
WKB-approximation for a second-order differential equation.

From a purely mathematical point of view, Horn12’13

1899 considered, for
real values of the independent variable, the asymptotic solution of a linear,
second-order differential equation containing a large parameter. In 1906 and
1907 SchlesingerM’15 generalized Horn's mathematical investigations by treat-
ing, for complex values of the independent variable, a linear system of first—
—order differential equations containing a large parameter. Referring to the

method used by GreenB, Birkhoff16

in 1908 continued Horn's and Schlesinger's
work by investigating mathematically the asymptotic character of the solutions
of certain arbitrary-order linear differential equations containing a large
parameter.

In a paper concerning the propagation of waves through a stratified medium,
Rayleigh18 in 1912 treated the one-dimensional time-independent wave equation
by writing the solution as an amplitude times a phase factor. He found the
exact relation between amplitude and phase [his eq. (73)], but he did not point
out the great importance of this relation, which since 1930 has been used with
great success by several authors. Rayleigh obtained what is now generally known
as the first~order WKB-approximation in a classically allowed region. By pursu-—
ing the approximations he also obtained the next correction to the amplitude
{(in approximate form) and to the phase. Cousidering then the case of total
reflection due to a turning point, Rayleigh introduced into the wave equation
a linear approximation in a certain region around the turning point and was
thus able to obtain an approximate solution expressed by an Airy function in
that region. When he used asymptotic approximations for the Airy function, he
obtained a result which is closely related to a connection formula for the
WKB-approximation.

On the basis of Maxwell's electromagnetic theotry, Gans19 in 1915 treated
the propagation of light in an inhomogeneous medium, where the index of re-—

fraction depends only on one cartesian coordinate. He obtained the first—order
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WKB-approximation for the solution of the one-dimensional wave equation. Con-
sidering total reflection, Gans approximated the square of the index of refrac-
tion by a linear function in the region around the turning point which gives
rise to the total reflection, He was thus able to express the solution on each
side of the turning point approximately in terms of Hankel functions of the
order 1/3. Matching these approximate solutions at the turning point, and using
asymptotic approximations for the Hankel functions on both sides of the turning
point, Gans obtained a result [seein Ref. 19 egs. (69) and p. 726] which,
although not in quite explicit form, is equivalent to the comnection formula
for the first—order WKB-approximation which starts from the exponentially

small wave function in the region into which the light penetrates only as an
evanescent wave.

In a paper dealing with certain hypotheses as to the internal structure of
the earth and moon, Jeffreyszo in 1915 obtained (on pp. 211-213) essentially
the first-order WKB-approximation for the solution of a linear, second-order
differential equation.

In an investigation concerning the aerodynamics of a spinmning shell, Fowler,
Gallop, Lock and Richmond21 in 1921 treated a system of two coupled ordirary,
linear differential equations containing a large parameter, one of the
equations being inhomogeneous and of the second order, the other being homo-

geneous and of the first order. Referring to the papers by de Sparre11,

12,13 14,15 and Birkhoff16, Fowler et a1.21 investigate the

Horn , Schlesinger
asymptotic expansion of the solution of the above—mentioned system of
differential equations for large values of the parameter. In connection with
this problem, the authors consider in particular a homogeneous, linear
differential equation of the second order which they solve by writing the solu-—
tion as the product of an amplitude and a phase factor. Finding the exact rela-
tion between amplitude and phase, they express the phase in terms of the
amplitude which they obtain as an asymptotic expansion in inverse powers of the
square of the large parameter. The authors make the important remark that by
separating the solution correctly into the product of an amplitude and a phase
factor they gain the advantage over other methods that they obtain in one step
a solution with the error inversely proportional to the square of the large
parameter, whereas this requires two steps in the usual procedures.

Referring to the above-mentioned previous work by Green, Lamb, Horn,
Jeffreys and Fowler et al., Jeffrey522 in 1923 derived what is now usually
called the WKB-approximation for the solution of an ordinary, homogeneous,

linear differential equation of the second order. In the region of a turning

point Jeffreys, like Rayleigh and Gans, introduced a linear approximation in
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the differential equation and was thus able to express the solution there
approximately in terms of Bessel functions of the order 1/3. Using asymptotic
approximations for these functions, Jeffreys obtained the previously mentioned
connection formula and another connection formula which was, however, not given
in quite correct form. The gquestion of the one—directional nature of the
connection formulas was not clarified until later,

Obviously unaware of the existence of the work by the previous authors,

23’24, Wentzel25 and Kramer526 in 1926 introduced analogous considera-—

Brillouin
tions in quantum mechanics. Brillouin established, for a system of particles,
the connection between the Schridinger equation of quantum mechanics and the
Hamilton-Jacobi equation of classical mechanics, while Wentzel and Kramers in-
troduced for the radial Schrddinger equation the main results obtained in the
course of the developments described above. These results turned out to be
extremely useful in applications of the new quantum theory and became known
under the name of the WKB-method. However, Brillouin, Wentzel and Kramers
contributed hardly anything new to the mathematical approximation method that
had already been found by previous authors, as described in this short histori-

cal review.
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SEMICLASSICAL METHODS IN CHEMICAL DYNAMICS

William H. MILLER

Department of Chemistry, University of California, and Materials and
Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley,
California 94720, USA

A general semiclassical (multidimensional WKB-type) approximation to quantum
mechanics is reviewed. The principal feature of the approach is that it is
able to incorporate the exact classical mechanics of the system and also the
quantum principle of superposition. Applications to inelastic and reactive
scattering, and to statistical mechanics and reaction rates are discussed.

1. Introduction

The use of semiclassical methods in chemical and molecular problems has
become so pervasive over the last twenty years that it is somewhat intimidating
to attempt a short review with the present title.! Since a comprehensive
review is impossible, I have chosen several examples which iliustrate the
variety of quantum phenomena that semiclassical theory is able to describe
correctly.

perhaps the most dramatic quantum phenomenon is that of guantization itself,
the fact that only discrete values of the energy are allowed for a system whose
motion is bounded. The grandfather of all semiclassical descriptions of
quantization is the Bohr model of the hydrogen atom and its generalization
which became known as the 01d Quantum Theory.2 For a diatomic molecule with
potential function V{r)}, for example, the Bohr-Sommerfeld {or WKB)
quantization condition is

T2 2 A
(ntYphn = [ dr /ég [E-v(rm- K28 (1.1)
r‘l [ 2ur

where (rl,rz) are the two classical turning points in the effective potential
(V(r) plus the centrifugal term. Eq. (1.1) is an implicit equation for the
energy levels E(n,2) in terms of the vibrational and rotational gquantum
numbers.

For molecular systems, i.e., diatomic molecules, Eg. (1.1) is actually quite
accurate: ground-state energies are given to better than 1% accuracy even for



