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PREFACE

A modern mechanical structure nust work at high speed and with high
precision in space and time, in cooperation with other machines and systems.
All this requires accurate dynamic modelling, for instance, recognizing
Coriolis and centrifugal forces, strong coupling effects, flexibility of
links, large angles articulation. This leads to a motion equation which
must be highly nonlinear to describe the reality. Moreover, work on the
manufacturing floor requires éoordination between machines, between each
machine and a conveyor, and demands robustness of the controllers against
uncertainty in payload, gravity, external perturbations etc. This requires
adaptive controllers and system coordination, and perhaps a self organizing
structure. The machines become complex, strongly nonlinear and strongly
coupled mechanical systems with many degrees of freedom, controlled by
sophisticated mathematical programs. The design of such systems needs basic
research in Control and System Dynamics, as well as in Decision Making
Theory (Dynamic Games), not only in the use of these disciplines, but in
their adjustment to the present demand. This in turn generates the need to
prepare engineering students for the job by the teaching of more sophisti-
cated techniques in Control and Mechanics than those contained in previous

curricula.
.

‘On the other hand, all that was mentioned above regarding the design of
machines applies equally well to other presently designed and used mechan-
ical structures or systems. We have tﬁé same fundamental problems in active
control of flexible large space structures (LSS) and high rise.building
structures, as well as in the flight control of air or spacecraft, including

air traffic control and air combat games.




Working on basic methodology in all these directions makes one realize

" how valuable the interface between the applications may be to each of them

separately. Techniques used to design flexible links in manipulators and
1SS are presently developed jointly. It is perhaps still not sufficiently
realized that coordination control of robotic manipulators may be obtained
by methods used in air combat games, and that such games may be used in
robot decision making;' The investigation of such an interface may result

in the means to overcome many prokiems in present design practice. The book
attempts to give the fundamental background for such_jnvestigation.

)
As mentioned, the dynamical models in all of the above applications,

in order to be realistic, must recognize untrunéz;ed nonlinearity of the
acting forces and be robust against uncertainties hidden in modelling and/or
external perturbations. The study of the interface makes it obvious that

in order to handle such models, one must seek for metho@s entirely different
from those used in classical Control Theory, which approximates reality with
linearized models. Although it might not be immediately visible from behind
the Laplace transformation, Control Theory had been born out of Mechanics,
particularly Nonlinear Mechanics. The latter has been developing cuite
rapidly for the last twenty or thirty years, but this was somehow unnoticed
by the control theorists. Now, with the applications mentioned, Nonlinear
Mechanics may no longer be ignored in Contrci Dynamics, and the demand for
it is growing rapidly. There is no applied text available which would deal

with control of fully nonlinear, uncertain mechanical systems. This book

has been written to fill the gap.

The thirty years of research work which this author has devoted to the
subject gives him the advantage of knowing what is needed, but also the 4
disadvantage of habitually favoring some of the topics. This bias has
proved useful, considering the space limitations which must be imposed on
any text. I hope, however, that the book is a healthy compromise between
the needs and the bias.

The first chapter outlines the models of mechariical systems used, the

second and third introduce the reader’to:the energy relatiohs and the i
Liapunov design technique apgzzgd later. ‘bhapter Four specifies the
objectiwves of control and the types of controllers used in the three basic
directions of study: robotics, spacecraft structures and air games.
sufficient conditions, control aléorithms and case studies in these three
directions are covered by Chapters 5, 6 and 7, in terms of ‘control (collis-
ion, avoidance and tracking, respectively), while Chapter 8 deals with the

same problems but subject to conflict.

vi



The text has grown up from lecture notes for junior graduate and
senior undergraduate courses taught at Mechanical Engineering, University
of Sbuthein California, Los Angeles, in Advanced Mechanics, Analytic
Methods of Robotics, Conﬁrol of Robotic Systems, and at Uni&ersity of
Queensland, Australia, in Control Theory, Systems Dynamics and Robot Theory.
Apart from natural use in such courses, the book may serve as reference for

the design of control algorithms for nonlinear systehs.
-

The author is indebted to Professors M.D. Ardema, A. Blaquiére,
M.J. Corless, H. Flashner, E.A. Galperin, W.J. Grantham, R.S. Guttalw,
G. Leitmann, W.E. Schmitendorf, R.J. Stonier and T.L. Vincent for cooper-
ation leading to results included in this book, as well as to some of the
mentioned colleagues for comments improving the text. Thanks are also due
to my wife Elzbieta §kowronski( and to the graduate students Harvinder
Singh and Nigel Greenwood for solving some problems and proof-reading, as

well as to Mrs Marie Stonier for careful and patient typing.

LOS ANGELES, JANUARY 1989
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Chapter 1 %
MECHANICAL SYSTEMS

1.1 SIMPLE MECHANICAL SYSTEMS

It seems both convenient and illustrative to introduce some of our
later defined notions on simple but typical examples of mechanical systems.
Perhaps the simplest and, at the same time, most typical mechanical system
is a single link mathematical (idealized) pendulum discussed in the follow-

ing example.

EXAMPLE 1.1.1. Consider the simple pendulum shown in Fig. 1.1, swinging
about the base point 0 in the Cartesian plane 0Oxy, by the angle 6(t) ,
for"all: T ety ,/ where t, ¢ R is an initial time instant. The plane is.
a part of the Cartesian physical coordinates space (xyz where the position
of the point-mass m is specified by the current values of 2 2 B o N
z(t) subject to cbvious constraints: & = const, =%+ 5/2 = 9% . Under
such constraints only one variable can be independent, and thus we say that
the system has a single degree of freedom (DOF). It is more convenient to
chocose B(t) as the generalized (lagrangian) ccordinate describing such
DOF, rather than z(t) or “y(t) , although the choice of either of these

two is obviously possible. We thus define g(t) g Gt) v e, oo The
point-mass m is considered an object in a point-mass model of a mechanical
system. In our simple case the model consists of the object concerned with

the single DOF specified by g(t) .

The generalized variable g(t) is free of the Cartesian constraints

mentioned but it has its own work limitations in some interyal A of its
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Fig. 1.1

values. For instance, when the pendulum is suspended from a ceiling which

is non-penetrable, we must impose A : -1 < é(t) =S

In a symbolic way, we represent the system as a single mass cube railed
to move: in one directicn only, generally subject to gravity G , Sspring (-)r
elastic (in link) forces K and damping force D , as well as to an external
input - control force (torque) U, see Fig. 1.2. This representation is well
known as the schematic diagram of the system structure. The arrows crossing
the symbols of elastic and damping connections indicate that the corres-
ponding forces may be represented by nonlinear functions. The da.mping
symbol is shown as a damper open from above if the damping is positive,

and from below it if is negative.

Fig. 1.2

The point mass subject to weight G is restricted to the vertical

motion only as shown in Fig. 1.2, modelling the single degree of freedom.



For simplicity of exposition, we ignore the elastic force in the link.
The damping force. D is made dependent upon the velocity qlt) 4 dg(t) /dt
and is specified by the function dlglg , &> 0 to be positive damping.
Since we ignored elastic forces, the potential force actinq upon the mass m
reduces to gravity, specified by its component mg sin & , where ¢ is the

earth acceleration. Then the Lagrange equation of moticn gives

m2%d + dlq|qd + mg sing = ¥ . (1.1.1)

-
With m,% constant and measured, it is.convenient to rewrite (1.1.1) in
terms of the forces per coefficients of inertia which we call characteristics

of the forces invélved. We obtain
G+ D@ + Mg =u . -~ (1.1.2)

where D(q) A E|é!q,/m22, THa) A (g/%) sing and u 4 §/me?. 1Introducing
the force characteristics frees the acceleration term in (1.1.1) from the
inertia ‘coefficient. .For multidimensional systems, such a procedure is
conpected with decoupling the equations inertially (dividihg by the matrix
of inertia), which tﬁen makes it possible to apply the results of control
theory, usually formalized in terms of the normal form of differential

equations, see lateir examples.

The potential energy 6f the pendulum is then expressed by

.
.

Vig) = V° + [ (t)ﬂ(q)dq (32.3:3)
q

with the initial storage of energy v = V(qo) ’ Qﬁere q° = qlty) , Eg =0
being the initial instant of time. The equilibria of the pendulum :

occur at rest positions §q = 0 coinciding with the extrema of the function
V(+) , ise. sing=0 or g°=nm, n=0,%,%2,... . BAs is well known
from elementary mechanics, the minima correspond to the Dirichlet stable
equilibria occurring at the downward positions of the pendulum, after each
full rotation by 27 . The maxima correspond to Dirichlet unstable equil-
ibria occurring at ‘the upwards positions obtained on every half-turn by T
from the preceding stable equilibrium. The maximal values of V(-) at these
positions form the energy'ﬁhresholds which have to be passed before another

stable equilibrium is attained, i.e. before the pendulum realizes a rotation.
: A 2 °

Obviously the gravity characteristic Il(g) = (g/%) sing is a highly

nonlinear function. It can, however, be expanded as a Taylor or power

series .




li{g) = (g/f) t?- TRty & R (1.%1:4)

v,

Since g is bounded for physical reasons, the equilibria which are zeros of
(L.1.4) become zeros of some polynomial with a number of terms related to

the number of rotations performed, see Fig. 1.3. .

-

As there are many cases in engineering design where truncation of the

series is necessary, if only for computational reasons, it is of interest

to see when and to which extent such an operation is physically justified.

|
|

LINEAR T (g)
THRESHOLD

£QLM BOUND ON q,
Fig. 1.3

ror q € [-(m/4),(m/4)], the linear approximation Il(q) = (g/f)g may
be satisfactory, see Fig. 1.3. However, for larger swing angles, we need
to-include the nonlinear terms in (1.1.4) (the more of them the larger the
swing angle) . For the pendulum turning upwards, but not falling down :

again: q = *T, we need at least

M@ = (g/%) (q - +a’)

’

(1.31.59

for the pendulum falling down again: gq = %27 , we need

Mq) = (g/) (g - %-qa + T%F o s erotel

Consequently the equation of motion (1.1.2) becomes nonlinear and must be =
treated as such, if we do not want our model to disagree principally with

the physical reality of the rotating pendulum. The nonlinear terms of the

Hh

orce characteristics cannot be truncated. This alsc means that we must
recognize the existence of several stable equilibria separated by thresholds.
"With positive damping, these equilibria will attract motion trajectories in
the phase-space (state space) 0gq from specific regions of attraction,

see Fig. 1.4, and will in fact be in competition as to their attracting

roie. Each attracting equilibrium (attractor) will have its own (winning)



region of attraction. Given the same controller, depending upon where the
trajectory starts (initial conditions) it will land in a corresponding
attractor. By truncating the nonlinearities, we ignore all the equilibria
except the single basic equilibrium at q = 0 and we may be léd into a
false sense of security,assuming that trajectories from everywhere will land
in that equilibrium. Such a conclusion may be true only in some neighbour-
hood of the basic equilibrium (below the thresholds) but a slight change of
initial conditions beyond this neighbourhood, i.e. beyond a threshold, may
produce unstable trajectories tending somewhere else than intended. Then
we may need a power expensive controller to rectify the situation. More-
over, the further from the threshold we are, the more costly such a con-

troller becomes, possibly beyond its saturation value.

Fig. 1.4

Let us have a closer look at the trajectories. In our case it will be
possible to do it directly, as the equation (1.1.2) with u = 0 #s integrable
in closed form. We choose the state variables Xx,,X, by substituting
x; 8 a, %, £ & and rewrite (1.1.2) with d = a/me? as

»

X

%1 :
O . 1 (1:1.6)
-(g/%) sinx, - dlx,|x, + v,

Xy

or in terms of the directional field in the phase-plane (state-plane) O0x;X,:

dx, = =(g/%) sinx, - d1xzix2 i ' (1.1.7)
ax

1 Xy

For the moment let us free the system from control, i.e. assume u(t) to be
a given function of time, in particular u(t) = 0. Since x, = !xztsignxz,

we can rewrite (1.1.7) as




dx; 2 ; ¢ g
T & 2dx, = -2(g/f) sinx, (1.3.8)
dx, 2

where the plus sign is used for x, > 0, and the minus whenever XS 08
Except for these changes in sign, (1.1.8) is a linear eguation in xi with
X, as an independent variable. Hence the solutions of (1.1.8) axre elemen-

tary:

2 o eet2ax, 2gcosx,  4gdsinx,

2 T (1 +4d?)  U(l+4ad)

(178

where C is a constant of integration and where the signs * are interpreted

a8 an - (L I8

*The above first integral of (1.1.8) is a curve X,(x,) in the phase-
plane Oxlx2 of the pendulum, already called the trajectory. A suit-
able choice of the constant C makes the pieces of trajectories (1.1.9) due
to the * sign fit together at the points of intersection with the X, - axis.
The trajectories are shown in Fig. 1.4. The unstable equilibria correspond
to saddle points at odd multiples of T, the stable equilibria correspond
to foci at even multiples of T. The trajectories that cross the unstable
equilibria (energy thresholds) become damped separatrices, i.e. lines
separating the families of trajectories attracted to a particular stable

equilibrium.

The number of full rotations exhibited by the pendulum depends upon the
initial magnitude of the velocity x, . The greater this initial speed, the
greater the number of full rotations, provided the system is free. The
region between the separatrices enclosing the corresponding stable equili-

brium is the region of attraction to this equilibrium considered the

{7}

ttractor. As mentioned, for the free system, the trajectories from outside

Sls region will be attracted to some other attractor, and we may never be

o

able to attain the target of a trajectory unless we start from a sditable
region of attraction. The trajectories from beyond the threshold can also

become entirely unstable and unbounded.

Let us now consider the controlled system, i.e. when u(t) , generally
non-zero, has been determined by a specified control program which is a

function of the state Xy X, s
u(t) = P(x, (t),x,(t)) , t 2 ty - : €L.1.10)

Between the separatrices, there is little need for a controller to produce

any inputs in order to.lead the pendulum to the corresponding stable



equilibrium. However, if the initial values x?,xg lie between separatrices

other than these bounding the dgsired stable equilibrium (see trajectory
denoted by crosses in Fig. 1.4), i.e. outside the region of attraction to

the desired equilibrium, an additional force is needed in order for a trajec-
tory to pass over the energy threshold, which corresponds to the separatrix to
be crossed. In terms of the équation (1.1.2) it means to produce the control
program for u(t) which cancels some (one or more) nonlinear terms of the
polynoﬁial by which the gravity force is represented, say for instance,

u(t) = -(g/R) (£ 8% - 135 8% + --1) . (1.4.11)

It cuts off the thresholds or, in physical terms, forces the rotation back
to the basic region of © e [-m,m] . It may prove expensive in terms of
power supply. In fact, it is the more expensive, the more thresholds must
be cut between the given initial conditions and the region of attraction

attempted.

When linearizing the system by the choice of a suitable control, we
have exactly the above case when forcing the trajectories to the region
of attraction of the basic equilibrium. Then obviously the cost is the

greater, the more nonlinear terms (equilibria) we have to cancel.

The same effect may be obtained in a less costly manner by a gravity
or spring compensation, for example, such as shown in Fig. 1.5(a) below.
A counter&eight Mg on the radius L adds to M(6) = (g/%) sin® an addit-
jonal M'(8) = (ML/m%) sin (-m) which, with a suitable choice of M and L,
holds the link swincing about its upward position instead of downward.
Moreover, the above is done not by control torque but by structural means.
This reduces the control torque needed to that generating a small swing
about the new equilibrium. A very similar effect could have been obtained
by inserting a spring about the suspension point of the equilibrium, the
spring supporting the link in the desired position, see Figeial-B(b)es For
the linearisation effect, the spring characteristic may be specified, for
instance, by K(8) = -(kg/2)8 - (g/62)6° + ... , k <1, again depending

upon the number of nonlinear terms we wish to cancel.

The control or structural cancellation of the nonlinear .terms is
however not possible when the nonlinearity is a target of our design -
as for instance if we want to produce a system that will aim at achiev-
ing a specified equilibrium, say second or third from the basic, i.e. will
aim at work after a specific number of rotations. The latter case often

applies in engineering. 0




The gravity or spring compensation mentioned in the above example
apply generally, even for a system of much higher dimensions.  In some
cases the designer has also an cption of nonpotential compensation. He
may use extra damping - positive by inserting fluid dampers or negative

by designing self-oscillatory devices.
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As menticned, the model of Example i.l.l'was a special simple veréion
of the -clasg of mechanical models called point-mass representation, where
the mass or /more. gencrally the inertia of the system is reduced to a finite
number of material points, each with at most three degrees of'freedcm {DOF')
- translations in the three dimensional Cartesian space - Jxyz of physical
coordirates. Such massés are considered reduced objects of the system.

In Example 1.1.1 we had a single object moving with a single DOF.K»iet“hs

consider now some cases with two DOF.

EXAMPTE 1.1.2. Two simple pendula of Example 1.1.1 are coupled b;vé séring
at the given distance from their joint suspension base, see Fig. 1.6."Their
basi¢ equilibria are attained in the vertical downwards positidns'éf‘tﬁe
pendula. The system now has two objects, point-masses m;,mz, wiéﬁ bbéi—
tions specified by coordinates xi,yi,zi, i=1,2 measured from Eﬁ;ir
corresponding basic equilibria in Oxyz. As the pendula move in the ver-
tical plane, we have constraints zi==const, (xi)2 +(yi)2 =22,‘ah¢ moreover
the coupling- generated constraint yif>0, i=1,2, as full rotation is not
possible: Again generally, the twd point-mass modelled objectvwill have
six DOF (3 +3), but the constraint relations reduce the DOF of the system

to two. éamilarly as in Example 1.1.1, it is more convenient to choose the



