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Preface

This volume contains the text of four sets of lectures delivered by L. Arkeryd, P.-
L. Lions, P. A. Markowich and S. R. S. Varadhan at the third session of the Summer
School organized by C.ILM.E. (Centro Internazionale Matematico Estivo). These texts
are preceded by an introduction written by us which summarizes the present status in
the area of Nonequilibrium Problems in Many-Particle Systems (this was the title given
to the session) and tries to put the contents of the different sets of lectures in the right
perspective, in order to orient the reader.

The lectures presented in this volume deal with the global existence of weak solu-
tions for kinetic models and related topics, the basic concepts of non-standard analysis
and their application to gas kinetics, the kinetic equations for semiconductors and the
entropy methods in the study of hydrodynamic limits. The lectures were of high level
and the school was by all standards a success.

We feel that this volume gives a coherent picture of an important field of applied
mathematics which has undergone many important developments in the last few years.

Carlo Cercignani
Mario Pulvirenti
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Nonequilibrium Problems in Many-Particle Systems.
An Introduction.

C. Cercignani
Dipartimento di Matematica
Politecnico di Milano
Milano (Italy)
and
M. Pulvirenti
Dipartimento di Matematica
Universita di Roma ”La Sapienza”

Roma (Italy)

1. A sketch of the history of kinetic theory.

According to the atomic theory of matter, all bodies are made up of tiny con-
stituents (particles, molecules, atoms) that, as long as we can ignore quantum effects,
move according to the laws of classical mechanics. Thus, e. g., if no external forces,
such as gravity, are assumed to act on the particles, each of them will move in a straight
line unless it happens to interact with another particle or a solid wall.

Although the rules generating the dynamics of these systems are easy to prescribe,
the phenomena associated with this dynamics are not so simple. They are actually
rather difficult to understand, especially if one is interested in the asymptotic behavior of
the system for long times (ergodic properties) or in the case when the number of particles
is very large (kinetic and hydrodynamical limits). Both aspects of the dynamics of
molecules are relevant when dealing with a gas, but kinetic theory of gases! concentrates
upon the problem of outlining the behavior of this system when the number of the
particles is very large. This is due to the fact that there are about 2.7 - 10'°® molecules
in a cubic centimeter of a gas at atmospheric pressure and a temperature of 0°C.

Given the enormous number of particles to be considered, it would of course be
a perfectly hopeless task to attempt to describe the state of the gas by specifying the
so-called microscopic state, i. e. the position and velocity of every individual particle,
and we must have recourse to statistics. This is possible because in practice all that our
observations can detect are changes in the macroscopic state of the gas, described by
quantities such as density, velocity, temperature, stresses, heat flow, which are related
to suitable averages of quantities depending on the microscopic state. At this point,
however, a question of principle must be considered. If we knew the exact position and
velocity of every molecule of the gas at a certain time instant, the further evolution of
the system would be completely determined, according to the laws of mechanics; even if
we assume that at a certain moment the positions and velocities of the molecules satisfy
certain statistical laws, we are not entitled to expect that at any later time the state of
the gas will conform to the same statistical assumptions, unless we prove that this is
what mechanics predicts. In certain cases, it turns out that mechanics easily provides
the required justification, but things are not so easy, and questions become much more
complicated, if the gas is not in equilibrium, as is, e. g., the case for air around a flying
vehicle.

Questions of this kind have been asked since the appearance of the kinetic theory
of gases; today the matter is relatively well understood and a rigorous kinetic theory



is emerging, as the contributions to this volume will illustrate. The importance of this
matter stems from the need of a rigorous foundation of such a basic physical theory not
only for its own sake, but also as a prototype of a mathematical construct central to
the theory of non-equilibrium phenomena in large systems.

As is well known, James Clerk Maxwell (1831-1879) in 1866 developed an accu-
rate method to deal with the nonequilibrium behavior of a gas?, based on the transfer
equations, and discovered the particularly simple properties of a model, according to
which the molecules interact with a force inversely proportional to the fifth power of
the distance (nowadays commonly called Maxwellian molecules). In the same paper he
gave a better justification of a formula that he had previously discovered for the velocity
distribution function for a gas in equilibrium.

With his transfer equations, Maxwell had come very close to an evolution equation
for the distribution function, but this step must be credited to Ludwig Boltzmann®
(1844-1906). The equation under consideration is usually called the Boltzmann equation
and sometimes the Maxwell-Boltzmann equation (to recognize the important role played
by Maxwell in its discovery).

In the same paper, where he gave a heuristic derivation of his equation, Boltzmann
deduced an important consequence from it, which later came to be known as the H-
theorem. This theorem attempts to explain the irreversibility of natural processes in
a gas, by showing how molecular collisions tend to increase entropy. The theory was
attacked by several physicists and mathematicians in the 1890’s, because it appeared
to produce paradoxical results. However, within a few years of Boltzmann’s suicide in
1906, the existence of atoms had been definitely established by experiments such as
those on Brownian motion.

The paradoxes indicate, however, that some reinterpretation is necessary. Boltz-
mann himself had proposed that the H-theorem be interpreted statistically; later,
Paulus Ehrenfest (1880-1933), together with his wife Tatiana, gave a brilliant analy-
sis of the matter, which elucidated Boltzmann’s ideas and made them highly plausible,
at least from a heuristic standpoint. A rigorous analysis, however, had still to come.

In the meantime, the Boltzmann equation had become a practical tool for investi-
gating the properties of dilute gases. In 1912 the great mathematician David Hilbert
(1862-1943) indicated* how to obtain approximate solutions of the Boltzmann equation
by a series expansion in a parameter, inversely proportional to the gas density. The
paper is also reproduced as Chapter XXII of his treatise entitled Grindzige einer allge-
meinen Theorie der linearen Integralgleichungen. The reasons for this are clearly stated
in the preface of the book (”"Neu hinzugefiigt habe ich zum Schluss ein Kapitel tiber
kinetische Gastheorie. [...] erblicke ich in der Gastheorie die glinzendste Anwendung
der die Auflésung der Integralgleichungen betreffenden Theoreme”).

In about the same year (1916-1917) Sidney Chapman® (1888-1970) and David
Enskog® (1884-1947) independently obtained approximate solutions of the Boltzmann
equation, valid for a sufficiently dense gas. The results were identical as far as practi-
cal applications were concerned, but the methods differed widely in spirit and detail.
Enskog presented a systematic technique generalizing Hilbert’s idea, while Chapman
simply extended a method previously indicated by Maxwell to obtain transport coeffi-
cients. Enskog’s method was adopted by S. Chapman and T. G. Cowling in their book



The Mathematical Theory of Non-uniform Gases and thus became to be known as the
Chapman-Enskog method.

Then for many years no essential progress in solving the equation came. Rather
the ideas of kinetic theory found their way in other fields, such as radiative transfer,
the theory of ionized gases and, subsequently, in the the theory of neutron transport.
Almost unnoticed, however, the rigorous theory of the Boltzmann equation had started
in 1933 with a paper” by Tage Gillis Torsten Carleman (1892-1949), who proved a
theorem of global existence and uniqueness for a gas of hard spheres in the so-called
space homogeneous case. The theorem was proved under the restrictive assumption
that the initial data depend upon the molecular velocity only through its magnitude.
This restriction is removed in a posthumous book by the same author®.

In 1949 Harold Grad (1923-1986) wrote a paper®, which became widely known be-
cause it contained a systematic method of solving the Boltzmann equation by expanding
the solution into a series of orthogonal polynomials. In the same paper, however, Grad
made a more basic contribution to the theory of the Boltzmann equation. In fact, he
formulated a conjecture on the validity of the Boltzmann equation. In his words: ”From
the preceding discussion it is possible to see along what lines a rigorous derivation of the
Boltzmann equation should proceed. First, from equilibrium considerations we must let
the number density of molecules, N, increase without bound. At the same time we
would like the macroscopic properties of the gas to be unchanged. To do this we allow
m to approach zero in such a way that mN = p is fixed. The Boltzmann equation for
elastic spheres, [...] has a factor 0 /m in the collision term. If o is made to approach to
zero at such a rate that 02 /m is fixed, then the Boltzmann equation remains unaltered.
[...] In the limiting process described here, it seems likely that solutions of Liouville’s
equation attain many of the significant properties of the Boltzmann equation.”

In the 1950’s there were some significant results concerning the Boltzmann equation.
A few exact solutions were obtained by C. Truesdell’® in U.S.A. and by V. S. Galkin!!:12
in Soviet Union, while the existence theory was extended by D. Morgenstern!®, who
proved a global existence theorem for a gas of Maxwellian molecules in the space ho-
mogeneous case. His work was extended by L. Arkeryd!*!% in 1972.

In the 1960’s, under the impact of the problems related to space research, the main
interest was in the direction of finding approximate solutions of the Boltzmann equation
and developing mathematical results for the perturbation of equilibrium!®!. Important
methods developed by H. Grad!” were brought to completion much later by S. Ukai, Y.
Shizuta and K. Asano!8-20,

The problem of proving the validity of the Boltzmann equation was still completely
open. In 1972, C. Cercignani?! proved that taking the limit indicated by Grad in the
passage quoted above (now currently called the Boltzmann-Grad limit) produced, from
a formal point of view, a perfectly consistent theory, i. e. the so-called Boltzmann
hierarchy. This result clearly indicated that the difficulties of the rigorous derivation of
the Boltzmann equation were not of formal nature but were at least of the same order
of difficulty as those of proving theorems of existence and uniqueness in the space inho-
mogeneous case. Subsequently, O. Lanford proved?? that the formal derivation becomes
rigorous if one limits himself to a sufficiently short time interval. The problem of a rig-
orous, globally valid justification of the Boltzmann equation is still open, except for the



case of an expanding rare cloud of gas in a vacuum, for which the difficulties were over-
come by R. Illner and M. Pulvirenti?*~24, after that Illner and Shinbrot had provided
the corresponding existence and uniqueness theorem for the Boltzmann equation?3.

Recently, R. Di Perna and P. L. Lions?® have proved a global existence theorem
for quite general data, but several important problems, such as proving that energy is
conserved or controlling the local growth of density are still open. This result and the
ideas related to it will be described in the contribution of P. L. Lions to this volume.

Before this basic result was obtained, the best results in the space inhomogeneous
case were those of Arkeryd by means of the techniques of nonstandard analysis. These
methods still play an important role in the exploration of open problems of kinetic
theory and will be described in the contribution of L. Arkeryd.

The techniques of kinetic theory have become useful in many other fields, such as
neutron transport in nuclear reactors, plasma physics, radiative transfer. One of the
important recent applications is in the field of semiconductors. As a matter of fact,
when the transport of charges in a semiconductor is considered on a sufficiently large
time scale, then the motion of the carriers is decidedly influenced by the short range
interactions with the crystal lattice, which can be described, in a classical picture of
the electron gas, by particle collisions. This situation, which occurs in high-density
integrated circuits, explains why there has been an increasing interest in understanding
the mathematics of electron transport in submicron structures. The basic tool, in this
situation, is given by the Boltzmann equation for carriers, which may exclude the short
range interactions between these, which only play a role when the particle density is
very large, but can incorporate the Pauli esclusion principle, if necessary. The recent
mathematical developments in this field will be reviewed by P. Markowich.

The Boltzmann equation is one of the kinetic equations that can be considered. In
dealing with semiconductors, e. g., one frequently considers the field produced by the
electrons themselves, which is related to the distribution function through the Maxwell
equations because the charge and current density are proportional to moments of the
distribution function. This, in the case of no collisions with the lattice, produces the
Vlasov-Maxwell system of equations that in the simplest case (quasi steady electric
field) reduces to the simpler Vlasov-Poisson system. If collisions are taken into account
then one has to face the so called Boltzmann-Vlasov-Maxwell (or Boltzmann-Vlasov-
Poisson) system. If the important effect of grazing collisions in a Coulomb field is taken
into account, one obtains the so-called Landau equation. Finally, if the quantum aspects
of electron transport are also considered one may obtain transport equations from the
Schrédinger equation via the Wigner transform. All these equations will appear in the
lectures by P. L. Lions and P. Markowich.

So far, we have discussed the Boltzmann (or kinetic) regime and the Vlasov (or
mean field) regime for a many particle system in a non-equilibrium situation. It is
also of primary importance to illustrate the hydrodynamical behavior of such a system.
Real fluids are usually described by the Euler (or Navier-Stokes) equations, which are
believed to be a reduced description of the particle system. Actually, if the right space-
time scales are adopted and an appropriate limit is taken, Newton equations formally
lead to the Euler equations. Unfortunately, very little is known on this problem from a
rigorous point of view. Some progress, however, has been recently achieved by the so



called entropy method as will be illustrated in the lectures of R. S. Varadhan. Most of
his analysis will be devoted to model systems which are ruled by a stochastic dynamics.

2. Basic equations and properties.

The Boltzmann equation is an evolution equation for the distribution function
f(z,€,t), which gives the probability density of finding a molecule at position z at time
t with velocity €. If we assume that there is no body force (such as gravity) acting on
the particles, we may write the Boltzmann equation in the following form

of 6f

5 T¢ 5, = QLS (2.1)

where

QUf. f) = / / (F'f2 = FF)B(E - £uyn)déndn (2.2)

Here B(£—£.,n) is a kernel associated with the details of the molecular interaction, f'

f« are the same thing as f, except for the fact that the argument € is replaced by &', €.,
&«. The latter is an integration variable having the meaning of the velocity of a molecule
colliding with the molecule of velocity €, whose evolution we are following, while ¢’ and
€. are the velocities of two molecules entering a collision which will bring them into a
pair of molecules with velocities ¢ and €,. n is a unit vector defining the direction of
approach of two colliding molecules. For details, we refer to the bibliography!. The
collision term, although complicated, has many interesting properties, such as

/ QUf, F)a( / FR(8 48— 6— )B(E - &l n)dendedn  (23)

We now observe that the integral in Eq. (2.3) is zero independent of the particular
functions f and g, if

¢+ du =90 + 8. (2.4)

is valid almost everywhere in velocity space. Since the integral appearing in the left
hand side of Eq. (2.2) is the rate of change of the average value of the function ¢ due to
collisions, the functions satisfying Eq. (2.4) are called "collision invariants”. They play
an important role in the discussion of the Boltzmann equation. It can be shown!:27:28
that the most general solution of Eq. (2.4) is given by

#(6)=A+B-£+ClE (2.5)

Another important result is obtained by letting ¢ = log f in Eq. (2.3). In fact the
properties of the logaritmic function lead to the Boltzmann inequality:

[ o rQus. e <o (26)

Further, the equality sign applies if, and only if, log f is a collision invariant, or, equiv-
alently:



f=Aexp(=BI¢ —v[*) (2.7)

where A is a positive constant related to a, ¢, |52 (8 , v, A constitute a new set of
constants). The function appearing in Eq. (2.7) is the so called Mazwell distribution or
Mazwellian. It is a simple corollary, then, that the Maxwellians are the only functions

for which Q(f, f) vanishes.

3. The Vlasov equation and the mean-field limit.

In this section we exploit a few elementary facts concerning the Vlasov dynamics
and its relation to the Newton equations.

Our starting point is a conservation law of the type:

Ouf(z,t) + div(uf(z,t)) =0 (3.1)
where f = f(z,t) is a probability density, € R" and ¢ is time; u is a vector field:
u =u(z,t) € RY (3.2)
which is a linear functional of f of the form
w(at) = [ duK(e =)t (33)
where K is a given, smooth, vector-valued kernel.

Consider now the N-particle system obeying the following ordinary differential
system:

“—lix-—» 3.4
dt - N].:l (‘T' 1‘]) ( . )
and the measure-valued function
1 &
Nt dz) = 5 3 6(z — z(t) (3:5)
J=1

where z(t), j = 1,2,..., N is a solution of Eq. (3.4) and é denotes, as usual, the Dirac
measure. If we let

N
1
WV(16) = 5 2 olayt) = [t de)ae) (36)
j=X
where ¢ is a bounded smooth function, an easy calculation shows that
T (t0) = (tu Vo) (3.7)

In other words u™(t,-) is a weak solution to Eq. (3.1).



The following natural question arises. Assume that, at time zero

N0, 6) - / £(0,2)¢(z)dz, 8s N = 00 ; (3.8)

then is the same true at time ¢? I e., denoting by f(z,t) the solution of Eq. (3.1) with
initial datum f(0, z), we ask whether

ul(t, ¢) — /f(t,z)¢(x)dz, as N - o0 . (3.9)

This convergence can indeed be proved. Actually, it is nothing else than a continuity
property of the solutions of Eq. (3.1) with respect to initial conditions, in the topology
of the weak convergence of measures.

Thanks to (3.9) we can say that Eq. (3.1) has been rigorously derived, in the so
called mean-field approximation, starting from the particle dynamics (3.4).

The above analysis can be slightly modified to include the Vlasov equation, which,
in conservation form, reads as follows:

Ouf(z,€,t) + divee(Uf(z,§,1) =0 (3.10)

where:
U=(K+p)eR® (p= / f(z, €)dt) (3.11)

where d (=2,3) is the number of dimensions of the physical space and * denotes convo-
lution.

So far, we have assumed that K is smooth. An important case for applications is,
however, the kernel

K(z) = a—a— (3.12)
|z |
where @ € R is a constant. In this case Eq. (3.10) is called Vlasov-Poisson for ob-
vious reasons. It describes a gas of charged particles (or plasma) in the mean field
approximation.

Magnetic effects can also be considered. In this case we are led to the Vlasov-
Maxwell equations which can be studied in a relativistic framework as well.

Due to the singularity of the kernel (3.12), the validity of the Vlasov-Poisson equa-
tion has not been established as yet and the mere existence and uniqueness of smooth
solutions in dimension 3 has only recently been achieved.

An analysis of the existence theory of the Vlasov-Poisson and Vlasov-Maxwell equa-
tions will be presented by P. L. Lions, while a practical application of these equations
in the context of the semiconductor theory will be illustrated by P. Markowich.



4. Kinetic theory and fluid dynamics.

In this section we compare the microscopic description supplied by kinetic theory
with the macroscopic description supplied by continuum gas dynamics. To this end
we introduce the definitions of density p, of bulk velocity v (with components v;), of
random velocity ¢, of stress tensor with components p;;, of heat flow vector g:

p= /Ra fd¢ (4.1)

_ Jrs EfdE
V=T (4.2)
c=§-v (4.3)
pij = /Rs cicifdg; (4,5 =1,2,3) (4.4)
pe = %/R [c]? £ dé; (4.5)

1

%=3 /Ra cile|* fdé (4.6)

Then, using the fact that 1, £; and £? are collision invariants, we multiply the Boltzmann
equation by these functions and integrate with respect to &, to obtain:

B 9,
Fria ; 52 (Pvi) =0, (4.7)
d .8 .
ar 5 a_ . 1V i) = Yy =14 .
at(pv)+‘;az,(pvv +pi)=0, (j=1,23) (4.8)
a1 Sy 1
1Pl +pe) + ) o—lpui( Gl +e)+ ) vpi + ] =0 (49)
i=1 ' j=1

These equations are the balance equations of mass, momentum and energy well-known
in continuum mechanics. It is not worthless to mention, at this point, that Eqs. (4.7-9)
are not fluid-dynamical equations. Actually they cannot even be solved without first
solving the Boltzmann equation to determine p,; and ¢;. There are situations. however,
where the distribution function can be shown to be very close to a Maxwellian, so that

¢gi and the anisotropic part of p;; are negligible, and, by taking

qi =0, pij = pbij, (4.10)

we can describe the gas by means of the Euler equations. How to pass from the kinetic
regime (described by the Boltzmann equation) to the hydrodynamical regime (described



by the Euler equations) is one of the interesting problems related with the Boltzmann
equation, that we shall now sketch.

5. Scaling properties.

A point of great relevance in the study of the Boltzmann equation is the analysis of
the scaling properties: alarge system, as we shall presently see, can be more conveniently
described in terms of fluid-dynamical equations, when it is considered on a suitable
space-time scale.

Let us consider a gas obeying the Boltzmann equation, confined in a large box A,
of side 7!, € being a parameter to be sent to zero. Let f¢ = f¢(z,£,t),2 € A, be
the number density of the particles. We assume that the total number of particles is
proportional to the volume of the box, . e. we normalize f¢ as follows:

/ f(x, 6)dzde = €3 (5.1)
A*xR3
We also assume that the time evolution is given by the Boltzmann equation
of* of ¢ re "
ot +¢- or = AQ(f, f°) (5.2)

and look at the behavior of the system on the scale of the box; in this case we have to
use appropriate space and time variables, because in terms of the variable z, the box is
of size ¢!, while we would like to regard it as of order unity. Thus we introduce the
new independent and dependent variables

r = ex, T = €t; (reA) (5.3)

f(r,&,t) = f(=,€,1) (5:4)

Clearly, f describes the gas on the scale of the box and is normalized to unity:
[ e =1 (5.5)
AxR3

The picture of the (same) system in terms of the variables r and 7 is called macroscopic,
while the picture in terms of 2 and t is called microscopic. Note that on the macroscopic
scale the typical length for the kinetic phenomena described by the Boltzmann equation,
i. e. the mean free path, turns out to be of order € (since it is of order unity on the
scale described by z). Thus sending the size of the box to infinity like ™! or the mean
free path to zero like € are equivalent limiting processes.
In terms of the macroscopic variables, Eq. (5.2) reads as follows:
ﬂ + E . a_f =
or or
Thus, on the scale of the box, the mean free path (inversely proportional to the factor
in front of Q) is reduced by a factor e. This means that the average number of colli-
sions diverges when ¢ — 0 and the collisions become dominant. For Eq. (5.6) to hold,

e AQ(f, f) (5.6)
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Q(f,f') must be small of order €, so that f is expected to be close to a Maxwellian,
whose parameters are, in general, space and time dependent. In this case the macro-
scopic balance equations (5.7- 9) can be closed through Egs. (5.10) to obtain the Euler
equations for a perfect compressible fluid. These considerations can be made rigorous
and appropriate references will be given below.

For the present time, let us mention other physical considerations concerning our
scaling. To this end, let us consider a small portion of fluid in a neighborhood of a
point 7 € A (fig. 1). By the scaling transformation this portion is magnified into a large
system of particles, which is seen to evolve on a long time scale. It will have a tendency
to "thermalize” so that its distribution will quickly become a local Maxwellian with
parameters A(e~'r), B(e!r), v(e~!r) suitably related to the fluid-dynamical fields p ,
e, v. These will evolve according to the Euler equation on a much slower scale of times.

T—EI\

Fig. 1

Thus we have illustrated two different time scales. The fast one, which we call
kinetic, is of the order of the time necessary to reach a local equilibrium, a process
described by the Boltzmann equation. The slow scale, which we call fluid-dynamaical,
describes the time evolution of the parameters of the local Maxwellian.

It would be even more natural to apply the same considerations to the Newton
equations. But, although one might expect that such dynamics should yield, under
the above scaling, the Euler equations, our ignorance of the long time behavior of
the Hamiltonian systems is such that, at the moment, we are quite far from a rigorous
derivation of the equations of hydrodinamics from the basic laws of Classical Mechanics.
As we shall see in the lectures by R. S. Varadhan, however, the hydrodynamics of a class
of Hamiltonian systems can be derived if we assume that some ergodic properties are
satisfied, at least as far as a smooth solution of the Euler equations exists.

It may be worth, at this point, to underline how different is the hydrodynamic
behavior of a gas obeying the Boltzmann equation and thus the state law of perfect
gases, from the behavior arising from a particle system describing a real gas and thus



11

a more complicated state law, including the effects of the interaction potential between
molecules. In other words, as a consequence of the Boltzmann-Grad limit, the local
equilibrium of a Boltzmann gas is that of a free gas, while, in general, the local equilib-
rium of a gas is a Gibbs state for an interacting particle system. Although the latter is
the local equilibrium taking place in real fluids, the mathematical analysis of the hydro-
dynamics arising from the Boltzmann equation is technically easier and has produced
more results.

Let us now analyse another scaling, which clarifies the nature of the Boltzmann-
Grad limit. We now require the number of particles in A¢ to be of the order of €72, i.
e. we replace Eq. (5.1) by

/ fé(z,€)dzdt = €72 (5.7)
A<xR3

In order to keep the normalization to unity of f(r,f,t), expressed by Eq. (5.5) we
change the scaling from Eq. (5.4)

f(r6,t) = €7 f(,6,1) (5.8)
Then we obtain, in place of Eq. (5.6)

of ., of . i

= AQLD (59)

Hence the Boltzmann equation is invariant for the space-time scaling (5.3), provided
that the particle number goes as the power 2/3 of the volume. This invariance property
suggests that the Boltzmann equation can be derived from the BBGKY hierarchy via a
space time scaling with the total number of particles proportional to €~2; this is what
can be checked at a formal level"?!. It is also clear why the Boltzmann-Grad limit is
frequently called the low density limit; in fact, in this limit, the particle number in a
large box divided by the volume of the box goes to zero. The number of collisions per
unit (macroscopic) time stays finite, while it diverges in the hydrodynamical limit, as
we saw before.
We summarize the content of this discussion in the graph below.

Newton laws

Mean field
limit (2) | Space-time and low density
Space-time | (1) scaling (Boltzmann-Grad limit)
scaling
Vlasov equation Boltzmann equation
(3) | Space-time scaling (A — o0)
Euler equations Euler equations Euler equations

for a ”cold” luld ———————  for a rarefied gas
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As we said before the limit corresponding to arrow (1) is not completely understood
as yet and the best attempts in this direction will be discussed in the lectures by R. S.
Varadhan. The limit corresponding to arrow (2) has been proved for short times and
globally only for an expanding rare cloud of gas. The limit corresponding to arrow (3)
is well understood for times up to the occurence of the first singularity in the fluid-
dynamical equations??39:31:32, The mean field limit (4) is well understood for smooth
bounded interaction potentials33:34:3%

Finally, it is also possible to derive (again before shocks develop) a hydrodynamical
regime for the Vlasov dynamics (arrow (5))3¢37. We also mention that the limit (3) is
just one of a large class for which the incompressible Euler and Navier-Stokes equations

can also be derived?83940,
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