ENMBEDDED SYSTEMS
‘ horary Design Tool

Embedded Systems

A Contemporary Design Tool

James K. Peckol, Ph.D.

University of Washington

©1807
s WWILEY [;
2007 2

NNNNNNNNNNNN

Joun WILEY & Sons, Inc.

Executive Publisher Don Fowley

Associate Publisher Dan Sayre

Acquisitions Editor Catherine Shultz

Project Editor Gladys Soto

Editorial Assistant Chelsee Pengal

Marketing Manager Chris Ruel

Production Editor Lea Radick

Cover Designer Michael St. Martine

Cover Image ©Megumi Takamura/Dex Image/Getty Images

Bicentennial Logo Design Richard J. Pacifico

This book was set in Times Ten by Preparé and printed and bound by Hamilton Printing.
The cover was printed by Phoenix Color.

Copyright 2008 © John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permit-
ted under Section 107 or 108 of the 1976 United States Copyright Act, without either the proper written per-
mission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978)750-8400, fax (978)646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Soms, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008.

LiBrary of Congress Cataloging-in-Publication Data

Peckol, James K.
Embedded system: a contemporary design tool / James K. Peckol.

p. cm.
ISBN 978-0-471-72180-2 (cloth)
1. Embedded computer system. 2. Object oriented methods (Computer science)
L. Title.
TK7895.E42P43 2008
004.16--dc22

2007017870

ISBN 978-0-471-72180-2

To order books or for customer service please call 1-800-CALL WILEY (225-5945).
Printed in the United States of America

10987654321

Risk = Probability of Failure ¢ Severity

Increased Risk — Decreased Safety

s Find out what the customer wants :
o Think of a way to give them what they want
* Prove what you’ve done by building and testing it

-+ Build a lot of them to prove that it wasn’t an accident -

o Use the product to solve the customer’s problem

g Fundamentals of Design

¢ Requirements Definition
i Sy_slém Specification
-« Functional Desigh
¢+ Architectural Design
“« Prototyping

Five Steps to a Successful Design

Input

Input

Input

Primary
Primary
Inputs Outputs
Subset of Subset of
Primary Primary
Input Set Output Set
Warning and

Annunciation

Lightweight Redundancy

Input

Input
Output

Alarm

Input

N Module Redundancy

Primary
Primary Outputs
Inputs
Subset of
Subset of Primary
Primary Output Set
. Input Set Status 4
Warning and

Environment Annunciation

Sensors

Monitor Only System Configuration

UML Diagrams

Parent Class

i v . -attributes .
Static Relationships Inheritance
+operations()
CUse Aggregation
ases
Class Class Name Class Name
Diagram -attributes K>— -attributes
1
b Childo Child1 +operations() +operations()
Class Name -attributes -attributes
UseCase2 -aftributes +operations() +operations()
ctor +operations() Interface
ctor!
Actort .
UseCase3 Composition s atia «interface-
Interface Name
Class Name Class Name +operations()
-attributes @p—— -attributes
DynamiC Relationships +operations() 1 +operations()
Class Class
T action() T
I 5 action
: | Triggerless Transition
user
[| anEvent
| return() State0 State !
k ______________ | Triggered Transition
| |
| SignalEvent1 / Action
| <<create>> | I
| ™ ! -
: : | Transition with an Action
<<destroy>>
Interaction .
| | Diagram i :
action| State0
|L 0 | action2() I Self Transition State
f 1 i} | N Charts
| Interaction I | |
Diagram | reply1()
! I
! I
oA
| : Initial Node
| | .
| | | Activity
. s Diagram ActionState1
equence
Diagram Fork and Join
Data and Control Flow Diagrams
ActionState2 ActionState3 Branch and
Data In Data Out J— ActionState6
Qatg Flowe ActionStates
Data Source Data Sink
ActionState7
Control Flow
\ ———
ActionState8
/:a(a from Data to -
Tasks
Send R
10 ecaive

ActionState9

Final Node

Embedded Systems

A Contemporary Design Tool

BICEMTENNIAL

1807

@WILEY
2007

BICENTENNIAL

BICENTENNIAL
TYINNILAINADIG

THE WILEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

ach generation has its unique needs and aspirations. When Charles Wiley first
opened his small printing shop in lower Manhattan in 1807, it was a generation
of boundless potential searching for an identity. And we were there, helping to
define a new American literary tradition. Over half a century later, in the midst
of the Second Industrial Revolution, it was a generation focused on building the
future. Once again, we were there, supplying the critical scientific, technical, and
engineering knowledge that helped frame the world. Throughout the 20th
Century, and into the new millennium, nations began to reach out beyond their
own borders and a new international community was born. Wiley was there,
expanding its operations around the world to enable a global exchange of ideas,
opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey,
enabling the flow of information and understanding necessary to meet their needs
and fulfill their aspirations. Today, bold new téchnologies are changing the way
we live and learn. Wiley will be there, prov”idin? you the must-have knowledge
you need to imagine new worlds, new possibilities, and new opportunities.
Generations come and go, but you can alway$ count on Wiley to provide you the
knowledge you need, when and where you need it!

WiLLIAM J. PESCE PETER BOOTH WILEY
PRESIDENT AND CHIEF EXECUTIVE CIFFICER CHAIRMAN OF THE BOARD

Preface

INTRODUCING EMBEDDED SYSTEMS

Less than 150 years ago, shipping a new product, petroleum, down the Mississippi in barges
was viewed with skepticism and fear of possible explosion. Fifty years later, electricity and
electric lights were viewed as marvels of modern technology available only to a few.
Another 50 years subsequent, someone suggested that the world would need at most three
to four computers. Our views continue to change. Today we ship petroleum (still with con-
cern) all over the world. Electricity has become so common that we are surprised if a switch
is not available to turn on a light when we enter a room. The need for three to four computers
has grown to hundreds of millions, perhaps billions, of installed computers worldwide.

This book presents a contemporary approach to the design and development of a kind
of computer system that most of us will never see—those that we call embedded systems.
The approach brings together a solid theoretical hardware and software foundation with
real-world applications. Why do we need such a thing? A good question, let’s take a look.

Today we interact with an embedded computer in virtually every aspect of our
everyday life. From operating our car to riding an elevator to our office to doing our laundry
or cooking our dinner, a computer is there, quietly, silently doing its job. We find the micro-
processor—microcomputer—microcontroller—everywhere. Today these machines are
ubiquitous. Like the electric light, without thought, we expect the antilock braking system
in our car to work when we use it. We expect our mobile phone to operate like the stationary
one in our home. We carry a computer in our pocket that is more powerful than the ones the
original astronauts took into space.

Today we have the ability to put an increasingly larger number of hardware pieces
into diminishingly smaller spaces. Software is no longer relegated to a giant machine in an
air-conditioned room; our computer and its software go where we go. This ability gives
engineers a new freedom to creatively put together substantially more complex systems
with titillating functionality, systems that only science fiction writers thought of a few
years ago. Such an ability also gives us the opportunity to solve bigger and more complex
problems than we have ever imagined in the past—and to put those designs into smaller
and smaller packages. These are definitely the most fun problems, the exciting kinds of
things that we are challenged to work on. Okay, where do we begin?

The embedded field started almost by accident not too many years ago. In the early 70s
Federico Faggin and many others at Intel and Motorola introduced the 4004, 8008, and 6800
microprocessors to the engineering world. Originally intended for use in calculators and in
calculator-like applications, today, driven by evangelists like Faggin, the microprocessor has
become a fundamental component of virtually everything we touch. With such widespread
application, the ensured safety and reliability of such systems are absolutely essential.

The embedded systems field has grown virtually overnight from nonexistent several
years ago to encompass almost every aspect of modern electrical engineering and computing

vi

Preface

science. Embedded systems are almost unique in this respect. Although certainly other dis-
ciplines within electrical engineering and computing science utilize the knowledge of other
fields, it is essential for those studying and working with embedded systems to develop mul-
tidisciplinary skills, particularly in the areas of digital hardware and software. Electrical and
computer engineers, working with embedded systems, contribute to all aspects of the devel-
opment process from planning and design to manufacturing and marketing.

The embedded systems field is also a bit of an enigma. Unlike the fields of mathemat-
ics, physics, or chemistry, embedded systems have evolved from the engineer’s workbench
rather than from the scientist’s research lab. Much of our formal theory has roots in the
efforts of skilled engineers and computer scientists whose work has been quickly adapted
to the factory floor. The field of embedded systems is more like a large umbrella. The sys-
tems designed under that umbrella require skills from many diverse fields. Without those
skills, embedded systems cannot exist. Herein lies one of the dilemmas of trying to write a
book on the field. Finding the right balance between depth and breadth can be a significant
challenge. Hopefully, we have approached a good and useful balance.

This text is based on a vast store of theoretical and practical knowledge gained in devel-
oping safe, highly reliable embedded applications over the years for the aerospace, com-
mercial, and medical industries. We endeavor to present the material in interesting, exciting,
and challenging ways. We hope that we have succeeded and that this text will create lots of
opportunities for you to explore and to learn further.

SELECTING A LANGUAGE AND TOOLS

This book contains a rich collection of real-world hardware and software examples. In both
areas, we have a variety of ways through which we can turn our ideas and designs into real-
world hardware and software components. Perhaps someday we will develop a universal
language in which we can express all applications from business to science to engineering.
Perhaps someday we will talk to our computer, and it will effortlessly perform our
requests—maybe even making suggestions along the way. We’re not there yet. The hard-
ware and software concepts we study here are largely language independent. In this book,
as we take the step from concept to realization, we will use the Verilog language as a mod-
eling and synthesis tool to express the hardware implementation, the Unified Modeling
Language (UML) and structured design to model the software designs, and the C language
to affect the software implementation. Although beyond the scope of this text, modeling the
hardware and software functions of our design is central to the developing field called hard-
ware-software co-design. Moving to other implementation languages and tools should be
rather straightforward. For those readers not fully versed in Verilog or C, we provide a good
introduction to and overview of the fundamentals of both tools.

ORGANIZING THE BOOK

It is often all too easy to hack together a one-off embedded application that works. Trying
to replicate a million or more copies of such a design (with tight time constraints) very
quickly runs into the real-world gremlins that are waiting for us. A solid, robust, reliable
design must always be based on the underlying theory and a disciplined design approach.
Such methods are growing increasingly important as we continue to push the design
envelop.

This book takes a developer’s perspective to teaching embedded systems concepts. It
examines, in detail, each of the important theoretical and practical aspects that one must
consider when designing today’s applications. These include the formal hardware and

Preface vii

software development process (stressing safety and reliability); the digital and software
architecture of the system; the physical world interface to external analog and digital
signals; the debug and test throughout the development cycle; and finally improving the
system’s performance.

THE CHAPTERS

Introduction and Background

The Foreword gives an introductory overview, some of the vocabulary that is part of the
embedded world, a bit of background and history, and a few contemporary examples.

Hardware and Software Infrastructure

With a preliminary background set, the next several chapters cover the essential aspects of
the hardware and software necessary for the design and development of contemporary
embedded systems. The Verilog hardware design language, Unified Modeling Language,
and structured design models are introduced as tools in support of the development process.

Chapter I provides the first formal look at embedded systems and introduces some
basic concepts, approaches, and vocabulary. The chapter begins with the hardware and
computing core, which is usually manifest as a microprocessor, microcomputer, or micro-
controller, and follows with an introduction to and discussion of the classic von Neumann
and Harvard architectures.

Next, at the opposite end of the system hierarchy, methods by which the bits, bytes, and
volts can be interpreted as the various and essential kinds of information (numbers, charac-
ters, addresses, and instructions) found inside of an embedded system are studied. Building
on the instructions, the instruction set architecture (ISA) and register transfer (RTL) levels
of the computer are introduced and studied.

Chapters 2 and 3 address a portion of the hardware side of embedded system design.
The material provides a solid basis for practical aspects of working with digital circuits and
systems in the embedded world. The Verilog hardware design language is used as a mod-
eling tool in the design and synthesis of combinational and sequential logics. Time con-
straints and related issues at the hardware level are introduced as critical considerations in
embedded applications. Difficulties with and solutions to problems of asynchronous system
1/O are examined. Effective clocking schemes for the design of robust digital hardware
move the reader into the synchronous world.

Embedded systems work and sometimes fail in the real world. As part of a recurring
emphasis on the need for safe, robust, and reliable designs, several of the more common
failure modes in combinational and sequential hardware as well as methods for testing for
such failures are presented. Those who already have a good background in digital design or
hardware design languages can still benefit from going over the material on timing, time
constraints, and the effects of parasitic devices or reviewing the Verilog examples.

Chapter 4 1ooks at how memory is used in embedded systems. This section begins with
an examination of registers and cache and studies several of the more commonly used cache
organizations and schemes. Next, the static and dynamic allocation of memory and their
impact on performance in real-time embedded designs are studied. Finally, the stack data
type and how it is used in multitasking design is examined.

Chapter 5 presents the major UML modeling diagrams that are relevant to the material
subsequently presented in the text and later moves to the data and control flow diagram from

viii

Preface

the structured design approach to system modeling and development. The chapter intro-
duces UML-based static and dynamic models of the software. The static view, which begins
from outside the system, is refined to increasing levels of detail to capture the comprising
modules, their relationships, and their communication paths.

The dynamic view expresses the behavior of the system while it is performing its
intended tasks and provides information about interactions among tasks. Concurrent task
operation and persistence are introduced and discussed as two of the more important
dynamic considerations in anticipation of subsequent studies of tasks, intertask communi-
cation, scheduling, and the operating system.

Chapters 6 and 7 provide a review of the core elements of the C language as well as of
several of the more commonly used data structures and algorithms necessary for developing
embedded applications. Whether you are an experienced programmer or know just enough
to get into trouble, this material guides you through developing software for an embedded
environment. The chapters introduce the C basics with specific coverage of variables, stor-
age types, scopes, addresses, pointers, and structs. Bit operations are presented as an essen-
tial tool for working with hardware signals. Functions, function calls, and pointers to
functions are introduced and discussed in the context of embedded applications.

Developing the Foundation

The next few chapters present the embedded system development process based on the need
to deliver a safe and reliable design. The development section closes as it does in the real
world with the debug and test processes.

Chapter 8 introduces the basic concepts of safety, reliability, and robustness in embed-
ded applications, formulates definitions for each, and identifies their differences. Several
real-world examples in which minor oversights have led to either significant or potentially
significant and costly failures are examined. After establishing some of the relevant vocab-
ulary and the need for robust and reliable applications, several design approaches are pre-
sented to help to ensure those needs are met. The chapter concludes with the introduction
of some tools and techniques that can be used to detect and manage problems that may occur
during system operation.

Chapter 9 formalizes the embedded systems design and development process. Several
different manifestations of the development life cycle are presented, studied, and analyzed.
The reader is introduced to several traditional approaches to system design. Such
approaches utilize models and model-based development, both of which are becoming
increasingly critical in the design of today’s highly complex systems. The primary tools in
such discussions will be Verilog models, structured design techniques, and UML.
Approaches for assessing and criticizing the quality and robustness of a design are pre-
sented and discussed. The chapter concludes, as the design must also, with an examination
of the core elements in a design release package.

Chapter 10 contains concepts and material that are always relevant. Though certainly
no substitute for a sound design process, debug, test, and troubleshooting are essential com-
ponents throughout the process of developing embedded systems. This chapter begins by
motivating the need for testing in both hardware and software. Then, starting with the pre-
debug phase of a project, the presentation moves through module, subsystem, and system
debug and test. Included are discussions of test process and associated specifications, test
case design, alpha and beta testing, then production test as well as self-test and agency-
driven testing.

Doing the Work

Preface ix

The next chapters build on the foundation established earlier to develop the application as
a collection of interacting tasks under the management of a real-time operating system.
Deadlock problems arising from such designs are examined. Prior to moving outside of the
microprocessor in the following section, methods for analyzing and optimizing the perfor-
mance of an embedded application are presented.

Chapters 11 and 12 provide an introduction to and motivation for tasks, multitasking,
and the control of an embedded application. Beginning with the necessary terminology, the
material examines the critical role of time in developing and deploying many embedded
applications, and presents a first look at time-based and reactive systems. The chapter iden-
tifies the central responsibilities of an operating system, examines the characteristics and
capabilities that distinguish a Real-Time Operating System (RTOS), and then examines the
core set of requirements of the OS as embodied in the kernel.

Study then shifts to the fundamentals of flow of control, communication, and detailed
timing in embedded applications. The discussion begins with event-driven control schema
based on simple polling, interrupts, and associated handling mechanisms. Topics of interest
include intertask communication, data and resource sharing, and task synchronization
through semaphores and monitors. Scheduling, scheduling algorithms, and methods for
evaluating scheduling algorithms in a real-time context round out the topic.

Chapter 13 continues the study of schedulers by examining the problem of deadlocks
and starvation in multitasking embedded applications. Several methods for avoiding, pre-
venting, identifying, and resolving deadlocks, as well as ensuring progress through the sys-
tem, are described and discussed.

Chapter 14 examines performance and the quantification and evaluation of perfor-
mance in embedded designs. To begin the study, several different metrics are introduced and
discussed. An analysis of several important metrics—response times, time loading, and
memory loading in embedded applications—follows. The chapter also studies the evalua-
tion and optimization of time and power consumption aspects of performance. By looking
at the opposite side of performance, several common errors in analysis of performance mea-
sures are explored and evaluated.

Interacting with the Physical World

Continuing the design and development of an embedded application, the scope is expanded
first to local peripheral devices and then to more remote ones. The next several chapters
move outside of the processor and into the physical world that includes working with a wide
variety of different kinds of signals. First, a model of the interaction is developed as an
extension of that developed earlier in Chapter 12, and then specific applications are exam-
ined in the context of that model.

Chapters 15 and 16 open the study by exploring how an embedded application can
interact with the external world. The internal interprocess and communication model devel-
oped earlier is expanded to include information, control and synchronization, and address-
ing in the external world and is extended to include a transport component. Following the
introductory discussion, each component is studied in detail from the points of view of a
shared variable (local) and a message-based (remote) model of information exchange. The
objective of these chapters is to establish the basic infrastructure and various implementa-
tion architectures for both the local and remote models of external world interaction.

Chapter 17 focuses on the typically local analog and digital I/O interface to the external
world. The chapter begins with several different methods for generating analog output

X

Preface

signals and then looks at how various physical world analog input signals can be converted
into a digital form. Three specific conversion algorithms—dual slope, successive approxi-
mation, and voltage to frequency—are studied. Because the outputs of the various sensors -
and transducers are often nonlinear, the problem of working with such signals is examined.

The chapter next introduces the topic of generating digital signals as control inputs to
several different kinds of small motors, including stepper and servo motors, and as infor-
mation that must be displayed. The discussion of digital I/O concludes by studying how
time and frequency parameters of digital signals can be measured.

Chapter 18 examines the world in which interaction with the external world devices
takes place via a network. The chapter introduces four different, commonly used network-
based input/output designs. The study of each begins with the problems that motivated the
development of the interface. Analysis of each design includes the transport mechanism,
the control and synchronism scheme used, and the identification of message senders and
receivers in the context of the model of intertask communication and synchronization
developed earlier.

The chapter opens with the traditional RS-232 standard asynchronous serial inter-
face, follows with a synchronous approach utilized by the Universal Serial Bus, and then
examines the I°C bus and the CAN bus. The objective is to establish the basic infrastruc-
ture and various implementation architectures for both local and remote models of exter-
nal world interaction.

Chapter 19 provides an introduction to programmable logic devices (PLDs). The chap-
ter begins with a brief discussion motivating the use of such devices in embedded systems
and then examines the underlying logical concepts that have led to their development and
widespread use. Next, the commonly used technologies for implementing programmable
devices are examined. The basic structure of the components, variations on I/O configura-
tions, and the fundamental architectures for the Complex Programmable Logic Device
(CPLD) and the field programmable gate array (FPGA) are then presented.

As representative examples of PLD architectures, two of the more commonly used
components—the CPLD and the Gate Array—as well as a more general-purpose device
called a Programmable System on a Chip are presented. The chapter concludes with a look
at several applications.

Supporting and Background Material

The first appendix is an introductory Verilog tutorial. The second provides a number of lab-
oratory projects of increasing complexity that can be used to reinforce the practical appli-
cation of the theory underlying the design of embedded systems.

Appendix A introduces the Verilog language and presents the important features and
capabilities it then used in this book. The material begins with the basic components and
organization of a Verilog program; examines the behavioral, dataflow, and gate-level or
structural models for combinational logic circuits, and follows with similar models for
sequential circuits. Design is only one element of the product development; each design
must also be tested to confirm that it meets specified requirements. To that end, each section
also discusses how one can formulate test suites to verify the proper operation. The material
on testing will lay the foundation to guide the developer in building test cases for perform-
ing testing to the desired level. It is beyond the scope of this text to present a comprehensive
treatise on testing.

Appendix B, found on the text’s companion website, www.wiley.com/college/peckol,
gives a number of lab exercises that are classified into three categories: Getting Started,
Developing Skills, and Bringing It Together. The exercises in the first category suggest some

Additional Materials

THE AUDIENCE

Preface xi

basic projects that introduce some of the fundamental requirements of an embedded system
such as bringing information into the microprocessor, using that information in an applica-
tion, and producing some outputs. Projects in the second category are more complex. Many
of these require a multitasking implementation, although they do not require an operating
system. They utilize many of the peripheral devices commonly found in an embedded micro-
processor, microcomputer, or microcontroller-based design. Projects in the third category
represent simplified examples of real-world applications. These projects cover the complete
product development life cycle from identifying requirements through design and test.

A great variety of additional support material is available on the book’s companion website,
www.wiley.com/college/peckol. This includes information freely available to everyone
such as the latest errata and additional background tutorials covering the basics of digital
design and the C language fundamentals.

On the instructor’s portion of the site, among other things, we include Power Point
slides of all of text’s figures and Appendix B which was described previously.

The book is intended for students with a broad range of background and experience and also
serves as a reference text for those working in the field. The core audience should have at
least one quarter to one semester of study in logic design, facility with a high-level pro-
gramming language such as C, C++, or Java, and some knowledge of operating systems,
and should be an upper-level junior or senior or lower-level graduate student.

NOTES TO THE INSTRUCTOR

This book can be a valuable tool for the student in the traditional undergraduate electrical
engineering, computer engineering, or computer science programs as well as for the prac-
ticing engineer who wishes to review the basic concepts. Here the student may study the
five essential aspects of the development of contemporary embedded systems, and is nota-
bly given a solid presentation of hardware and software architecture fundamentals, a good
introduction to the design process and formal methods (including safety and reliability), the
study of contemporary real-time kernel and operating system concepts, a comprehensive
presentation of the interface to local and distributed external world devices, and finally
debug and test of the designs.

Key to the presentation is a substantial number of worked examples illustrating funda-
mental ideas as well as how some of the subtleties in application go beyond basic concepts.
Each chapter opens with a list of Things to Look For that highlight the more important mate-
rial in the chapter and concludes with review questions and thought questions. The review
questions are based directly on material covered in the chapter and mirror and expand on the
Things to Look For list. They provide the student a self-assessment of their understanding
and recall of the material covered. Though based on the material covered in the chapter, the
thought questions extend the concepts as well as provide a forum in which the student can
synthesize new ideas based on those concepts. Most chapters also include an extensive set
of problems to permit the student to begin to apply the theory. These do not require labo-
ratory support; however, they could be easily extended into basic lab projects. Included in
Appendix B, found on the text’s companion website, www.wiley.com/college/peckol, are
23 in-depth laboratory exercises.

xii Preface

THE AUTHOR

The text is written and organized much as one would develop a new system, from the
top down, building on the basics. Ideas are introduced and then revisited throughout the
text, each time to a greater depth or in a new context. Busses may appear in the first few
paragraphs to introduce the idea, later used to interconnect system components, and ana-
lyzed at a detailed level as the concepts of critical timing and data movement are studied.
Safety and reliability are absolutely essential components in the development of any kind of
system today. Such material is placed near the front of this text to emphasize its importance.
The goal is to have the student think about such issues as he or she learns about and designs
embedded applications.

As we stated in the opening of this Preface, finding a good balance between depth and
breadth in an embedded systems text is a challenge. To that end, a couple of decisions were
made at the outset. First, the text is not written around a specific microprocessor. Rather, the
material is intended to be relevant to (and has been used to develop) a wide variety of appli-
cations running on many different kinds of processors. Second, the embedded field is
rapidly changing even as this sentence is being typed and read. In lieu of trying to pursue
and include today’s latest technologies, the focus is on the basics that apply to any of the
technologies. It is the underlying philosophy of this book that the student well grounded in
the fundamentals will be comfortable working with and developing state-of-the-art systems
utilizing the newest ideas. Ohm’s law hasn’t changed for many years; the field of electrical
engineering has.

The core material has been taught as a one-quarter senior-level course in embedded sys-
tems development for approximately nine years. Roughly two-thirds of the material has been
successfully taught for several years as a three-quarter on-site and distance learning outreach
program to a population of students with rather diverse backgrounds. The outreach students
have typically been working in industry for at least five years post-bachelor’s degree.

Based on student background, the text is sufficiently rich to provide material for a two-
to three-quarter or two-semester course in embedded systems development at the junior to
senior level in a traditional four-year college or university. Beyond the core audience, the
sections covering the assumed foundation topics can provide a basis on which the student
with a limited hardware or software background can progress to the remainder of the mate-
rial. The logic and software sections are not sufficiently deep to replace the corresponding
one- or two-quarter courses in the topics. For those with adequate background in such areas,
the material can either be skipped or serve as a brief refresher. Students with a Java back-
ground may find the material on pointers, bitwise operators, and structs to be particularly
useful. The same holds for portions of the material on operating systems; such material is
notintended to replace a formal, in-depth operating systems course. As deemed appropriate,
the material may be skipped, used as a good refresher, or serve to introduce topics unique
to embedded applications.

The author’s background spans over 40 years as an engineer and educator in the field of
software, digital, and embedded systems design and development. As an engineer in the
aerospace, commercial, and medical electronics industries, the author has worked on test
systems for military aircraft navigation systems and radar systems, the Apollo color camera,
various weather satellites, the Mars Viking Lander, flight control systems for a number of
commercial aircraft, production of high-quality electronic test instruments and measure-
ment systems, and several defibrillation systems. Academic experience spans more than 20
years of developing and teaching software, digital design, networking, and embedded sys-

Preface Xxiil

tems design courses for students with experience ranging from limited hardware or software
background to those at the junior, senior, and graduate levels.

ABOUT THE COVER

The umbrella on the cover is based upon an original photograph by Megumi Takamura. The
image was chosen because it expresses the idea that the embedded systems field covers
applications that utilize knowledge and skills from almost every discipline in engineering
and computing science. Like the cover on this book, if we open the cover of most contem-
porary products, we will find embedded designs being used as tools to enhance their fea-
tures and capabilities.

ACKNOWLEDGMENT

Over the years, as I’ ve collected the knowledge and experiences to bring this book together,
there have been many, many people with whom I have studied, worked, and interacted. Our
discussions, debates, and collaborations have led to the ideas and approach to design pre-
sented on the pages that follow.

While there are far too many to whom I owe a debt of thanks to try to list each here, I
do want to give particular thanks to David L. Johnson, Corrine Johnson, Greg Zick, Tom
Anderson, David Wright, Gary Anderson, Patrick Donahoo, Steve Swift, Paul Lantz, Mary
Kay Winter, Kasi Bhaskar, Brigette Huang, Jean-Paul Calvez, Gary Whittington, Olivier
Pasquier, Charles Staloff, Gary Ball, John Davis, Patrick F. Kelly, Margaret Bustard, and
Donna Karschney for all they’ ve done over the years. William Hippe and Alex Talpalatskiy,
who spent many hours proofreading, commenting, and making valuable suggestions to
improve the early versions of the text, deserve a special thank you.

From John Wiley, I want to thank Bill Zobrist who supported the original idea of pub-
lishing this text and especially Gladys Soto, the Project Editor who carried the development
forward, the Production Editors Lea Radick and Lisa Wojick who brought everything
together, and the unknown copyeditors, compositors, and others whose efforts on and con-
tributions to this project have been invaluable.

In any project, design reviews are an essential part of producing a quality product. I
wish to express my appreciation and thanks to this project’s many reviewers for their eval-
uations and constructive comments, which helped guide its development.

John Acken Oklahoma State University, Stillwater
Farrokh Attarzadeh University of Houston

Saad Biaz Auburn University

Phillip De Leon University of Colorado-Boulder
Michael Eastman Rochester Institute of Technology
Richard Fryer Cal Poly, San Luis Obispo

Subra Ganesan
Adam Hoover
Kenneth Jacker
Phillip Laplante
Al Liddicoat

Tulin Mangir
Michael Morrow
Brad Naegle
Kamesh Namuduri

Oakland University

Clemson University

Appalachian State University
Pennsylvania State University

Cal Poly, San Luis Obispo

California State University, Long Beach
University of Wisconsin-Madison

US Naval Postgraduate School

Wichita State University

xiv

Preface

Kimberly Newman
Mitchell Nielsen
Dan Phillips

HR Shih

Tom Stuart
Jindong Tan
Richard Wall
Hong Zhao

Peixin Zhong

University of Denver

Kansas State University

Rochester Instuitute of Technology
Jackson State University

University of Toledo

Michigan TechnologicalUniversity
University of Idaho-Moscow

Embry Riddle Aeronautical University
Michigan State University

Finally, I extend a thank you to my many teachers, friends, colleagues, and students
who I’ve had the pleasure of knowing and working with over the years.

James K. Peckol, Ph.D.

