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PREFACE

The mathematical structure and the physical application of twistor
geometry together with special properties of solution varieties of
non-linear PDO and their guantisation have been an active and fruit-
ful field of research in mathematical physics durinc the last years
and no doubt this situation will prevail in the next future. The
twistor approach emerged directly from a description of physical
systems in Minkowski space with non-linear dynamics in general. Exam-
ples are field theory, including non-abelian gauce fields, and gene-
ral relativity with the Einstein equations. The approach relates
physical problems and complex manifold theory, algebraic topoloay and
sheaf theory thus providing one example where more theoretical parts
of mathematics are applicable to fundamental and practical physical
problems, yielding fruitful results presumably not obtainable other-
wise. The non-linearity of the physical system in question reflects
itself in the twistor geometry. Part of this relation has to be ex-
plored yet; infinite-dimensional Lie-algebras will be useful there
and the singularity structure as well as the dynamical symmetries are
of special interest. Furthermore the quantisation of such systems will

rely also on complex manifold techniques.

Review lectures covering authoritatively part of the above programme
were given at the Fourth Bulgarian Summer School on Elementary Par-
ticles and High Enerqgy Physics: "Mathematical Problems in Quantum
Field Theory" held in Primorsko in September 1980. The lectures are
collected and edited in an updated version in this volume. Twistor
geometry and its application to certain non-linear physical systems
were treated. Some reviews present a detailed account of the forma-
lisms, others show its applicability and relevance to physical sys-

tenms.

The material is organized as follows:
Part I : Twistor Geometry

with theoretical lectures by S.G. GINDIKIN on integral geometry and
YU.I. MANIN on analytic sheaf cohomology, including also side-views

to gauge theories and with lectures on applications by Z. PERJES
treating particle theory and by N.J. HITCHIN on the Einstein equations.



Part II : Non-Linear Systems

with a theoretical lecture by A.A. KIRILLOV on infinite dimensional
Lie-groups and with more applied lectures by A.S. SCHWARZ on a con-
struction of solutions of non-linear equations, by A.K. POGREBKOV and
M.C. POLIVANOV, A.V. MELNIKOV, M.A. SEMENOV-TIANSHANSKY on singula-
rities and group theoretical properties, by A.V. MIKHAILOV on the
inverse scattering method and by P.A. NIKOLOV and I.T. TODOROV on
relativistic particle dynamics.

Considered as proceedings of the IV. Bulgarian School the volume con-
tains only part of the lectures and seminars presented there. The
editors agree with the general editorial regquirements that a lecture
notes volume should be homogeneous. So it was necessary to center the
material around the main topics of the school. It was not possible to
include either contributions on supermathematics or quantisation
methods or the lectures with a strong bias towards physics. The same
holds for papers having already been published in the form of a review

or having the character of a research announcement.

The responsibility for the final preparation of the manuscripts for
printing was in the hand of one of the editors (H.D.D.). We received
all the manuscripts in English, if these manuscripts were translations,
the orginal version was not at our disposal; whenever possible though,
unclear parts of the translations were corrected.
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INTEGRAL GEOMETRY AND TWISTORS

S.G. Gindikin

The aim of these lectures is to give a notion of a new development
of the Penrose idea how to realize the four-dimensional manifolds
with selfdual metrics as manifolds of curves [ l] . These con-
structions of Penrose happened to be in close connection with those
ones which arose in the recent years in integral geometry [4] . The
integral geometry hints a natural generalization of the selfdual
metrics problem and it seems to us that considerations in this more
broader framework is more prolific. The new results presented here (

I[)BI and Appendix) are obtained in collaboration with J.N. Bernstein
[2,3] .

Introduction. The twistor realization of the flat

space time (from Pliicker-Klein to Minkowski-Penrose)

The fundamental idea by Penrose is that points of four-dimensional
space~time (either Minkowsky or Euclid) may be considered as complex
lines in an auxiliary three-dimensional space (named twistor space).
The role of the complex geometry is crucial in the investigation of
the real manifold. The twistor programme which had already produced
a series of interesting results consists in a systematic interpretation
of space time data in terms of three-dimensional twistor space data.
The idea is that the three-dimensional data arising must be simpler
than their four-~dimensional prototypes. The return way is connected
with "extra" relations which appear because the dimension of the space
grows. Thus, massless equations or Yang-Mills equations correspond to
different variants of the Cauchy-Riemann equations (see e.g. [5,6] ).

The Plicker coordinates. The geometric idea of Penrose is the first
cousin of the fundamental ideas of geometricians in the second half
of the 19th century. First we must recall how in mathematics, perhaps
for the first time, appeared a four-dimensional manifold. The geometry
is in debt to Julius Pliicker for a number of wonderful discoveries. He
terminated the glorious history of invention of various coordinates in
projective space introducing homogeneous coordinates that serve all
points of the space at .the same time. Recall that to a point of three-
dimensional space FP3= IRP3the sets of four numbers (X, x, %, ,%, ) # (0,0,0,0)
are assigned so that (x,,%,,%%) and (X24,2%,,2%,,2x) correspond to the
same point. On the subset { x, * O} the unhomogeneous co-

. X .
ordinates &f= :ﬁ- . where | = 4,2,3 , maybe introduced, the plane

]



{%-ﬂ being considered as the one at infinity.The discovery of Pliicker
has made the Poncelet~Gergonne duality absolutely clear, since it be -
comes evident that planes form the dual copy of the projective space
with homogeneous coordinates (£°,¢" El,gs ) where E°x, + £'x, « &x

+ gsxs =0 is the equation of the plane. In the last memoire by

Plucker entitled "New geometry of the space based on the consideration

of a line as an element of the space" , its posthumous issue made in
1868~69 by Klein and Clebsch, the space is introduced whose elements
(points!)are lines in their projective space IP3 .It is clear that
the dimension of this set equals four: almost all lines in homogéneous
coordinates can be expressed as X, - d1X3 + Py, X, = “z,xg"ﬁz
so {(x4,34>ul)ﬂ& 1 may be considered as local coordinates.But
Plicker seeks for coordinates that will do for all lines in P°? .

For this, as it was in the case of homogeneous coordinates in P? +he
introduces "extra" coordinates.He defines a line by a pair of different
points x  =( x,, x, , xa, X3 ) and & =( X, ,%,, ¥, , %)

where ( x, )
constitutes expressions that do not depend on the choice of points on

is a set of its homogeneous coordinates and so he

.the line:
Pi =~ xi X - x % (1)

It is clear that p;; =0 , P4 = -Pji and one may confine to the six
numbers Poy , Poay Pos » P1g P43 , P2y that we will call the Pliicker co-
ordinates of the line.Since the points were defined by homogeneous co-
ordinates, the sets { Pij }  and {A.pcé b correspond to the
same line.If all Py are zero, then x and X are proportional
i.e.points coincide and that was forbidden.Thus, it is natural to con-
sider the non-zero set of six numbers 1 Py ¥ up to a multiple as
homogeneous coordinates of a point in the five-dimensional projective
space Ps

Thus, the set of lines happened to be naturally embedded in Ps .
But, since it depends on four parameters only, the numbers PL; must

satisfy one more equation.It is not difficult to discover:

Po4Paz = Poy Paa t Pospsy = O (2)
It is also not difficult to verify that there are no other relations,
i.e.from any set ipg} satisfying (2) points X and i.satisfying (1) may
be recovered.From the geometrical viewpoint (2) defines a second order

surface in mﬁ. If we pass to coordinates

Pot = UWe=U3 | Paa = Ug + Uy 3 Pon =@y —Uy Pyy T Uy F Y Py v UptUg , Pl rug

then (2) changes into



2 2 I R A
Uy * Uyt Uy Gy -y Ug = 0 (2

Thus, the set of lines in the three-dimensional projective space
P3 is embedded as a second order surface jquadric")
(2) - (av» in the five-dimensional projective space Pe . This
discovery of Plicker played the principal role in the moulding of
mathematical ideology. It established the isomorphism of two complete-
ly different geometric structures: that of manifolds of lines in
and of quadrics in P® . In the years that followed the best geometri-
cians Sophus Lie, Felix Klein, Eli Cartan lovingly collected such
isomorphisms. Later interests shifted to the general judgement of mani-
folds, when they dealt with coordinates ignoring the geometric nature

of points.

When, almost 50 years later in the relativistic theory the four-fold

of Minkowski appeared it was the time when everyone's thing was the
four-dimensional generations and perhaps nobody did seriously compare
the four-fold of Minkowski with the four-fold of Plicker. It is wonder-
ful that between them there is a deep connection, as was later discover-
ed, which was for a long time hidden in the general theory of homogen-
eous symmetric spaces.It took 50 years more before Penrose made this
connection a constant source of analytical results.

One of the probable ways from Pliicker geometry to Minkowski geometry
starts from a quite naive question. Since to lines in PS corres-—
ponds the quadric of signature (3,3) in PS , maybe points of quadri-
cs with other signatures do admit geometric interpretation? This ques-
tion stirred very respectable mathematicians. Sophus Lie discovered
that on the set of spheres in the three-dimensional space homogeneous
coordinates can be naturally introduced so that they "fill" the guadric
of signature (4,2) in PS (the geometry of Lie spheres). Felix
Klein introduced in four-dimensional space quite refined coordinates
which he called hexaspherical and these coordinates "filled" the quad-
ric of signature (5,1) in PS .

There is a more straightforward way to answer this question, quite
in the spirit of 19th century geometry. Taking into account that all
real quadrics in TPS are real forms of the same complex quadric in
CFPS , we must first complexify the problem. Namely, consider (com-
plex) lines in CIPQ and introduce the Pliicker coordinates which
identify the set of lines with the quadric (2) in C PS , where
P% are supposed to be complex. To investigate various real forms

of the quadric (2) we must intersect it by different five-dimensional



real planes RP® whose complex span coincides with CP® . If we just

consider all uj in (2) to be real, then we obtain the already consider-

ed gquadric of real lines in TRFP . But we may consider Uo ) Uy, uy Uy
to be real and wy=tU;, W, = Lo, to be purely imaginary or
only Wy = t vy purely imaginary, while the other coordinates are

real. We obtain real surfaces, respectively

bR 2 2 2
uZ‘ o, U, + Uy o+ vlf' - g = 0 (S)
. 2 2 v kA 2
W + Uy +ou, Uy - U, - ug = 0 (M)

They are elipsoid and hyperboloid of one sheet, respectively. Since
these real lines belong to the complex gquadric the complex lines corr-
espond to the points of the quadric. It is natural to try to find out
which complex lines correspond to points of surfaces S and M .

S ). We have

Po.t = Qo ~ LUy y Pay = Ut LUz Pon = VU, =~ Uy,
P13 = LUy v Wy Pog T Uy - Ug , Paay T Ua o+ Ug,

Thus, to points of S <correspond the Pllicker coordinates that satisfy

Paay = Por y Pay T p_o;. ) Im poy = Im P12 (3)

and by these conditions points of S are completely defined. Then, if
the line with such Pliicker coordinates goes through the point 2 =( 2,,
Z,, Z5 5, 23 ) we easily verify that we may assume that the other
point is 2= (- ¥, , =, ,- %, , =%, ). Thus, to points of a real
quadric S correspond complex lines in C fP3 that join points
(20,24, 2, ,2,) and €23, &, ,- Z,, 2o )

What is remarkable in these lines? Through each point 2 € (CTP goes
exactly one line of this kind. As a result the space <P splits
into the union of non-intersecting lines. This is well-known the mathe-
matics of fibration of cP? over the sphere qu with complex
lines as fibers. If we intersect this fibration with real projective
space R ’Pa we obtain the fibration [R p3 with real lines that
join points (X, 4 x4 , X3 y Xg ) and (~ X3, X, , ~X, , X, ) as fibers.
In terms of elementary geometry we have obtained the splitting of three-

dimensional space into mutually skew lines.



Paa = Poa Im pqy = Ion poa = Impos = 4m pg3=0 (g)
This situation is somewhat more complicated.Let first Pog ¥ O ,

for simplicity.Since the coordinates are homogeneous, we may assume that

Poxa = 1 and pick points on the corresponding line with coordinates
2o = Z3 =1 , 25==50= 0 .These points are unique.It follows from (4) that
2 = (l,a,c,0) and & =(0,C,b,1), where a and b are real.

What is remarkable in these lines? It is quite straightforward that
all points that belong to them, i.e.w= A =2 + kKZE where
A,np e C satisfy
]m(w150+w,“9:;3) = O (5)
and if we remove the restriction Poy * O we will see that
there are no other lines such that all their points satisfy (5) . Thus,
if N stands for the real surface of dimension 5 defined by (5) then

all lines that belong to N are exactly those lines whose Plicker co-

ordinates satisfy (4), hence, the lines corresponding to the points of
the real surface M . Note that N contains the whole projective
space I'RPPg.

Generally speaking, the family of complex lines that depends on four
real parameters fills, as follows from the computation of dimensionali-
ties, the domain in cP3 .Therefore we may expect that the surface N
has the following specific property:it contains a 4-parameter family of
lines.This result has a real analogue.There are a lot of non-flat sur-
faces, but only on a hyperboloid with one sheet there are two different
families of line elements (recall that from the projective viewpoint
the hyperboloids with one sheet and hyperbolic paraboloids are equiva-
lent) .

Make a summing up. We began with the quadric of real lines in |P3
then passed over to the quadric Q of complex lines in cP3 .
Among the real surfaces of second order which belong to this complex
surface there are not only surface of real lines but also two other
types of surfaces; one, that corresponds to a fibration of C P? by
complex lines as fibers, the other corresponds to five-dimensional real
surfaces in (:P3 that have a family of complex lines that depend on four
real parameters.This example explicitly shows the phenomenon that is the
product of martyrdom of 19th century geometricians.

First, purely real geometric data often admit interpretation in
terms of complex data.

Second, if we complexify a real problem and then try to see which
real problems led to this complex one,we often find new meaningful

geometrical facts.



The metric in the manifold of lines. The relation between the smart

realization of four-dimensional real gquadrics S and M and the four-
dimensional space time is still not gquite clear. The discovery of this
relation supposes the introduction of a metric on the surfaces S and
M . It turns out that there is a wonderful invariant way to introduce
a metric (more precisely, a metric up to conformal equivalence) using
the above interpretation of quadrics.

Let us begin with the complex quadric of lines Cl c CP> .
Lines in a three-dimensional space sometimes intersect. How does it
become manifest in the Pliicker coordinates? We see that if {;39 3 and

{ PLJ/ } are the Pliicker coordinates of two lines, then they intersect
if

Pos Pas - Pos Pis * Pos Pra + Paa Pos =~ PraPoa + Pra Poz =0 (6)
To avoid determinants of the fourth order, let us deduce (6) under the
simplifying assumption (which was once accepted). Let poy ¥ O and
P;3 *+ O .Then we may assume that Pon = Py = 4 and the

lines join points (1, &, , a5 , O D and ( O, B, , Ra , 4 )

respectively ( 4 , o, | o, , O ) and ( O, B/, B/ 5 4 )
(essentially we have passed from homogeneous coordinates to non-homoge-
neous ones). The points of the line p are defined by the equations
Z, = Xy 2y + (54 23 ) 2, = Ay 2, F B:.zs
and similarly for the line p’ . The lines intersect if there is a
common solution ( =, , 2, , &, , 23 ) of this system of four

equations i.e. if
2, C oty - oy )+ 2y (p, - R)) = 0

(7)

"
o]

2, ( Oy ~ o) + 23((51~(3>,_'>

Thus, the lines intersect if
Qlo, o, 3) = (ot-oty ) (Br =) = (Bo-p)(ota-ot)) (8

vanishes. When the modern mathematician looks at a quadratic expression
he feels an irresistible desire to claim it as distance. So do we. It
goes without saying that on Q the distance g is complex. But the
principal fact is that it vanishes if the lines intersect. Moreover, by
this condition the distance @ 1is defined uniquely up to a conformal

transformation.



Let us assign to each point p € Cl the isotropy cone \Vb < Q ,
i.e. the set of points p' which are at zero distance from p (
lines p and p’' intersect). Then Vp coincides with the intersection

of the quadric Q and the tangent plane to Q at the point p .

Metrics on_surfaces _S_ and M_ .Let us restrict S to the
guadric S . We confine again with points such that p,= 1 . Then
3)implies that By = %, , P, = - X, and as coordinates on S a
pair of complex number ( o 4 , <<, ) will do, and then

y 2 2
Qg (o) = loy- o 1+ o - | (9)

This distance is non-negative definite and non-degenerate. It agrees
with the fact that lines which correspond to points of S do not
intersect. We have obtained the usual Euclidean distance on the four-
dimensional real sphere.

Now = restrict g to the hyperboloid M assuming again pPo3 =1 .
Let M, < M be the set of points such that o3 = 1 . Then (4)

implies that o] and Ba are real, while B, = o, . Let us

1

make the substitution

Xy o= ot - x, ) Pa = t + X4 ) Pa = X5 + X3
where + and X, are real, which makes (8) into
, 2
gl e’y = Ce-t)% = Cxy - %0 = (% - X2) = (x3 - x3 )*

This is exactly the Minkowsky metric. The intersection of the cone
Vp with M, is the light cone Cp with the vertix p .
Thus the distance naturally arising from geometry induces on S
the conformal Euclidean metric and on M the conformal Minkowsky
metric.
We have obtained that M, with the metric gn 1is the Minkowsky
space. To the points of Mg correspond those lines on the surface
N ¢ P2 which do not intersect the line e of the form =z, =
2y = @] . The manifold M is the conformal compactification of
the Minkowski space. It is obtained from FQ by adding the light cone
at infinity.
The space Q maybe considered as the complexified compactified
Minkowsky space.
__Automorphism groups. On the space € P> the group SL (#,C )
acts by projective transformations. Since lines go into lines under
these transformations the action removes to the quadric of lines Q .
Further, since under projective transformations skew lines go into
skew ones on Q we obtain conformal automorphisms of the metric g .

In particular, the cones Vp will transform into each other.



Similarly, if we consider the subgroup of projective transformations
that preserve the surface N , i.e. SU(2;,2) < SL(4, €) ,
we obtain automorphisms of M , which are conformal with respect to
Sy ,i.e. the conformal transformations of the Minkowsky space. Finally,
if we consider projective transformations which preserve also the line

e we obtain the affine automorphisms of the Minkowsky space M, .

The interpretation of twistors. Now let us show how to recover
naturally N and €P® from M and Q .0n M , consider light cones
Cp , where p € M . To their points correspond lines P’ < N

that intersect the line p . It is easier to verify that to points
which belong to the same generator of (j correspond lines in N
which intersect at the same point. The result is a correspondence be-
tween the generators of the light cones (light lines) on compactified
Minkowsky space M and points of the surface N . It means that N
may be considered as the abstract set of light lines.
But in applications the structure of N connected with its embedding
in € P2 (called CR structure) is also important.

On Q , the points of C p3 correspond to the following data. The
cones V¥p have two-dimensional generators. Under the notations of (8)

we have

T, ¢ Cotg = o)) = A Coaq-ot)) | (Pa-Rr) = A (B-B)

)1-(.0(4 ‘Nq’) ) (ﬂ’?_-,}z’) = /(,(0(7_-@2:)
where p = (o, @)

J-L:. N (51 - [51‘)

To generators of the family Jl4correspond those lines that go through
fixed points of the initial space c P , and to a generator of J{, there
correspond families of lines that lie in the fixed planes of the space
c P, Thus, if we start from complexified Minkowsky space Q with

a conformal structure defined by a system of isotropic cones VP ’
] 3 ,

then twistor space € is a manifold of generators of \% of the

type JT1 ("complex light planes").

Analytical applications of twistor theory are based on the fact that

N (thus differing from M ) has complex tangent directions. It
enables us to consider different variants of tangent Cauchy-Riemann
equation on N . In some way the integral of a solution by lines in

N gives on M a solution of different equations of mathematical

physics.



1. The interpretation of selfdual metrics

in terms of manifolds of curves

In the introduction we dealt with the flat space-time. The following
idea is due to Penrose and it aims at interpreting curved space-time as
a manifold of complex curves on a three-dimensional complex manifold.
The conformal class of the metric must be defined by the requirement
that the distance between points corresponding to intersecting curves

is zero.

The conformal structure on a four-dimensional comples manifold.

Penrose [l] considers the complex picture only. The real variant see in
[8] . Curved real Minkowsky spaces do not appear in this scheme. Below
it is shown that the consideration of a complex situation enlightens a
new geometrical meaning of a number of classical geometric notions, e.g.
of the operator % and of Riemannian and Weil curvatures. )
Let Q be a complex manifold of dimension 4 and giskpﬁ dg'dpé
the analytica} symmetric (not Hermitian!) metric on Q ,i.e. gp( g,n)

= ggé(p3 gt'm* is a non-degenerate bilinear form on the tangent
space TP Q for any p € Q .The conformal class of the metric in-
cludes all metrics 5% (pY = £ SLJ(P) that differ from g by

a functional multiple . Let f} be the infinitesimal isotropy cone; it

is defined in TPQ, by the equation q,(¥,%)-0(it is the infinitesimal
version of the cone VP of the introduction). Recall that in the com-
plex case all non-degenerate cones of the second order are linearly equi-
valent and in the dimension 4 there are two families of two-dimensional
flat generators (see (41) ). Generators of one family intersect only in
the vertex of the cone and through each non-vertex point of the cone
there passes a unique generator of each family.

It is of importance that the converse is also true, that is the non-
flat cone containing two families of two-dimensional flat generators is
automatically quadratic (the egquivalent statement is that a non-flat
surface in three-dimensional space with two systems of linear generators
is a second order surface (c+¥. page ). Note also that the family of
flat generators has the canonical structure of a projective line.

Let us call the generators of one family o - planes and the genera-

tors of the other A - planes. Let us choose this indexation consistent-
ly for all points of Q (it is equivalent to the choice of orientation).
Penrose's important observation is that in terms of & - and ja -

planes it is very convenient to formulate geometrical notions concerned



1

with metrics (clearly in case of real Riemannian or Minkowsky metrics
we lack such a possibility). It is especially so with conformal notions.
§elf§ugl_mgt£igs. The ot -surface (respectively 3 - surface) is the

two~dimensional submanifold L in Q , such that all its tangent planes
are o - planes (respectively p- planes). They are isotropic (light) sur-
faces with respect to the metric g - Consider the problem of construc-
tion of an o - surface with the given tangent o - plane at the fixed
point p€ Q. Wwe will say that the metric g is o - integrable (self-
dual) if this problem is solvable for all initial values (the unique-
ness is not difficult to deduce from the Frobenius theorem). The

E— integrability (antiselfdualness) is similarly defined. When the metric
is o - integrable, the family of « - surfaces depends on three complex
parameters and has the natural structure of a complex manifold g

= TJ(CL,Q ) . To points p € Q correspond families of « - surfaces
(through p } Curves EP arise which admit the structure of projec-
tive lines, the structure, that is in the set of o =~ planes of the
tangent space TP Q . So to points pé€ Q correspond rational curves

on jy (four-parameter family) .

When do these curves EP and E.g intersect? Clearly they do if

on Q there is a o« - surface through p and ﬁ si.e. when p

and S are at zero distance. That means that the metric g is
in the desired agreement with the incidence relation of curves Egq .
The similar construction is possible for 2 - integrable metrics.

Proposition. The manifold Q with metric ¢ which is o as well
as 3 - integrable is conformal flat.

This proposition is the reason why a non-flat manifold with X -
integrable metric cannot have a real form with real non-conformal flat
Minkowsky metric. On such a manifold (3 =~ integrability follows from

& - integrability. (8] .

Families_of curves_corresponding to selfdual metrics. Let T be
a complex manifold with several rational curves. We consider a four-
parameter family of such curves Q ,and try to introduce conformal
structure on Q : consider cones ‘Vp consisting of lines I in-
tersecting p and pass to their images rﬁ in tangent spaces T} Q .
The conformal structure on the four-dimensional manifold thus ob-
tained does not as a rule correspond to a conformal metric: cones FP

will not be quadratic ones. Let us try to translate the condition of

being qguadratic in terms of curves in Y . As we have already mentioned,
r; is quadratic if on Fp there are two families of two-dimensional

flat generators.



