Second Edition

RINCIFLES

VAN NOSTRAND REINHOLD DATA PROCESSING SERIES

OPERATING
SYSTEMS
PRINCIPLES

SECOND EDITION

Stanley A. Kurzban
Thomas S. Heines
Anthony P. Sayers

VAN NOSTRAND REINHOLD COMPANY

NEW YORK CINCINNATI TORONTO LONDON MELBOURNE

Copyright © 1984 by Van Nostrand Reinhold Company Inc.

Library of Congress Catalog Card Number: 83-10274
ISBN: 0-442-25734-1

All rights reserved. Certain portions of this work copyright © 1975 by Van Nostrand
Reinhold Co. Inc. No part of this work covered by the copyright hereon may be
reproduced or used in any form or by any means — graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems —
without permission of the publisher.

Manufactured in the United States of America

Published by Van Nostrand Reinhold Company Inc.
135 West 50th Street
New York, New York 10020

Van Nostrand Reinhold Company Limited
Molly Millars Lane
Wokingham, Berkshire RG11 2PY, England

Van Nostrand Reinhold
480 Latrobe Street
Melbourne, Victoria 3000, Australia

Macmillan of Canada

Division of Gage Publishing Limited
164 Commander Boulevard
Agincourt, Ontario M1S 3C7, Canada

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging in Publication Data

Kurzban, Stanley A.
Operating systems principles.

Bibliography: p.

Includes index.

1. Operating systems (Computers) 1. Heines, Thomas S.
(Thomas Samuel), 1927- II. Sayers, Anthony P.
I11. Title.

QA76.6. K874 1984 001.64°2 83-10274
ISBN 0-442-25734-1

THE VAN NOSTRAND REINHOLD DATA PROCESSING SERIES
Edited by Ned Chapin, Ph.D.

IMS Programming Techniques: A Guide to Using DL/1
Dan Kapp and Joseph L. Leben

Reducing COBOL Complexity Through Structured Programming
Carma L. McClure

Composite/Structured Design
Glenford J. Myers

Reliable Software Through Composite Design
Glenford J. Myers

Top-Down Structured Programming Techniques
Clement L. McGowen and John R. Kelly

Operating Systems Principles
Stanley Kurzban, T.S. Heines and A.P. Sayers

Microcomputer Handbook
Charles J. Sippl

Strategic Planning of Management Information Systems
Paul Siegel

Flowcharts
Ned Chapin

Introduction to Artificial Intelligence
Philip C. Jackson, Jr.

Computers and Management for Business
Dougles A. Colbert

Operating Systems Survey
Anthony P. Sayers

Management of Information Technology: Case Studies
Elizabeth B. Adams

Compiler Techniques
Bary W. Pollack

Documentation Manual
J. Van Duyn

Management of ADP Systems
Marvin M. Wofsey

Hospitals: A System Approach
Raymon D. Garrett

Hospital Computer Systems and Procedures, Vol I: Accounting Systems
Hospital Computer Systems and Procedures, Vol 11: Medical Systems

Raymon D. Garrett

Logic Design for Computer Control
K.N. Dodd

Software Engineering Concepts and Techniques
John Buxton, Peter Naur and Brian Randell

Information Management Systems: Data Base Primer
Vivien Prothro

A Programmer’s Guide to COBOL
William J. Harrison

A Guide to Structured COBOL with Efficiency Techniques and
Special Algorithms
Pacifico A. Lim

Managing Software Development and Maintenance
Carma L. McClure

Computer-Assisted Data Base Design
George U. Hubbard

Computer Performance Evaluation: Tools and Techniques for Effective Analysis
Michael F. Morris and Paul F. Roth

Evaluating Data Base Management Systems
Judy King

Network Systems
Roshan Lal Sharma, Paulo T. deSousa and Ashok D. Inglé

Logical Data Base Design
Robert M. Curtice and Paul E. Jones, Jr.

Decision Tables in Software Engineering
Richard B. Hurley

CICS/VS Command Level with ANS Cobol Examples
Pacifico A. Lim

Vi

Preface to First Edition

This book is an introduction to the concepts and technology of computer
operating systems and is intended for use by students taking a first course in
operating systems theory. Typical of the courses for which this book would be
appropriate are the ‘‘undergraduate course of operating systems principles’
described by the COSINE Committee on Education of the National Academy of
Engineering’s Commission on Education [COS71] and the Course 14 of the
ACM’s “Curriculum 68 [ACM68]. This book is also of value to those in man-
agement, procuring, project planning, and the like, who may become involved
in the development, modification, or use of an operating system.

It is assumed that the reader has some familiarity with the elements of com-
puter architecture, an assembly language, and one or more higher-level languages,
and has, in addition, some experience in the use of an operating system.

The material in this book should enable readers to understand the function
and design of any operating system they might encounter. They should be able
to participate in the design, implementation, or modification of an operating
system after learning the specifics of a given project.

The style of the book is tutorial; there are many examples and exercises.
Abundant references direct the reader to more detailed studies of particular
subjects.

For the purposes of this book, an operating system includes supervisory and
file-management routines, utility programs, and processors for the system’s
control languages. Compilers are discussed only insofar as their characteristics
are affected by their host operating system.

This book covers the concepts of all operating systems in current use. Since
the authors have the greatest familiarity with the IBM 360/370 Operating Sys-
tem(s), more examples are taken from these systems than from any other; how-
ever, the concepts in the book are by no means limited to those systems.

vii

Preface to the
Second Edition

A measure of the aptness of this book’s title is the extent to which its topics,
“Principles,” apply to operating systems as they evolve. We hope the reader
agrees that the past seven years give evidence of the wisdom with which our
title and topics were chosen.

While principles endure, emphasis may not. Many have observed that vast
fortunes depend on operating systems’ attributes, particularly their reliability
and security. So it is that these topics receive increased attention in the present
edition. This is especially true of the latter topic, one whose importance many
failed to appreciate in 1975.

Another area growing in significance is distributed processing. Accordingly,
the present edition devotes more attention to the movement of data and requests
for service into and out of the system. On the other hand, various developments,
including enhancements to the computers on which operating systems run, have
modified the roles of queuing theory and compiler design, leading us to omit
these topics that properly deserve separate books of their own rather than the
cursory treatment we can afford them in the present context.

References to features and facilities that conserve space in main storage or
optimize placement of files on secondary storage are retained despite the fact
that reduced costs per unit and improved use of multiprogramming techniques
have rendered some of these obsolete in the contexts of some systems.

The successors of operating systems developed for IBM’s System/360 and
System/370 computers now run on many other computers as well. To avoid
confusion, we continue to refer to the older families of computers.

Stan Kurzban
Tom Heines

contents

Preface / vii
Preface to the Second Edition / ix

1. Introduction / 1

1.1 Historical Perspective / 2

1.2 Goals of Operating Systems / 5

1.3 Components of Operating Systems / 10
1.4 Operating System Design Techniques / 20
1.5 Relationships with Hardware / 27

2. Types of Operating Systems / 33

2.1 Serial Batch Processing Systems / 33
2.2 Simple Multiprogramming Systems / 37
2.3 Complex Multiprogramming / 50

2.4 Multiprocessing Systems / 53

2.5 Real-Time Systems / 60

3. Operating System Services / 67

3.1 Hardware Interfaces / 67

3.2 Input/OQutput Services / 81

3.3 Error Recovery / 93

3.4 Language Processors / 99

3.5 Utilities / 109

3.6 Accounting for Resource Usage / 123
3.7 Access Control / 132

4. Job and Task Management / 140

4.1 General / 140
4.2 Management of Addressed Storage (Real) / 150
4.3 Management of Adressed Storage (Virtual) / 155

xi

xii CONTENTS

4.4 Management of Named Storage / 167
4.5 System Integrity / 174

4.6 Management of Tasks / 176

4.7 Management of Jobs and Steps / 185

5. Data Management / 199

5.1 Secondary Storage Management / 199
5.2 File Organization / 206

5.3 Access Methods / 216

5.4 Data Bases / 228

5.5 Data for People / 236

5.6 Programs as Data / 244

6. Symbol Binding / 250

6.1 Mechanisms / 251
6.2 Control Language / 269
6.3 The Operator’s Interface / 285

7. The Development Process / 297

7.1 Preliminaries / 297

7.2 Tools / 311

7.3 Techniques / 317

7.4 Implementation Language / 341

7.5 Measurement, Modification, and Maintenance / 348

Answers / 361

Appendix A. Operating System Glossary / 364
Appendix B. Operating System Functions / 373
Appendix C. Sample Control Block / 380
Appendix D. Data Security Considerations / 382
Bibliography / 383

Index / 409

1
Introduction

The term ‘“‘operating system” came into widespread use in the late 1950s.
Sayers [Say71] defines an operating system as “a set of programs and routines
which guide a computer in the performance of its tasks and assist the programs
(and programmers) with certain supporting functions.” This definition is accu-
rate and useful, but by no means the only one. The American National Standard
definition is: “Software which controls the execution of computer programs
and which may provide scheduling, debugging, input/output control, accounting,
compilation, storage assignment, data management, and related services.” This
definition, while similar to Sayers’, seems too restrictive and too dependent on
other terms which themselves are jargon and require definition.

We can expand Sayers’ definition by naming the supporting functions provided
or the programs assisted. Alternatively, we may make reference to current prac-
tices in the computer industry by defining operating systems as ‘‘that program-
ming which is provided by the vendor of a computing system as an integral part
of the product he markets.” This, of course, yields an incomplete and impre-
cise definition which varies with vendors and computers.

Let us, then, accept Sayers’ definition of an operating system with some
qualifying remarks. Some authorities would restrict the term “operating system”
to a set of programs which creates an apparent computing system as comprehen-
sive as the original hardware system, but simpler and easier to use. For our pur-
poses, however, those programs which are peripheral to the computing system,
but vital to the effective use of the system and of potential value to all those who
use the system, are included. Examples of such programs are utilities (for exam-
ple, file-copying programs, sorts, and listing programs), spooling’ programs, and
routines for managing networks of computers. Language processing programs —
assemblers, compilers, and interpreters — are considered here only insofar as
they are influenced by the characteristics of particular operating systems.

Having defined our subject, we next consider how operating systems have
evolved to their current level of sophistication. We then discuss the purposes

lSpooling, from simultaneous peripheral operations on-line, is the processing of data be-
tween a device designed for communication with people (a printer or card punch, for exam-
ple) and an intermediate storage device (such as a disk or magnetic tape device).

2 OPERATING SYSTEMS PRINCIPLES

served by operating systems, their constituent parts, some programming tech-
niques used in their development, and the influence of computers upon the oper-
ating systems which support them. These topics will lay the foundation needed
for more detailed study of operating systems.

1.1 HISTORICAL PERSPECTIVE

The development of operating systems has been marked by two different types
of progress: evolution and retrenchment. Within generations of computers,
evolution has dominated, with successive advances occurring in response to prob-
lems successively encountered. The problems often arose as a result of earlier
advances, a phenomenon Marine [Mar70], in another context, attributes to ““the
engineering mentality,” the way of thinking which insists upon solving every
problem individually without regard for related problems or side effects. Such
an approach, despite its seeming inadequacy, yields prompt solutions to prob-
lems, a requirement in the fast-advancing field of electronic computing. This
type of development has fortunately been reinforced by retrenchment, more
comprehensive advances, which consolidated earlier technological gains. These
advances have most often coincided with the introduction of radically different
computers, but also at times, for combinations of less than obvious reasons,
occurred in the absence of hardware innovation. Radically new operating sys-
tems, not truly revolutionary, but significantly innovative, have permitted the
consolidation of earlier advances and the development of integrated sets of new
programs which provide totally new facilities.

Before there was an operating system, there were computers. With little or no
accompanying programming, the computer was a very complex tool, difficult for
even its designers to use efficiently. Systems with one-card loaders and primitive
assemblers could be of use to those with the patience and analytical skill needed
to break a problem down to a succession of additions, divisions, etc., provided
someone well acquainted with the computer could write input/output (I/0) rou-
tines for them. But some systems developed prior to 1955 lacked even an assem-
bler. They had to be programmed in octal or decimal, with the programmers
supplying operation codes and branch locations by themselves. The addition of a
single instruction near the beginning of a program meant the relocation (and re-
punching) of perhaps thousands of addresses, or patching — the addition of code
at the end of a program and the replacement of an existing instruction by a branch
to the new code. The new code had to begin with the replaced instruction, and
end with a branch back to the location following the replacement. A program
with many patches was not only inefficient, but also very difficult to debug.

The users of these primitive systems normally operated the computer person-
ally. The absence of both aids for debugging and established operating procedures

INTRODUCTION 3

made this necessary. No third party could have known how to interrogate and
modify storage in response to an unexpected condition or a bug. No one but the
programmer could distinguish a loop from normal computation or determine
from patterns of lights that a new reel of magnetic tape should be mounted.

Monitors

The first problem to be solved by a systems program, that is, one which performed
no work specifically requested by any user, was, naturally enough, that of accom-
plishing transitions between users’ programs. This was a serious problem. Many
jobs required more time for preparation than for execution. Monitors such as
the one developed in the late 1950s by programmers at General Motors and
North American Aviation for the IBM 704 [Ros69a] accomplished job-to-job
transition and invoked other programs which facilitated use of the computer —
an assembler, a loader, a FORTRAN compiler, and a dump.

Monitors soon were developed to accept and produce reels of magnetic tape
in lieu of card decks and printed listings, respectively. The tapes could be pro-
cessed by a less expensive (peripheral) computer used only for that purpose. This
relieved the principal (central) computer of the burden of dealing with slower
devices. Jobs to be run under the monitors were restricted as to what they
could do, making job set-up so simple that it was possible for operators to replace
the programmers at the computer. Procedures could be varied, but the variations
permitted were well-defined and within the operators’ capabilities.

With the appropriation by the monitor of magnetic tape drives for specialized
use, restrictions had to be placed upon programmers’ use of I/O devices. Note
that this is a typical example of a problem caused by a solution. This problem
was a fortunate one, however, inasmuch as it led to the development of I/O
subroutines. These greatly simplified programmers’ views of I/O operations.
Since these routines were used very frequently, they were stored in libraries on
magnetic tape as object (executable or binary), rather than source (character
string), code. This led in turn to the more extensive use of libraries of programs
in this more efficient format.

Since such programs had to be used by almost all of the system’s programmers,
it became necessary to permit their loading at various locations in main storage
to meet the constraints of many varied main programs. The relocatable loader
could modify the routines as they were loaded from libraries, to reflect the
locations selected for them.

Other innovations which appeared in the late 1950s included directories for
program libraries to facilitate sequential searching, overlay mechanisms to per-
mit the serial use of given storage locations by a sequence of routines, and a
system log wherein accounting data could be recorded by the monitor.

4 OPERATING SYSTEMS PRINCIPLES

Executives

The monitor of the late 1950s became an executive in the early 1960s. (This
term had also been used earlier.) The executive was designed to facilitate effi-
cient use of the channels and interruption mechanisms which were then becom-
ing available. These permitted computational processing to occur simultaneously
with I/O operations. The completion of an I/O operation caused an interrup-
tion of processing. Processing could be resumed after the successful completion
of the I/O operation had been noted somewhere or something had been done
about an unsuccessful operation. The complexity involved was best dealt with
by a single group of programmers whose executive could then make other pro-
grammers’ jobs easier.

Supervisors

As executives became supervisors, they performed more functions of general
necessity, but troublesome complexity. They also became permanently resident
in main storage, giving the term “system overhead’’ a spatial dimension as well
as a temporal one. Most of the supervisor’s routines were useful to most users
of the system, but all users had to tolerate the presence of all the routines in
main storage at all times.

With the problem of usability solved, the problem of integrity appeared;
that is, since almost any reasonably intelligent person could now program a
computer, many who might better not have, did. And when they did, they
effected unintentional modifications of the supervisor, rendering it inoperable.
So it was that protection mechanisms, such as registers for bounding addessing
capability and locks for restricting access to sensitive data, were developed.

The IBM 7040/7090 family of computers was a focus for much of the evolu-
tionary and nonevolutionary work of the early 1960s. IBM produced IBSYS
[IBM6] with its IBJOB monitor and IOCS (Input/Output Control System) in
1963. In 1962-1965 Project MAC at MIT produced the Compatible Time-
Sharing System (CTSS, language-compatible with FMS, the FORTRAN Moni-
tor System) [Cri65], a system which swapped users’ programs between main and
secondary storage at intervals called time slices. Significant work was also done
at the University of Michigan [Mic63], Yale [Yal63], and IBM’s research labora-
tory at Yorktown Heights, New York, among other places. These systems con-
solidated earlier advances and opened new avenues of progress. All of the sys-
tems, but most notably IBSYS, went through significant periods of evolution,
but nevertheless represented milestones in the development of operating systems
at their inception.

Operating Systems

The IBM System/360 Operating System (0S/360) [Mea66], which supported the
System/360 series of computers, ushered in the present era of operating systems.

INTRODUCTION 5

While many facilities of existing operating systems (checkpoint/restart, time-
sharing, and even simple multiprogramming) were lacking in OS/360 when it
was first released in 1965, that system was truly a new species [Ros67]. It is
well represented in the material which follows, and is therefore not described
further at this point. Still more recent landmark systems are MULTICS (rulti-
plexed information and computing service) [Cor65] and IBM’s TSS/360 and
OS/VS [IBM7]. Descriptions of these are also deferred.

The history of operating systems is not exclusively American. The ATLAS
system [Kil67], developed in England by Ferranti, Limited, and Manchester
University, seems to have been “years ahead of its time.” The GEORGE systems
[Cut70], developed by International Computers, Limited, (ICL), are also note-
worthy and the THE System [Dij68b], developed by Dijkstra at the University
of Eindhoven, the Netherlands, has contributed as much as any other to the
theory of systems programming.

An excellent survey of the history of operating systems [Ros69a] is the
source for much of the foregoing. The first two papers of [Rose67] cover the
same ground and related subjects. See also [Kat73]. More detailed views of
individual systems are best gleaned from the references cited.

1.2 GOALS OF OPERATING SYSTEMS

Operating systems are intended to facilitate efficient use of computers. They
provide a convenient interface to hide from programmers the complexity of the
bare computing systems. They manage the resources of computing systems so
that the resources are optimally used. They permit the accounting for individuals’
use of resources. They make it possible for programs to be impervious to minor
malfunctions or the unavailability of one out of many similar resources, for exam-
ple, one magnetic tape drive out of ten that might be attached to a computer.
They protect users’ programs and data from accidental or malicious destruction,
theft, or unauthorized disclosure to other users. To do this effectively, they
provide the same protection for themselves. And they can even give computing
systems the appearance of being much larger than they really are, via so-called
“virtual” resources.

Some of the terms we use, because they have special meanings in our context,
require definitions. These are supplied in the following list of attributes of
operating systems:

1. Usability — the property of being easy to use; appearing to have been
designed for the user’s convenience.

2. Generality — the property of being useful in many ways; the system does
all and only what the set of all of its users want it to do.

3. Efficiency — the property of functioning quickly; the system makes opti-
mum use of the resources at its disposal.

6 OPERATING SYSTEMS PRINCIPLES

4. Visibility — the property of revealing to users all they must know to take
maximum advantage of the system.

5. Flexibility — adaptability to a specific environment;the system’s behavior
can be suited to its tasks.

6. Opacity (commonly called “‘transparency’ in defiance of that word’s nor-
mal meaning) — the property of allowing users to remain unaware of all
details they need not know, all that lies beneath the interface provided
by the system.

7. Security — the property of protecting data from unauthorized access,
whether malicious or accidental.

8. Integrity — the property of protecting itself and users from damage or
any other ill effect of others’ errors or malice.

9. Capacity — the property of lacking unnecessary limitations.

10. Reliability — the property of appearing to fail as rarely as possible.

11. Availability — the property of providing as much function as much of
the time as possible.

12. Serviceability (or maintainability) — the property of being easily and
quickly repaired.

13. Extensibility — the property of accepting additions and modifications
with maximum ease.

The definitions of the attributes in our list contain few terms that restrict
their applicability to operating systems. The designers of any product might do
well to consult the list in doing their work.

All of these characteristics contribute to the broader goals of an operating sys-
tem: to permit people to accomplish meaningful tasks more easily and less expen-
sively than would otherwise be possible. The attributes we have listed may be seen
as subgoals which contribute in more or less obvious ways to the principal objec-
tives of ease of use and efficiency, in the more general sense of the latter term.

The most obvious accomplishment of an operating system is its presentation
to the user of an interface much easier to use than that of the computing system
itself. This is not so much true with respect to computational processing, where
the assembler stands between the user and the computer. But it is true with
respect to the peripheral, yet vital, processing incidental to computation.

Before data can be processed, it must be communicated. The operating sys-
tem permits programmers to code simple READ and WRITE statements, although
the computer itself requires much more precise direction. To process data effi-
ciently, one must manage resources. The operating system needs only statements
concerning requirements for types of resources. The selection of specific resources
is handled by the system. In general, the operating system permits users to express
their requirements in terms meaningful to them, instead of in the language specific
to some conglomeration of circuits and registers.

INTRODUCTION 7

POL Loader
OSCL source OSCL stmts OSCL
POL, OSCL, loader control statements
CL '
ro- Com- CL Object L
P piler pro- JLoader| . 4. | Pro-
cessor cessor cessor . .
Operating system interface

Operating system

Instruction set or command repertoire

Microprogramming

Microcode instruction set

Data paths

Electronic components

Figure 1.1. Levels of Interface for a Compile/Load/Go Job.

This simplification may be seen as an interface of a level higher than that of
the computer itself. A higher-level language such as COBOL, FORTRAN, or
PL/1 can be perceived as a still higher level of interface, one provided by a com-
piler. The compiler, in turn, is written to the interface of the operating system,
the same interface at which the compiler’s output, the object program, executes.
This notion of levels of interface is graphically illustrated in Figure 1.1, where
the operating system’s control language (OSCL) is seen as another language.
In the case of the OSCL, the language used for communicating with the operating
system, the language processor is probably not properly called a compiler. But
the analogy has substantial validity.

The facilities offered by an operating system are dictated by the generality of
their usefulness. All useful programs must obtain data and produce data. I1/O
routines are therefore of general usefulness. For this reason, they are included
in operating systems. Languages intended for use in scientific computation are
likely to include a square-root function because it is of general use to scientists.
But many operating systems are used extensively for nonscientific processing,
and so do not have square-root facilities. Such a facility would not be of suffi-
cient use to a sufficient portion of the using population to justify the cost of
its implementation. Operating systems are not immune to economic principles:
a product’s value must exceed the cost of its production. This defines the bounds
of generality.

An operating system is designed to serve not only its individual users, but
also, more importantly, the totality of all its users as a group. One way it
accomplishes the latter objective is by coordinating the users’ utilization of the

8 OPERATING SYSTEMS PRINCIPLES

system’s resources. The resources of a computing system are many: main stor-
age, one or more central processing units (CPUs), I/O devices, channels, and sec-
ondary storage media. Whenever a CPU is waiting for work or main storage space
is unused, a resource is being wasted. An operating system tries to process users’
jobs in such combinations and sequences as to maximize the use of resources.
By spooling and other means, the system makes use of unused resources to per-
form operations before they are absolutely required. When the operations are
required, they may appear to occur instantaneously or, at least, much more
quickly than would otherwise be the case. Thus less time is lost waiting for the
required operation. This is an example of efficiency.

In dealing with the system’s resources, the operating system performs a service
of another type. It collects statistics concerning the use of the resources by partic-
ular users. This permits the manager of an installation to charge the users of the sys-
tem on the basis of their use of it. This serves the community of users by discourag-
ing users from using more than they need, thus making more available to all the
users as a group. These data on use also permit tuning of the system, modification
of parameters of the system, and even its configuration, to tailor the system to the
requirements of its users. The provision of these data is visibility. The consequent
tuning illustrates flexibility.

In providing a high level of interface, the operating system shields its users
from more than just the computer’s complexity. They are also protected from
its variability. Since they may ask for a tape drive rather than that tape drive,
they need not be aware that that tape drive is unavailable due to preventive
maintenance. In fact, the tape drive they are given to use may be superior (for
example, with respect to the density of the data on the recording medium) to
the one they were expecting. It may even be a disk drive! The point is that by
creating a new interface, the operating system can continue to function without
apparent change, even if the interface to which it is written changes substan-
tially. Just as a higher-level language may be machine-independent, so an operat-
ing system may be independent of many of the characteristics of the computing
system beneath it. This is opacity. (It is in the sense that users ‘“‘see” the tape
drive “through” the system that some mistake opacity for “transparency.”)

Operating systems exploit inventions that make it possible to restrict access
to certain facilities and storage locations. An operating system may require that
a user know a certain password or be authorized in some prescribed manner be-
fore he is granted certain privileges. These privileges might include the right to
execute I/O instructions directly rather than through the system’s I/O routines,
the right to modify or destroy certain data files, or the right to read from cer-
tain main or secondary storage locations. Thus, the system can protect data and
programs from unauthorized use or destruction. This applies not only to mali-
cious misuse, where users try to circumvent the system’s regulations for their

