@ WILEY WILEY PROFESSIONAL COMPUTING

Second Edition

OGRAMMING
INCIPLES IN

rt Ammeraal
ool Utrecht, The Nethggandsgv,

N WILEY & SONS

r * New York ‘- Brisbane - Toronto - Singapore

Copyright © 1986, 1992 by John Wiley & Sons Ltd.
Baffins Lane, Chichester
West Sussex PO19 1UD, England

All rights reserved.

No part of this book may be reproduced by any means,
or transmitted, or translated into a machine language
without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, G.P.O. Box 859, Brisbane,
Queensland 4001, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road,
Rexdale, Ontario MO9W 1LI1, Canada

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin #05-04,
Block B, Union Industrial Building, Singapore 2057

British Library Cataloguing in Publication Data

A catalogue record for this book is available
from the British Library

ISBN 0 471 93128 4

Printed and bound in Great Britain by Courier International Ltd, East Kilbride

AVAILABLE

The programs described in this book are available on 3" disk* for your
IBM PC (and most compatibles). They can be compiled by the Turbo C+ +
and Borland C+ + compilers. Your computer will also need a VGA graphics
adaptor.

Order the Program Disk today, priced £15.00 (includes VAT)/$23.00 from your
computer store, bookseller, or by using the order form below. (Prices correct
at time of going to press.)

*514"" disks are available on request

Ammeraal: Programming Principles in Computer Graphics, Second Edition
— Program Disk

Please send meccccooeeieciiniiinennnn. copies of the Ammeraal: Programming Principles
in Computer Graphics, Second Edition — Program Disk at £15.00 (includes VAT)/$23.00 each.
0 471 93129 2

POSTAGE AND HANDLING FREE FOR CASH WITH ORDER OR PAYMENT BY CREDIT CARD
B RETance enclosedco.oiievniosiinanionsisathesasibocs it SR Allow approx. 14 days for delivery
[Please charge this order to my credit card (All orders subject to credit approval)

Delete as necessary:—AMERICAN EXPRESS, DINERS CLUB, BARCLAYCARD/VISA,
ACCESS/MASTERCARD

e [T T T T TTTTT T EET R ephydate. e
[Please send me an invoice for prepayment. A small postage and handling charge will be made.

Software purchased for professional purposes is generally recognized as tax deductible.
NAME/ADDRESS

If you have any queries please contact:

Helen Ramsey

John Wiley & Sons Limited
Baffins Lane

Chichester

West Sussex

POI19 1UD

England

Affix
stamp
here

Customer Service Department
John Wiley & Sons Limited
Shripney Road

Bognor Regis

West Sussex

PO22 9SA

England

reface

book is about mathematical and programming aspects of computer graphics. It
marily intended for those who want to write graphics programs themselves and,
ontrast to most other books on computer graphics, it is based on the C++ language.
apathetic aspect of C++ is that it has so many good programming facilities in
on with C; in other words, when programming in C++ we can deviate from C
much or as little as we like. The more spectacular new aspects of C++ are not
s used in this book. Being unfamiliar with C++ will therefore not be a serious
andicap, provided you can read C programs.
sides switching from C to C++, there are some other new points in this edition.
he important Bresenham algorithms for line and circle drawing are now included, and
is the subject of polygon filling. This is related to hidden-face elimination, which
also new in this edition. Emphasis is now more on reusable program modules. Most
ams consist of an application module and several implementation modules, with
esponding header files as interfaces.
The file format for 3D objects used in this book is the same as that in Interactive
' Computer Graphics, which is mainly about one program, D3D. The present book,
the other hand, is primarily intended as a textbook and therefore more general in
respects: it deals also with 2D graphics and, except for Appendix C, it is machine
ependent. Its first edition did very well in the first two or three years after its
blication, but it badly needed a revision because all programs in it were in the old
style. Instead of only switching to the new style, recommended by AN SI and
datory in C++, it seemed a good idea to me to add also some new subjects, such
as those mentioned. This second edition will reduce the amount of paperwork involved
in handing out supplementary lecture notes to my students. I hope that this will also
- apply to some colleagues. Any comments would be very welcome.

Leendert Ammeraal

vii

“ontents

”
e SRR o s s R e o e .5 b mn

er 1 Introductlon P BB o A e S]

E crcises ... 8

_ ipter 2 Transformations, Windows and Viewports 11
B Translations and Rotations' o i i i e 11
2 Points and Vectors in C++ Programscootteeneeennn 14
B N otation: <, 00 iBS Sy e i O TR R N e 18

pter 3 Geometric Tools AT 5.5t oo 908 oo 47
.-_» .1 Vectors and Coordinate SyStemsccvttver et 47
¥ IS 2I0Ner PrOdUCEo oot e ettt 49

3.7 Vectors and RECUTSION . . oo o v ot vn v eneeeeeenenannensnnns 74
e A A R TR O 76

vi Contents

Chapter 4 Using Pixels e T e T e oo 81
4.1 Pixels and ColgiE . 81
4.2 Line Drawing by S R e ... 85
4.3 Circles & . O et e, 91
4.4 Polygon Bl e e e e e e, 95
EXerciSes s e e st e e e, 103

Chapter 5 Perspective00000.0.. il Vs nsesss 108
D0 105
5.2 The Viewing Transformation 107
5.3 The Perspective Transformation 113
54 AProgram to Draw Cubes0ouurunnn. .. 122
5.5 Drawing Wire-frame Models 125
5.6 Viewing Direction, Infinity, Vertical Lines 128
B e o e e ot oo et ieernnsnnnnnnnnniii 131

Chapter 6 Hidden-line Elimination SRR F AT LI 133
6.1 Backfaces and Convex Polyhedrao...... 133
6.2 A More General Approach0ouvuununin. 135
O3 destsfor Visibilityc0c00vuiiniii. 139
6.4 Holes; Loose Line Segments and Planes 148
6.5 Reducing the Number of Visibility Tests 152
i ittt ta et ir e ne smambie oied o sain 153

Chapter 7 Hidden-surface Elimination0000uuu... . 155
7.1 Colors and Palettes Applied to 3D Faces 155
7.2 Real and Integer Coordinatesoouuun... 161
7.3 A Simple Painter’s Algorithm0c0'uunnon. .. 163
7.4 Other Methods, Including Warnock’s Algorithm 165
R 168

Chapter 8 Some Applications R .o. 169
8.1 Introduction 169
82 Hollow Cylindercouuunnnnnnnnnnn. 173
83BeamsinaSpiral, 176
8.4 Spiral Staircasei 179
B .«it ittt e 182
8.6 Semi-sphere, 184
8.7 Functions of Two Variables0ouuuomnnn... 187
B it cieerencriatresenen s et nh k 190

Appendix A: Program Text HIDELINE sro b0 0sTe orkiaiae 3 193

Appendix B: Program Text HIDEFACE sisomsaists & 207

Appendix C: Program Text GRSYSovvuemennnnnnnnnnn. 223

Bibliography00iitiiiii i i e e ceesceses 229

e e vipie e e 231

Introduction

1.1 Graphics Programming and the C++ Language

It is hardly possible to find a subject that is more controversial than programming
languages. Let us therefore consider some facts, rather than opinions. A discussion
about programming languages used in computer graphics would be incomplete without
mentioning Fortran, which was the dominant language for professionals for a very
long time. In the eighties, many programmers switched from Fortran to the C
language, which has many advantages, such as, for example, the possibility of
recursion. About 1990, the C++ language became popular because of its facilities for
object-oriented programming (OOP). Unlike some other OOP languages, C++ can also
be used as a conventional language, that is, as ‘a better C’. This is also the case with
ANSI C, but this is still very tolerant with regard to old-style programming practice,
such as calling functions that are not declared previously. By contrast, C++ requires
the new style; it accepts calls to a function only if complete information about the
parameters of that function is available. Now that very good C++ compilers are
available, especially under Unix and on the IBM PC, it is to be expected that C++ will
soon be widely regarded as the successor to C. Some convenient new aspects are

(1) operator definitions for user-defined types,
(2) constructors used to create objects of user-defined type,
(3) type-safe linkage.

Applying (1) and (2) can be regarded as extending the language to a new, more
problem-oriented one. New types and operators are declared in header files, and they
are implemented in separate modules. For example, using a properly defined vector
type vec, we can write

2 1 Introduction

vec v(2, 3), s8;
8 =V + vec(1l, 0); // s is equal to vec(3, 4)

to compute the sum of vector v and the unit vector (1, 0). This example illustrates the
points (1) and (2): it shows that our own plus-operator can be applied to vectors and
that a vector object can be easily created when its x and y components are given.

This example also shows a potential weakness of this approach. Computing the sum
s of the two vectors v and (1, 0) will be more efficient if we write

8.X = V.X + 1;
8.Y = V.Y;

Not only does this prevent computing the sum v.y + 0, but it also avoids calling the
constructor vec and copying 1 and O into a newly created vec object. We will
therefore often use the more traditional (ANSI) C programming style.

Nevertheless, we will often benefit from the fact that we are using C++. For
example, the good practice of declaring functions before they are used is (only)
recommended in ANSI C, while it is mandatory in C++. As in C programs, such
declarations of functions defined elsewhere are normally placed in header files, so that
consistency is guaranteed. But even if we are inconsistent in this regard, we will
obtain a linker error in C++ but not in C. For example, there is such an error if we
declare and use function f as void f(void) in one module and define it as void f(int)
in another. An error message from the linker is possible in C++ because of type-safe
linkage, mentioned in point (3), which means that the linker is supplied with full
information about parameter types.

1.2 Our First Graphics Programs

We will not discuss the C++ language here in a systematic way, so a book! on this
language may be required if you are not yet familiar with it. On the other hand, many
programs will be rather simple, so you may understand their meanings even if they
contain some language constructs that are new to you. Here is our first C++ program.
Except for the way comments are written, it is at the same time a C program:

// SQUARES: This program draws 50 squares inside
// each other. To be linked with module GRSYS.
#include "grsys.h"

int main()
{ float xA, yA, xB, yB, xC, yC, xD, yD,
xAl, YAlt xB1, YB]-' xC1, YCI, xD1, YD]-I P, 9, T;
int 1;

1 SeeC++ Jfor Programmers, by the same author and from the same publisher as this book.

B AR ————

1.2 Our First Graphics Programs 3

q=0.05; p=1-gq; // q = lambda (see discussion below)

initgr();

r = 0.95 * r max;

XA = xD = x_center - r;

xB = xC X_center + r;

YA = yB Y_center - r;

yC = yD = y_center + r;

for (1=0; 1<50; 1++)

{ move(xA, yA);
draw(xB, yB); draw(xC, yC):;
draw(xD, yD); draw(xA, yA);
XAl=p*xA+q*xB; YyAl=p*yA+q*yB;
XBl=p*xB+q*xC; yBl=p*yB+q*yC;
XCl=p*xC+q*xD; yCl=p*yC+q*yD;
xD1=p*xD+q*xA; yD1l=p*yD+q*yA;
XxA=xAl; xB=xBl; xC=xCl; xD=xD1l;
YA=yAl; yB=yBl; yC=yCl; yD=yD1l;

}
endgr() ;
return 0;

}

The output of this program is shown in Fig. 1.1. There are calls to four graphics
functions, declared in the header file GRSYS.H:

Fig. 1.1. Output of program SQUARES

4 1 Introduction

initgr() initializes graphic output;

move(x, y) moves a (real of fictitious) pen to point (x, y)';

draw(x, y) draws a line segment from the current pen position to point (x, y);

endgr() performs any final actions (such as switching back from graphics
mode to text mode) after a key has been pressed.

The following external variables are also declared in GRSYS.H; since function initgr
assigns appropriate values to them, they should be used only after a call to that
function. The first three of these seven variables are used in program SQUARES:

x_center,y center coordinates of screen center;

r_max radius of largest possible circle on the screen;
X_min, y_min coordinates of lower-left corner of the screen;
X_max, y_max coordinates of upper-right corner of the screen.

A call to initgr is required before calls to the functions move and draw. Similarly,
there must be a call to endgr after the final call to move or draw. The two calls
move(x, y) and draw(x, y) have in common that they move a (real or fictitious) pen
to point (x, y); with move(x, y) this pen is up and with draw(x, y) it is down.

The four functions just mentioned do not belong to the C++ language. They are
external routines; after compilation of our program they are added to it by the linker.
The definitions of the functions and variables mentioned above occur in a separate
module, GRSYS.CPP, which is system dependent and therefore not included in this
chapter. However, a version of this module for the IBM PC (and compatible machines)
is included in Appendix C. This is intended to be the only system-dependent element
in this book: all other programs and program modules should be accepted by any C++
compiler. For other computer systems, a modified version of GRSYS.CPP will be
required. To make this as easy as possible, this module will be kept limited in size.
Some other useful graphics functions will therefore be located in other modules, which
are device-independent.

‘Program’ SQUARES is in fact not a complete program but rather a program
module. After compiling this file (with the full name SQUARES.CPP), its resulting
object module SQUARES.OBJ is to be linked together with GRSYS.OBJ, which was
produced earlier by compiling GRSYS.CPP.

The declarations of the above functions and variables can be found in the header
file GRSYS.H. Because of the quotation marks in the line

#include "grsys.h"

which occurs in program SQUARES, this header file must be present in the current
directory when our program is compiled:

. Program fragments are normally printed in boldface in this book. However, program variables

denoting numbers and standing on their own are printed in italics because they frequently also occur
in mathematical expressions, in which boldface is used for vectors.

1.2 Our First Graphics Programs 5

// GRSYS.H: Graphics primitives

extern float x_min, x max, y min, y max, x center, y_center,
r_max;

voild initgr(char *hpgfile=0);

vold endgr(void);

vold move(float x, float y);

vold draw(float x, float y);

As you can see, function initgr has a default parameter hpgfile. We can use this to
obtain our graphics output in a file, which can subsequently be imported by many text
processors and desktop publishing packages. A suitable format for this file (used in
the version of GRSYS.CPP listed in Appendix C) is HP-GL, originally designed for
pen plotters but now also widely in use for other purposes. HP-GL files are vector
oriented, which means that each line segment is identified by its two end points.
Consequently, the quality of the final result on paper depends only on the printer or
plotter that we are using, and not on the video display. We could instead have used
a screen-capture utility (such as GRAB from WordPerfect), but then the file would be
bit oriented, with a resolution based on the video display and resulting in a lower
quality of the hard copy that we will eventually produce. If we want a file, say,
SQUARES.HPG, of our set or squares, we can write

initgr("squares.hpg”);

instead of calling initgr without arguments, as is done in program SQUARES. The
graphics output shown in Fig. 1.1 consists of fifty squares.

A square ABCD is drawn and then a new point A’ is chosen on side AB such that
AA’ = 0.05 x AB. As Fig. 1.2 shows, we can associate the points A, B and A’ with
the vectors a = OA, b = OB and a" = OA’.

b-a

Fig. 1.2. Points and vectors

6 . 1 Introduction

Then for any point A’ on the line AB the following vector equation applies:
a’=a+A(b-2a)

which we can also write as
a’=(1-ANa+Ab

In terms of coordinates, this is written as

xA' = (1 e l)xA L }\'xB
yar= (1 =Ny, + Ayp

Point A’ coincides with A if A = 0, and with B if A = 1. The value A = 0.05 was used
in program SQUARES to make point A’ lie near A on line segment AB. Points B, C’
and D’ are chosen similarly on the sides BC, CD and DA, respectively. The procedure
is then repeated with A’, B’, C’ and D’ as the new points A, B, C and D, respectively.

A generalized program for squares

Program SQUARES does not read any input data and can produce only one picture.
It is normally desirable for graphics programs to be more general, so that we can use

/I

AL
N

NSZ

_—

% "

—

7

=<

2

2IQ2

NS =
PR

7 \\
W=

Fig. 1.3. Sample output of program MANYSQ

1.2 Our First Graphics Programs 7

input data to specify details about what we want. In our example, we may as well
draw more than one set of squares, say, n x n of them, arranged in a larger square,
like the squares of a chessboard. We also want to use a variable number m of squares
in each set, rather than exactly 50. Finally, we want to supply A as input data, instead
of always using A = 0.05. Program MANYSQ is such a generalized version. Figure
1.3 shows an example of its output. It was obtained by using the input data n = 4, m
= 20, and A = 0.9. Actually, the n x n squares are divided into two types, like the
black and white squares of a chessboard, by alternate use of the values A and 1 - A
for p (each time q being equal to 1 — p).

If you are not yet familiar with C++, you may also find program MANYSQ
instructive in that it shows how to display text on the screen and to read input data
from the keyboard:

/* MANYSQ: This program draws n x n sets of squares, arranged
as on a chessboard. To be linked with module GRSYS.

*/

#include <iostream.h>

#include *grsys.h"

void set_of_squares(float xA, float yA, int m,
float p, float a)

{ float xB=xA+a, YB=yA, XC=xB, yC=yA+a, XxD=xA, yD=YyC,
xAl, yAl, xBl, yBl, xCl1l, yCl1l, xDl1l, yDl, g=1-p;
int 1;
for (1=0; i<m; 1++)

{ move(xA, yA);

draw(xB, yB); draw(xC, yC);
draw(xD, yD); draw(xA, yA);
XAl=p*xA+g*xB; YAl=p*YyA+q*yB;
xBl=p*xB+q*xC; yBl=p*yB+q*yC;
XCl=p*xC+q*xD; yCl=p*yC+q*yD;
xD1=p*xD+q*xA; yDl=p*yD+q*YA;
xA=xAl; xB=xBl; xC=xCl; xD=xD1;
yA=yAl; yB=yBl; yC=yCl; yD=yD1;

}

int main()
{ int m, n, 1, 3J;
float a, lambda, halfn;
cout << "There will be n x n sets of squares.\n";
cout << "Enter n (e.g. 8 for a chessboard): *;
cin >> n; halfn = 0.5 * n;
cout << "How many squares in each set? (e.g. 10): *;
cin >> m;
cout << "Enter interpolation factor between 0 and 1" ;

