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Preface

Interest in GaAs for integrated circuits has increased rapidly over the
past several years. Many organizations are conducting research and de-
velopment in this technology, and production facilities are being estab-
lished. The primary reason for this interest is performance. Gallium arse-
nide has a clear advantage over silicon for high-frequency microwave and
high-speed digital applications. It also is superior to silicon in applications
involving high temperatures or high-radiation environments. Initial moti-
vation for the development of GaAs ICs, particularly in the United States,
has been for military applications. Recently, there has been increasing
interest in GaAs ICs for commercial applications.

This book addresses the important aspects of GaAs IC technology de-
velopment ranging from materials preparation and IC fabrication to wafer
evaluation and chip packaging. Chapter | traces the historical develop-
ment of GaAs technology for high-speed and high-frequency applications.
This chapter summarizes the important properties of GaAs that serve to
make this material and its related compounds technologically important.
Chapter 2 covers GaAs substrate growth, ion implantation and annealing,
and materials characterization, technologies that are essential for IC de-
velopment. Chapters 3-6 describe the various IC technologies that are
currently under development. These include microwave and digital MES-
FET ICs, the most mature technologies, and bipolar and field-effect
heterostructure transistor 1Cs. The high-speed capability of GaAs ICs in-
troduces new problems, on-wafer testing and packaging. These topics are
discussed in Chapters 7 and 8. Applications for GaAs ICs are covered in
Chapters 9 and 10. The first of these chapters is concerned with high-
speed computer applications; the second addresses military applications.
The book concludes with a chapter on radiation effects in GaAs ICs. This
is a very important area that has been the basis for much of the govern-
ment support for GaAs technology development.

The number of engineers and scientists working directly on GaAs IC
research, development, or production is increasing rapidly. In addition,

xi



Xii Preface

others are becoming interested in this technology because of potential
applications. This volume of the treatise “*VLSI Electronics: Microstruc-
ture Science’’ is directed at these engineers and scientists as well as those
who are already working in the field. It will provide a highly useful source
of information for these individuals. It will also serve to inform those
working in silicon VLSI technology as to the present state of GaAs tech-
nology and its future potential.

Gallium arsenide is often referred to as the “*material of the future.™
The future now appears very bright. Gallium arsenide ICs will have an
expanding range of applications that may eventually include microwave,
digital, and optical functions on a single chip. This is an appropriate time
for a book that describes the current state of the art.

WiLLiAM R. WISSEMAN
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l. INTRODUCTION

Dallas, Texas

Gallium arsenide (GaAs) has been viewed as a semiconductor with the
potential to replace silicon in some applications since the late 1950s.
Although substantial progress has been made in GaAs technology
over the past 30 years, it is only in the last several years that some of

1
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2 William R. Wisseman and W. R. Frensley

the carly expectations for GaAs devices and integrated circuits have been
realized.

Gallium arsenide has several properties that make it a very attractive
semiconducting material. First, it has a very high low-field electron mobil-
ity (six times that of silicon) giving it the potential for high-frequency
performance. Its large bandgap makes high-temperature operation feasi-
ble. The large bandgap coupled with a short minority carrier lifetime gives
GaAs an advantage over silicon in high-radiation environments. Gallium
arsenide substrates can be grown with very high resistivities so that they
can be used as a dielectric medium for high-frequency microwave and
millimeter-wave integrated circuits. The high-resistivity substrate also
simplifies device isolation for digital integrated circuits (ICs).

Sophisticated materials growth techniques have been developed that
make it possible to grow I11-V heterostructures on GaAs substrates with
properties tailored for high-frequency performance. The optical proper-
ties of GaAs heterostructures make combinations of GaAs digital, micro-
wave, and optical circuits feasible.

In spite of its great potential, GaAs has properties that have deterred
exploitation of its advantages. Some of the disadvantages are associated
with the fact that it is a binary semiconductor. Care must be taken to
avoid excessive temperatures during processing in order to avoid dissoci-
ation of the surface. The use of diffusion to achieve the desired doping
properties in silicon has been largely unsuccessful in GaAs. Unlike sili-
con, GaAs does not have a stable, easily grown native oxide that has been
so important to the development of silicon MOSFET technology. The
surface of GaAs is more susceptible to attack by chemicals used in semi-
conductor processing so that different approaches have had to be devel-
oped. Finally, GaAs is very fragile and can be easily broken during pro-
cessing.

During the past several years, the potential advantages of GaAs have
begun to outweigh the disadvantages. The technology is now advancing at
an accelerated pace with many companies throughout the world involved
in research and development and, in many cases, production.

This chapter traces the historical development of GaAs technology for
high-speed or high-frequency applications and summarizes the important
properties of GaAs and its related compounds. The properties of GaAs
discrete devices, particularly with regard to their use in ICs, are then
discussed, with emphasis on the GaAs field-effect transistor (FET), the
focal point of the large effort now under way in GaAs technology. Ad-
vances in materials growth technology have made it possible to tailor
material properties and develop new device concepts, and the potential
impact of these developments on integrated circuits is discussed.



1. GaAs Technology Perspective 3

Il. HISTORY OF GaAs TECHNOLOGY DEVELOPMENT

The development of GaAs technology began during the early 1950s. In
this section the aspects of the technology development that have had an
important influence on high-speed or high-frequency applications of GaAs
and its related III-V compounds will be discussed. There has been a
parallel development of GaAs and other 11I-V compounds for optical
applications. While it is unquestionably true that these two developmental
efforts have benefited each other, particularly in the areas of material and
process technology, no attempt will be made to cover the development of
GaAs for optical applications. Casey and Panish have given an excellent
history of the development of 11I-V materials for optical applications in
their book ‘‘Heterostructure Lasers’ [1]. It is clear from their discussion
that one of the primary benefits of the laser effort to high-speed and high-
frequency GaAs devices is the establishment of techniques for preparing
III-V heterostructures.

Figure 1 shows some of the important milestones in the development of
GaAs technology that relate to high-speed or high-frequency applications.
The milestones are categorized in the areas of materials, devices, and

r 1 T
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Fig. 1. GaAs technology milestones. Most of the important milestones that occurred
during the development of GaAs technology for high-speed and high-frequency applications
are shown. References are given in the text.



4 William R. Wisseman and W. R. Frensley

integrated circuits. These technology advances will be traced in the fol-
lowing sections. Two papers that are published in the September 1984
historical issue of IEEE Transactions on Microwave Theory and Tech-
niques have aided in the preparation of this history. The first, by
McQuiddy et al. traces the development of monolithic microwave inte-
grated circuits (MMICs) [2]. The second, by Greiling, traces the develop-
ment of GaAs FET digital IC technology [3].

A. The Early Period

Two important events occurred in 1952: Shockley invented the field-
effect transistor [4], and Welker reported on the semiconducting proper-
ties of III-V compounds [S]. Over thirty years later there is a substantial
effort under way to develop GaAs integrated circuits, with the GaAs FET
serving as the focal point of much of this development. The path that was
taken to reach the present high level of activity was indirect, with many
problems encountered and solved along the way.

The bipolar transistor was the dominant device during this period. The
initial interest in GaAs centered on the development of a GaAs bipolar
transistor that would be superior to silicon transistors for high-frequency
applications and that would operate at higher temperatures. Gallium arse-
nide offered an advantage because of a much higher electron mobility and
a larger bandgap. The first GaAs bipolar transistor with rf performance
superior to that of silicon and approaching that of germanium was re-
ported in 1961 by Jones and Wurst [6]. This device, with a diffused p-type
base and an alloyed n-type emitter, had an fr value of 730 MHz. There
were large efforts supported by substantial government funding aimed at
developing GaAs bipolar transistors with improved high-frequency per-
formance. These efforts had limited success, largely due to technological
factors [7]. In 1966, von Munch reported on a GaAs bipolar transistor
fabricated using a planar process that involved epitaxy and diffusion [8].
The typical values for fr for these transistors were in the 100-300-MHz
range, far less than the expected 1 GHz. It was not until 1980 that Yuan et
al. reported a GaAs bipolar transistor fabricated using ion implantation
with an f7 value of 1 GHz [9,10].

There was an intensive effort in GaAs materials technology during this
period that has had a long-term impact on device and IC development. In
1956 Gremmelmeier prepared GaAs single crystals using the Czochralski
technique [11]. In 1965, Mullin et al. applied the liquid-encapsulated
Czochralski (LEC) technique to the growth of GaAs crystals [12]. This
approach allows the growth of very high-purity crystals. The Bridgman



