An Introduction To
FortranlV Programmin

A General Approac

Second Edition
Paul W Murrill & Cecil L. Smith

An Introduction to
FORTRAN IV Programming

A General Approach

Second Edition

PAUL W. MURRILL and CECIL L. SMITH

Lovisiana State University

(includes appropriate implementation in-
formation and error codes for the WATFIV
compiler)

INTEXT EDUCATIONAL PUBLISHERS
New York

To WHIT

Fourth Printing

Copyright © 1975 by Thomas Y. Crowell Company, Inc.
Copyrightl© 1970 by Intext, Inc.

All rights reserved

Except for use in a review, the reproduction or utilization
of this work in any form or by any electronic, mechanical,
or other means, now known or hereafter invented, includ-
ing photocopying and recording, and in any information
storage and retrieval system is forbidden without the
written permission of the publisher. Published simultane-
ously in Canada by Fitzhenry & Whiteside, Ltd., Toronto.

Library of Congress Cataloging in Publication Data

Murrill, Paul W.

An introduction to FORTRAN IV programming.

“Includes appropriate implementation information
and error codes for the WATFIV compiler.”

Includes index.

1. FORTRAN (Computer program language) 2.
Electronic digital computers—Programming. I. Smith,
Cecil L., joint author. II. Title.

QA76.73.F25M88 1975 001.67424 75-1284
ISBN 0-7002-2469-6

Intext Educational Publishers
666 Fifth Avenue
New York, New York 10019

Manufactured in the United States of America

An Introduction to FORTRAN IV Programming

Preface
to the Second Edition

The broad and significant acceptance of the First Edition has been, of course,
a matter of deep satisfaction to all of those who had a role in its creation. Since
its publication, however, there have been many changes both within the computing
world and in the manner in which FORTRAN instruction is done. These, plus the
experience with the First Edition, have convinced us that there is a need to publish
this Second Edition, which we think has the following advantages over the
previous edition:

1 Material describing modern developments in computer technology and usage
are reflected in the text material. Since time-sharing systems are becoming
more popular, discussion of their features is included, especially in Chapters
1 and 3. The instructor will need to supplement the text with material
appropriate to any specific time-sharing terminal if one is used, however,
since these systems do not have the degree of standardization that is present
in conventional card-oriented systems.

2 This text strongly reflects the conviction that students should start to write
short, simple programs at a very early stage of their learning experience.

ix

X Preface to the Second Edition

The First Edition was oriented this way and this edition is even more
slanted in this direction. Format-free input-output similar to that found in
WATFIV is introduced so that the first programs can be written without the
trauma of format. Concurrent presentation of format input-output is in-
cluded, of course, for those systems that require its use. We like to allow
students to write three or four programs without format and then to require
it thereafter.

3 Material has been included on the WATFIV in-core compiler and its error
messages are listed in an appendix. The text is, of course, not dependent on
WATFIV; it is present only for student convenience.

4 The number of exercises—which was generous in the First Edition—has been
increased and significantly revised.

5 Functions and subordinates were not treated in an especially effective man-
ner in the First Edition; but we think in the current version the exercises
themselves have been improved.

6 The treatment of input-output operations has an in-depth coverage in a later
chapter (plus, of course, elementary presentations in early chapters), and
discussion of handling character data is more useful.

7 Compilers change—one example is the manner in which they handle mixed-
mode arithmetic. The First Edition implied that mixed-modes were taboo.
Students often quickly learned, however, that the particular compiler they
were using could accept mixed-modes, and they would then use such opera-
tions without understanding the potential hazards. This Second Edition
handles this in a much more direct fashion.

8 The entire text offers a better treatment of such things as compilation,
operating systems, computer characteristics, and FORTRAN itself.

We want to express our sincere thanks and appreciation to all those who
helped us in this revision—especially to those who have sent us suggestions from
colleges and universities throughout the United States. Such assistance, when
coupled with the thoughtful advice and aid given to us by our own students and
colleagues, make us hope this edition is a significant improvement over the First
Edition.

Contents

Preface

Chapter 1

INTRODUCTION TO DIGITAL COMPUTERS

1-1 Digital-Computer Characteristics
1-2 How the Digital Computer Works
1-3 Control and Operation of the Computer
1-4 Programming Languages
1-5 Compilation
1-6 Batch Processing Systems
1-7 Conversational Time Sharing
1-8 Peripheral Devices
Chapter 2
THE FORTRAN STATEMENT
2-1 FORTRAN Constants

2-2

FORTRAN Variables

1

© NN N

15
18

22

23
25

vi Contents

2-3 Operations
2-4 Expressions
2-5 Functions
2-6 FORTRAN Statements
2-7 Statement Format
2-8 Integer versus Real
2-9 In Summary
Exercises
Chapter 3
SIMPLE FORTRAN PROGRAMS
3-1 Format-Free Input Statements
3-2 Formatted Input Statements
3-3 Format-Free Output Statements
3-4 Formatted Output Statements
3-5 PAUSE, STOP, and END Statements
3-6 An Example Program
3-7 Handling Program Decks
3-8 Debugging the Source Program
3-9 In Summary
Exercises
Chapter 4
TRANSFER OF CONTROL
4-1 Flowcharts
4-2 Unconditional Go T¢
4-3 Computed G@¢ T¢
4-4 Arithmetic IF
4-5 Logical IF
4-6 Headings
4-7 Simple Counters
4-8 In Summary
Exercises
Chapter 5
5-1 Description of the pp Statement
5-2 Complete Example
5-3 Further Clarification
5-4 Usefulness of Subscripted Variables
5-5 Definitions and Subscript Arguments
5-6 The DIMENSIPN Statement
5-7 Input and Output
5-8 In Summary

INTRODUCTION TO D@ LOOPS AND SUBSCRIPTED VARIABLES

Exercises

27
27
30
31
33
37
42
42

46

46
48
50
51
54
55
62
65
67
68

75

76
77
80
82
86
90
99
102
102

114

114
116
122
125
127
129
134
141
141

Contents vii

Chapter 6

MULTIDIMENSIONAL ARRAYS AND NESTED DO LOOPS 158
6-1 Multidimensional Arrays 158
6-2 Nested Dp’s 156
6-3 Implied Do 165
6-4 In Summary 167

Exercises 168
Chapter 7

INPUT-OUTPUT OPERATIONS 175
7-1 FORMAT Field Specifications 176
7-2 Carriage Control 181
7-3 FORMAT Options 182
7-4 Other Input-Output Statements 18}
7-5 The DATA Statement 186
7-6 Character Data 187
7-7 Execution-Time FORMATS 196
7-8 Direct Access Input-Output 196
7-9 The NAMELIST Statement 199
7-10 In Summary 201

Exercises 201
Chapter 8

FUNCTIONS AND SUBROUTINES 218
8-1 Concept of a Function, a Subprogram, and a Subroutine 218
8-2 Introduction to FORTRAN Function and Subprogram Features 220
8-3 Role of Arguments 224
8-4 The Statement Function 227
8-5 The Function Subprogram 228
8-6 Subroutines 234
8-7 The coMMPN Statement 237
8-8 The EQUIVALENCE Statement 242
8-9 Adjustable Dimensions 244
8-10 The BLOCK DATA Statement 245
8-11 The EXTERNAL Statement 247
8-12 Multiple ENTRY and RETURN 249

Exercises 250
Chapter 9

EFFICIENT PROGRAMMING IN FORTRAN 254
9-1 Arithmetic Expressions and Replacement Statements 255
9-2 Constants 256
9-3 Powers 257
9-4 Polynomials 257

9.5 Statement Numbers 258

viii Contents

9-6 1F Statements ‘258
9-7 Subscripted Variables 259
9-8 Input-Output Statements 262
9-9 Subprograms 262
9-10 In Summary 263
Appendix A Types of Variables 264
Appendix B Various System Configurations 274
Appendix C FORTRAN IV Library Functions 276
Appendix D American Standard Flowchart Symbols 280
Appendix E WATFOR and WATFIV 281
Appendix F Use of the Keypunch Machine 294
Appendix G Solutions to Selected Exercises 307

Index 387

INTRODUCTION TO DIGITAL
COMPUTERS

The steam engine and other devices for doing work gave man an extension of his
physical capabilities and brought about the Industrial Revolution. In a very similar
manner, electronic computers are providing man with tools with which he can process
quantities of information and solve problems that otherwise would be impossible to
handle. These computers are producing an informational revolution that will have
more impact on each of our everyday lives than any other aspect of modern tech-
nology—even atomic energy. The purpose of this book is to assist you, as a student, in
learning to utilize these computers in your day-to-day work.

1-1. DIGITAL-COMPUTER CHARACTERISTICS

Modern electronic computers are of two basic types—digital and analog. The entire
content of this book is directed toward understanding and programming digital com-
puters, and no attention is devoted to the study of analog computers or combinations
of analog and digital computers (hybrid computers).

Digital computers can be appreciated best by first considering some of their
characteristics. Understanding these characteristics will help us to appreciate their

usefulness.
1

2 INTRODUCTION TO DiciTAL COMPUTERS

One of the most prominent characteristics of digital computers is their truly
incredible speed. Although they only work one step at a time, i.e., sequentially, they
perform their tasks at rates that are beyond the comprehension of the novice. As an
example, some large machines are capable of adding together several hundred thousand
16-digit numbers in less than a second. These tremendous speeds make it possible for
the machine to do work in a few minutes that might otherwise require years of time.

Not only is the digital computer capable of working very rapidly, but it also has a
perfect memory. It has virtually instantaneous “recall” of both data and instructions
that are stored inside, and it never forgets or loses the accuracy of the information
which it has within its memory.

A digital computer is an extremely accurate device. In most machines numbers are
handled with seven, eight, or nine significant digits, and twice this accuracy can usually
be obtained by the programmer. This means that a machine would have no difficulty
multiplying 2782.4362 times 40.127896 and obtaining the product correct to 8 or 16
significant figures.

Coupled with the significant characteristics already listed, the digital computer
does its work automatically. It can accept instructions from its operator, and then
execute these instructions without need for human intervention. This implies that the
machine can be given a problem; then while you attend a movie, it will do your work
with incredible accuracy and at fantastic speeds. Learning to use suck a tool should
require no further motivation.

Additional characteristics of the digital computer will be noted later, but for the
present it will be more advantageous to see how the machine works.

1-2. HOW THE DIGITAL COMPUTER WORKS

The digital computer is basically a device to accept data and a set of instructions as to
how to manipulate these data in order to produce a set of answers. The set of instruc-
tions is called the program, and these are prepared by a programmer (you). (See Figure
1-1.) This book is primarily concerned with the preparation of programs. Sometimes

Programmer’s list
of instructions for
the processing of
the data

(the program)

Input data in the
form of numbers

Digital
Computer

Output answers in the
form of numbers

Figure 1-1. Functional role of the digital computer.

Input data
and program
—

Central
Memory

—_ 3+ -
” }\L 4 k

1-2. How the Digital Computer Works 3

Output
answers

(
|

| Arithmetic
| Unit
|

|

(

e e e — ——— — —— — ——

Figure 1-2. Relation of memory unit, arithmetic unit, and control unit
(solid arrows represent information flow, dashed arrows represent

control signals).
Device "0"State "I"State
Current
pulse on
a wire
No pulse Pulse
Magnetic
field ina
magnetic
core
Clockwise Counterclockwise
Switch
Open Closed

Figure 1-3. Examples of binary devices.

the data may be contained within the program; but more often the data are entered
into the computer after the program.

In general, the computer may be thought of as being composed of three main
sections: the memory, the central processing unit (cpu), and the input/output pro-
cessor. The computer memory is used for storing data, instructions, intermediate
results, and final answers; the central processing unit performs all the necessary manipu-
lations of the data; and the “nput/output processor communicates with the outside
world. (See Figure 1-2.) Transfer of instructions and data among these units takes
very little time—in some machines less than one millionth of a second.

4 InTRODUCTION TO DIGITAL COMPUTERS

All information and signals in transit inside the computer are handled as electrical
signals (usually pulses), and in memory this information is stored in magnetic cores,
switches (flip-flops), and/or as magnetized spaces on drums, discs, and tapes. All of
these devices are designed to exist in only one of two states which we may associate
with the symbols 0 and 1. (See Figure 1-3.) These two states may be considered as
binary digits or bits (a contraction of ‘“‘binary digits”’) and are used to represent in-
formation. Thus the number system employed is basically binary; but it is usually
more convenient for instructions and addresses to be “represented” in the octal or
hexadecimal number systems. Nonnumeric information (alphabetic and special sym-
bols) in a computer is represented in a binary code, and numbers are represented in
one of two ways: In a binary-coded decimal system (each digit coded in a fixed number
of bits) or the decimal numbers are converted into the binary number system (used in
most computers primarily designed for scientific work).

1-3. CONTROL AND OPERATION OF THE COMPUTER

While it is not necessary to understand such topics as binary arithmetic, the electronics
of digital circuits, or other topics fundamental to the design of digital computers in
order to learn-to program in FORTRAN, a superficial understanding of the general
operation of digital computers will easily reveal the origins of certain rules and con-
ventions incorporated into the FORTRAN language. In reality, FORTRAN reflects basic
machine characteristics to a greater extent than most other computer languages.
The general schematic diagram of the computing system in Figure 1-2 is shown in a
little more detail in Figure 1-4. As pointed out in the last section, this system is broadly
divided into three units: central processing unit, memory, and input/output processor.

> Input/ >lPeripheral
Memory Output Ur[:its
< Processor =

: —

|
|
e —_ 1 |
1 1
] 1 i 1
Control
Arithmetic Unit
Unit
: N L Program Counter]
Accumulator j I Instruction Register]

Central Processing Unit

Figure 1-4. Schematic diagram of a simple computer (solid arrows
represent information flow; dashed arrows represent control signals).

1-8. Control and Operation of the Computer 5

The central processing unit is further divided into two subunits: the arithmetic unit
and the control unit. The arithmetic unit is responsible for performing operations such
as additions, comparisons, etc., on the information in memory. The control unit is
responsible for interpreting the instructions sequentially in memory and directing the
arithmetic unit and input/output processor to perform the appropriate operations.

The concept of storing both the instructions (i.e., the program) and the data in
the same memory unit has been of utmost importance in the development of com-
puting machines. The very earliest computers employed hand-wired programs which
made them inconvenient to use. The brilliant mathematician John von Neumann
proposed the stored program concept which, coupled with the remarkable advances
in electronics technology, led directly to computing machines as we know them today.

Since the central memory plays such an important role in the operation of the
computer, a clear view of the organization of this memory is essential. Perhaps the
most vivid way of visualizing the memory of the computer is as a set of mailboxes
called memory cells, memory locations, or storage locations. This analogy is quite
appropriate. In each individual memory cell only one word of information may be
stored at any one time. This word of information may be either data (numerical or
nonnumerical) or computer instructions. Each memory cell has its own individual
address, and it is common to refer to memory cells by their addresses. The word con-
tained in the memory cell appears as a binary number, and by superficial inspection
there is no way to identify whether this word is data or whether it is an instruction. The
computer must be told explicitly which memory cells contain instructions and which
contain data. The control unit of the computer will treat the contents of a memory
cell (a word) as though it were an instruction, and the arithmetic unit of the computer
will treat the contents of a memory cell as though it were data. Each individual mem-
ory cell (or word) contains a fixed, preset number of digits, and that number of digits
will limit the amount of significant information that can be stored in that memory
cell. The instructions that are used by the computer for the processing of information
are constructed so that they deal with memory-cell addresses.

As pointed out in the first section of this book, the digital computer is a sequential
machine. Its operation is a sequence of cycles, each of which consists of two phases: a
fetch phase and an ezecute phase. The fetch phase uses two registers in the control unit:
the program counter and the instruction register. The program counter is often referred
to by the more descriptive name of instruction address register, and it always contains
the address of the next instruction to be executed. At the beginning of the fetch phase,
the contents of the location in memory whose address is currently in the program
counter is loaded into the instruction register. Therefore, the contents of this memory
location will be treated as an instruction. At the completion of the fetch phase the
program counter is incremented by one, so that it now points to the next instruction
to be retrieved from memory.

At the start of the execution phase, the control unit decodes the instruction and
issues specific commands to the various elements of the arithmetic unit. In performing
its operations, the arithmetic unit utilizes a register called the accumulator to contain
the data on which it is to operate. For example, a typical instruction might be to add
the contents of a specific storage location in memory to the current contents of the
accumulator. The instruction itself contains the address of the memory location in-
volved and a group of bits (called the operation code) whose pattern indicates that
addition is to be performed. The control unit relays the address to the memory ad-

6 InTrODUCTION TO DigiTAL COMPUTERS

dressing circuits in order to retrieve the contents of the storage location, and activates
the “add” circuit in the arithmetic unit to achieve the desired result.

To illustrate the sequence of operations, suppose we examine the instructions
required to add the contents of two storage locations (specifically, at addresses 2749
and 1398) and store the result in a third storage location (specifically, at address
1972). Three ihstructions are required:

L]
Instruction E:vplanat’ion

Lw, 2749 “Load Word” copies the contents of the storage location at address
2749 into the accumulator.

Aw, 1398 “Add Word”’ adds the contents of the storage location at address 1398
to the current contents of the accumulator.

sTw, 1972 “STore Word”’ copies the contents of the accumulator into the storage

location at address 1972.

In the above explanations, note the use of the word ‘““copies.” The instruction Lw, 2749
in no way alters the contents of the storage location at address 2749. Similarly, the
instruction stw, 1972 does not alter the contents of the accumulator, but does obliterate
whatever was previously contained in the storage location at address 1972. Although
not specifically mentioned, the instruction aAw, 1398 does not alter the contents of
the storage location at address 1398. These points can be summarized by the following
rule: Read operations on memory are nondestructive; write operations on memory
are destructive. FORTRAN follows this rule exactly.

To further illustrate the sequence of operations, suppose the three instructions
are stored in the memory locations at addresses 1027, 1028, and :1029. If the program
counter initially contains 1027, the sequence of operations is as follows:

1 The contents of the storage location at address 1027 are copied into the instruction
register.

2 The program counter is incremented by 1, giving 1028.
8 The contents of the storage location at address 2749 are copied into the accumulator.

4 The contents of the storage location at address 1028 are copied into the instruction
register.

5 The program counter is incremented by 1, giving 1029.

6 The contents of the storage location at address 1398 are added to the contents of the
accumulator.

7 The contents of the storage location at address 1029 are copied into the instruction
register.

8 The program counter is incremented by 1, giving 1030.

9 The contents of the accumulator are copied into the storage location at address 1972.

Many current computers could perform all these operations in less than ten millionths
of a second.

1-4. Programming Languages 7

Of course, current computers offer far more features than illustrated by the previ-
ous example, but their operations are basically straightforward. The examination of
these other features is inappropriate for an introductory manual on FORTRAN.

1-4. PROGRAMMING LANGUAGES

In the previous section we discussed how the computer would x4 Brogram: In
this section we want to examine the preparation of a proxray

Writing a program directly in instructions, as describe ous section, is
said to be programming either in assembly language or in machine language. While
this approach is relatively straightforward, it becomes tedious, especially for large
programs. In essence the available instructions comprise the computer’s language,
which we could learn to speak, but would rather not. Of course, the best solution
would be for the computer to speak our native language, which for most readers of
this book would be English. Unfortunately, this goal has not yet been achieved, al-
though progress is being made.

The current solution is to use an intermediate language that has some of the
characteristics in which problems are naturally expressed, but a language that is suffi-
ciently rigorous to permit the computer to perform the translation from the program
writtenin the programming language into the instructions that comprise the computer’s
natural language. This situation is illustrated in Figure 1-5. The programmer must
translate the statement of the problem into statements in the programming language.
Using a program known as a compiler, the computer translates the statements in the
programming language into machine-executable instructions, a process referred to as
compilation.

Since the statement of problems tends to differ from discipline to discipline, several
different programming languages have appeared, each with special characteristics that
make one language more attractive to some fields and disciplines than to others. In the
business field, coBoL (common Business oriented Language) has dominated, primarily
because its features enable large files of data to be manipulated readily. In science
areas, FORTRAN (Formula TRraNslator) has dominated, primarily because algebraic
expressions can be readily implemented. However, FORTRAN has enjoyed some use in
business circles. The last decade saw the introduction of several new languages, some

"
M g g
Y LY
A
v Nﬁ ~_—
Statement of problem Fortran Machine-executable
in English instructions

Programmer Compiler

Figure 1-5. Role of FORTRAN.

