Lecture Notes in

Mathematics

Edited by A. Dold and B. Eckmann

110

Ryszard Jajte

Strong Limit Theorems in
Non-Commutative Probability

\@}

SpringerVerlag
Berlin Heidelberg New York Tokyo




Lecture Notes In
Mathematics

Edited by A. Dold and B. Eckmann

1110

Ryszard Jajte

Strong Limit Theorems in
Non-Commutative Probability

SpringerVerlag
Berlin Heidelberg New York Tokyo 1985



Author

Ryszard Jajte
Institute of Mathematics, University of £6dz
Banacha 22, 90-238 t6dz, Poland

AMS Subject Classification (1980): 4650, 46L55; 28D 05, 60F15

ISBN 3-540-13915-X Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-13915-X SpringerVerlag New York Heidelberg Berlin Tokyo

This work Is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1985
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2146/3140-543210



Lecture Notes in Mathematics

For information about Vols. 1-898, please contact your book-
seller or Springer-Verlag.

Vol. 899: Analytic Number Theory. Proceedings, 1980. Edited by
M.l. Knopp. X, 478 pages. 1981.

Vol. 900: P. Deligne, J. S. Milne, A. Ogus, and K.-Y. Shih, Hodge
Cycles, Motives, and Shimura Varieties. V, 414 pages. 1982.

Vol. 901: Séminaire Bourbaki vol. 1980/81 Exposeés 561-578. ||l
299 pages. 1981.

Vol. 902: F. Dumortier, P.R. Rodrigues, and R. Roussarie, Germs
of Diffeomorphisms in the Plane. IV, 197 pages. 1981

Vol. 903: Representations of Algebras. Proceedings, 1980. Edited
by M. Auslander and E. Lluis. XV, 371 pages. 1981.

Vol. 904: K. Donner, Extension of Positive Operators and Korovkin
Theorems. XII, 182 pages. 1982.

Vol. 905: Differential Geometric Methods in Mathematical Physics.
Proceedings, 1980. Edited by H.-D. Doebner, S.J. Andersson, and
H.R. Petry. VI, 309 pages. 1982.

Vol. 906: Séminaire de Théorie du Potentiel, Paris, No. 6. Proceed-
ings. Edité par F. Hirsch et G. Mokobodzki. IV, 328 pages. 1982.

Vol. 907: P. Schenzel, Dualisierende Komplexe in der lokalen
Algebra und Buchsbaum-Ringe. VII, 161 Seiten. 1982.

Vol. 908: Harmonic Analysis. Proceedings, 1981. Edited by F. Ricci
and G. Weiss. V, 325 pages. 1982.

Vol. 909: Numerical Analysis. Proceedings, 1981. Edited by J.P.
Hennart. VI, 247 pages. 1982.

Vol. 910: S.S. Abhyankar, Weighted Expansions for Canonical De-
singularization. VI, 236 pages. 1982

Vol. 911: O.G. Jersooe, L. Mejlbro, The Carleson-Hunt Theorem on
Fourier Series. IV, 123 pages. 1982.

Vol. 912: Numerical Analysis. Proceedings, 1981. Edited by G A.
Watson. XIll, 245 pages. 1982.

Vol. 913: O. Tammi, Extremum Problems for Bounded Univalent
Functions II. VI, 168 pages. 1982.

Vol. 914: M. L. Warshauer, The Witt Group of Degree k Maps and
Asymmetric Inner Product Spaces. IV, 269 pages. 1982.

Vol. 915: Categorical Aspects of Topology and Analysis. Proceed-
ings, 1981. Edited by B. Banaschewski. XI, 385 pages. 1982.

Vol. 916: K.-U. Grusa, Zweidimensionale, interpolierende Lg-Splines
und ihre Anwendungen. VIIl, 238 Seiten. 1982.

Vol. 917: Brauer Groups in Ring Theory and Algebraic Geometry. Pro-
ceedings, 1981. Edited by F. van Oystaeyen and A. Verschoren. VIII,
300 pages. 1982.

Vol. 918: Z. Semadeni, Schauder Bases in Banach Spaces of
Continuous Functions. V, 136 pages. 1982.

Vol. 919: Séminaire Pierre Lelong - Henri Skoda (Analyse) Années
1980/81 et Colloque de Wimereux, Mai 1981. Proceedings. Edité
par P. Lelong et H. Skoda. VIl, 383 pages. 1982.

Vol. 920: Séminaire de Probabilites XVI, 1980/81. Proceedings.
Edité par J. Azéma et M. Yor. V, 622 pages. 1982.

Vol. 921: Séminaire de Probabilités XVI, 1980/81. Supplément Géo-
métrie Différentielle Stochastique. Proceedings. Edité par J. Azéma
et M. Yor. Ill, 285 pages. 1982.

Vol. 922: B. Dacorogna, Weak Continuity and Weak Lower Semi-
continuity of Non-Linear Functionals. V, 120 pages. 1982

Vol. 923: Functional Analysis in Markov Processes. Proceedings,
1981. Edited by M. Fukushima. V. 307 pages. 1982

Vol. 924: Séminaire d'Algebre Paul Dubreil et Marie-Paule Malliavin.
Proceedings, 1981. Edite par M.-P. Malliavin. V, 461 pages. 1982.

Vol. 925: The Riemann Problem, Complete Integrability and Arith-
metic Applications. Proceedings, 1979-1980. Edited by D. Chudnov-
sky and G. Chudnovsky. VI, 373 pages. 1982

Vol. 926: Geometric Techniques in Gauge Theories. Proceedings,
1981. Edited by R. Martini and E.M.de Jager. IX, 219 pages. 1982.

Vol. 927: Y. Z. Flicker, The Trace Formula and Base Change for
GL (3). XIl, 204 pages. 1982.

Vol. 928: Probability Measures on Groups. Proceedings 1981. Edited
by H. Heyer. X, 477 pages. 1982.

Vol. 929: Ecole d'Eté de Probabilités de Saint-Flour X - 1980.
Proceedings, 1980. Edited by PL. Hennequin. X, 313 pages. 1982.

Vol. 930: P.Berthelot, L. Breen, et W.Messing, Theorie de Dieudonné
Cristalline Il. X1, 261 pages. 1982.

Vol. 931: D.M. Arnold, Finite Rank Torsion Free Abelian Groups
and Rings. VII. 191 pages. 1982.

Vol. 932: Analytic Theory of Continued Fractions. Proceedings, 1981.
Edited by W.B. Jones, W.J. Thron, and H. Waadeland. VI, 240 pages.
1982.

Vol. 933: Lie Algebras and Related Topics. Proceedings, 1981.
Edited by D. Winter. VI, 236 pages. 1982.
Vol. 934: M. Sakai, Quadrature Domains. IV, 133 pages. 1982.

Vol. 935: R. Sot, Simple Morphisms in Algebraic Geometry. IV,
146 pages. 1982.

Vol. 936: SM. Khaleelulla, Counterexamples in Topological Vector
Spaces. XXI. 179 pages. 1982.

Vol. 937: E. Combet, Intégrales Exponentielles. VIIl, 114 pages.
1982

Vol. 938: Num' - Thecry. Proceedings, 1981. Edited by K. Alladi.
IX. 177 pages. 1982.

Vol. 939: Martingale Theory in Harmcaic Analysis and Banach
Spaces. Proceedings, 1981. Edited by J.-A. Chao and W.A. Woy-
czynski. VIII. 225 pages. 1982

Vol. 940: S. Shelah, Proper Forcing. XXIX, 496 pages. 1982.

Vol. 941: A. Legrand, Homotopie des Espaces de Sections. VII,
132 pages. 1982.

Vol. 942: Theory and Applications of Singular Perturbations. Pro-
ceedings, 1981. Edited by W. Eckhaus and E.M. de Jager. V, 363
pages. 1982.

Vol. 943: V. Ancona, G. Tomassini, Modifications Analytiques. IV.
120 pages. 1982.

Vol. 944. Representations of Algebras. Workshop Proceedings,
1980. Edited by M. Auslander and E. Lluis. V, 258 pages. 1982.

Vol. 945: Measure Theory. Oberwolfach 1981, Proceedings. Edited
by D. K6lzow and D. Maharam-Stone. XV, 431 pages. 1982.

Vol. 946: N. Spaltenstein, Classes Unipotentes et Sous-groupes de
Borel. IX, 259 pages. 1982.

Vol. 947: Algebraic Threefolds. Proceedings, 1981. Edited by
A. Conte. VI, 315 pages. 1982.

Vol. 948: Functional Analysis. Proceedings, 1981. Edited by D. But-
kovi¢, H. Kraljevi¢, and S. Kurepa. X, 239 pages. 1982.

Vol. 949: Harmonic Maps. Proceedings, 1980. Edited by R.J. Knill,
M. Kalka and H.C.J. Sealey. V, 158 pages. 1982.

Vol. 950: Complex Analysis. Proceedings, 1980. Edited by J. Eells.
1V, 428 pages. 1982.

Vol. 951: Advances in Non-Commutative Ring Theory. Proceedings,
1981. Edited by PJ. Fleury. V, 142 pages. 1982.

continuation on page 153



PREFACE

Recently many authors have extended a series of fundamental point-
wise convergence theorems in the theory of probability and ergodic the-
ory to the von Neumann algebra context. They have provided some new
tools for mathematical physics and at the same time created interest-
ing techniques in the theory of operator algebras. The main purpose
of these notes is to present a self-contained exposition of some ideas
and results from this area. We shall confine ourselves to the case of
von Neumann algebras and shall not touch on the problems concerning
C*-algebras. One of the reasons for this is that we are trying to
keep the book on a relatively elementary level. The material presented
here has been chosen in such a way that only very little knowledge of
the theory of operator algebras is needed for reading it. On the other
hand, the von Neumann algebras are very natural non-commutative gener-
alizations of L_-algebras, and their rich structure gives the possibil-
ities to obtain the 1imit theorems in their "almost sure" versions. In
a von Neumann algebra one can introduce the "almost uniform" convergence
which, in the classical commutative case of the algebra L_, is equiva-
lent (via Egoroff's theorem) to the almost sure convergence. This type
of convergence will be fundamental for the whole book.

Recently, C. Lance proved a non-commutative version of the indi-
vidual ergodic theorem for *-automorphisms of a von Neumann algebra.
From the point of view of applications in quantum dynamics this result
is of great importance. Chapter 2 is devoted to the discussion of some
results of this kind and their generalizations. In particular, we
prove some "individual" ergodic theorems for normal positive maps of
a von Neumann algebra, the non-commutative versions of Kingman's sub-
additive ergodic theorems for *-automorphisms, a random ergodic the-
orem and a non-commutative local ergodic theorem for quantum dynamical
semigroups. Chapter 3 is devoted to the theory of martingales in von
Neumann algebras. Conditional expectations in von Neumann algebras
and martingale convergence theorems are important in particular in the
theory of measurement in quantum mechanics. The noﬁ—commutative mar-
tingale convergence theorems of N. Dang-Ngoc and M. S. Goldstein will
be proved. Chapter 4 deals with the strong laws of large numbers in
the context of von Neumann algebras. Among others, Batty's results
will be presented. Chapter 1 has a preparatory character. In it we
shall discuss some properties of the almost uniform convergence in von



Neumann algebras.

These notes do not cover, of course, all the results concerning
the almost uniform convergence in von Neumann algebras. In particular,
we do not discuss the ergodic theorems for weights, only for states.
This book is written mainly for a reader familiar with the theory of
probability but may be of some interest for those mathematicians and
physicists who are intérested in some techniques of operator algebras
and their applications. As we mentioned, our main goal is to present
some ideas which lead us from the classical results well-known in the
probability theory to their non-commutative versions, and, consequent-
1y to the applications in quantum field theory. In this sense our book
is "homogeneous". Most of the results presented here have been obtained
recently (Lance 1976-78, Kiimmerer 1978, Dang-Ngoc 1978, 1982, Yeadon
1975-1980, Watanabe 1979, Goldstein 1981, and others).

Some theorems will be proved for states and some of them only for
traces. Since a state, in general, is not subadditive on the lattice
of projections, the techniques for non-tracial states are, as a rule,
quite different from those used for traces, and are also much more dif-
ficult. It is worth noting here that very often the arguments needed
for traces are similar to the classical ones; but in some cases, a new
approach is necessary.

The prerequisites for reading this book are the fundamentals of
functional analysis and probability. The elements of the theory of
von Neumann algebras are collected in the Appendix. We refer also to
the Appendix for the terminology and notations used in the book. The
Appendix is almost self-contained and can also be read separately, be-
fore studying the main chapters.

These notes were prepared during my stay at the University of Ten-
nessee in Knoxville and at the Center for Stochastic Processes at the
University of North Carolina at Chapel Hill. I am deeply indebted to
all my colleagues from both these institutions for the warm hospitality
they extended to me.

Many thanks are due to Ms. Cindi Blair and Mrs. Margaret Ravitch
for their patient and skillful typing of the first draft of the manu-
script. I sincerely wish to thank Mrs. Ruth Bahr who took great care
in the typing of the final version.

Chapel Hil1l, October 1984 R. Jajte
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INTRODUCTION

Contemporary scientific literature offers ample evi-
dence that the algebraic methods which have revolution-
ized pure mathematics are nmow in the process of having
a similar impact in the physical sciences. The alge-
brate approach to statistical mechanics and quantum
field theory is an example of this new orientation.

Gerard G. Emch

Non-commutative probability theory has as its motivation the
mathematical foundations of quantum mechanics. On the other hand it
can be treated as a natural generalization of the classical probability
theory. Let us begin with some comparisons. In the classical mechanics
to any physical system of point particles there corresponds a differ-
entiable manifold U. The states of the system are represented by the
points of U, and the physical quantities (observables) are described
then by (measurable) functions over the manifold U. In quantum mech-
anics, to any physical system there corresponds a Hilbert space H. For
systems with a finite number of degrees of freedom the (pure) states
are given by vectors (rays) in H, or, more generally, mixed states, by
positive trace class operators (density operators). The observables
are represented by the self-adjoint operators actinag on H. For parti-
cle systems with an infinite number of degrees of freedom, one identi-
fies the states of the system with the (mathematical) states over a
suitable algebra A of operators. In most of the situations A can be
taken as a von Neumann algebra of operators acting on a separable com-
plex Hilbert space. The algebra of all bounded Tinear operators acting
on H is the von Neumann algebra, so both cases are covered by the gen-
eral algebraic set up. Moreover, the classical situation leads to the
commutative von Neumann algebra Lw(u, Bu,u) of bounded measurable func-
tions over a measure space (U, Bu,u). The unbounded observables (mea-
surable functions) are then "affiliated" with L_(U, Bu,u) in a natural
way. The measure u (after its unique extension to the integral f -
fuf(du) is a normal faithful state on L_. Thus the classical case
can be treated also in frames of (commutative) von Neumann algebras.
Conversely, every commutative von Neumann algebra is isomorphic to
some L_, so that every commutative case is in fact the classical one.

In this book we shall be concerned with some 1limit theorems



describing the asymptotic behavior of sequences of observables treated
as elements of a von Neumann algebra A (or affiliated with A). More
exactly, we shall treat the observables as the elements of the "kine-
matical structure" described by a von Neumann algebra A with a faithful
normal state ¢. For an observable & from A, the number ¢(£) represents
the expected value of £ - the only measurable quantity of the theory -
when the system is in the state ¢. In particular, for a self-adjoint
£ with spectral representation £ = ffmxe(dx), and Borel Z on the real
line, the number ¢(e(Z)) is the probability that & takes its values
from Z when the system is in the state ¢.
For finite quantum systems the dynamics is determined by specifi-
cation of a self-adjoint operator H (the Hamiltonian operator) which
is usually a function of the particle position and momentum, e.q.,
H=§p—1+V(qq q,)
iP5 2m 1°72° " >"n’>
where Py and a; (momentum and position operators) satisfy the canonical
commutation relations

iPs = P;P; = 0 = 9;9; - 95094
and

1qJ - qu1 = - 1h6.|J

Then the evolution of the system in time is given by the one-parameter

group of unitary operators Ut = exp{itH} and is described either by
changes of the observables

. _ . . .
A At UtA Ut (Heisenbera picture)

or by changes of the states
o > o, = exp(-itH)¢ (Schrédinger picture).

The well-known theorem of Wigner [132] [135] says that any *-automor-
phism of B(H) is given by a unitary operator, so we can say that the
dynamics of the system is always described by a one-parameter aroup of
*_automorphisms of the algebra of (bounded) observables, and any
*_automorphism of the algebra of observables describes some dynamics
with the Hamiltonian operator equal to the infinitesimal generator of
the unitary group Ut (via Stone theorem). Thus the most natural way
to describe the dynamics of an infinite system is to determine it by a
continuous one-parameter group (at) of *-automorphisms of the under-
lying von Neumann algebra (describing the "kinematical structure" of
the system). Then the motion of the system is represented by the equa-
tions for the evolution in time of the expected values t - ¢(at£) (in



the Heisenberg picture) or by t - at¢(5) (in the Schrédinger picture),
where &t js the (pre) dual of at

A common approach to understanding the dynamical behavior of
physical systems is through 'time averages' of the form

N-1
1
(*) sy =g L a'e
t=0
(and their expected values). In particular we are interested in the

existence of the 1imit of sy as N » o in a sense as strong as possi-
ble. In the sequel we shall discuss in details the conditions for
the 'almost sure' (almost uniform) convergence of the sums

N-1
Xy = 1

N £
N N t t

ne~11

0

where Et are the operators from a von Neumann algebra A (or affilia-
ted with A). In particular we shall be concerned with the ergodic
averages (*), where o is a *-automorphism of A.

We shall start with an analysis of the notion of almost uniform

convergence in von Neumann algebras.



CHAPTER 1

ALMOST UNIFORM CONVERGENCE IN VON NEUMANN ALGEBRAS

1.1 Preliminaries

Throughout the book we constantly use the terminolcgy of operator

algebras. For this terminology we refer to the Appendix. In the se=
quel A will denote a von Neumann algebra acting in a complex Hilbert
space H; we denote by A' the commutant of A. ¢ will be a state on A.

A+ will stand for the cone of positive elements of A; Proj A will de-
note the set of all orthogonal projections in A. For pe Proj A, al-
ways pl = 1-p. We shall write 1 for the identity operator in A. For

a Borel subset Z of the real line and a self-adjoint operator x, we de-
note by eZ(x) the spectral projection of x corresponding to Z. For

x e A we put |x|® = x*x. In the next sections we introduce and dis-
cuss in detail the notion of the almost uniform convergence in von
Neumann algebras. Let us begin with some comparisons. For a probabil-
ity space (Q,F,u), let IL_(Q,F,u) be the algebra (of equivalent classes)
of all complex-valued F-measurable and essentially bounded functions on
Q. It can be treated as a commutative von Neumann algebra acting in
ILZ(Q,F,u) if we identify the functions g ¢ IL_ with the multiplication
operators ag: f > fg, for f € ILZ' The algebra A = ILm(Q,F,u) has a
faithful normal tracial state Tu(given by ru(f) = fﬂfdu). By Ergoroff's
theorem the u-almost sure convergence of a sequence (fn) from A is eaui-
valent to its almost uniform convergence. This fact makes it possible
to express the almost sure convergence purely in terms of the algebra

A, without any reference to the base space Q. Namely, we may restate
the almost sure convergence by means of the IL_-norm, state T and the
characteristic functions (of "large" sets). This suggests the follow-
ing definition.

1.1.1. DEFINITION. ©Let A be a von Neumann algebra with a fatithful
normal state ¢. We say that a sequence (xn) of elements of A converges
almost uniformly to an element x ¢ A If, for each e > 0, there is a
projection p ¢ A with ¢(1-p) < € and such that ||(xn—x)p|| + 0 as

n > oo,

1.1.2. It is worth noting here that, in fact, the above definition
does not depend on the choice of ¢; namely, the almost uniform conver-
gence just defined is equivalent to the following two conditions:



(*) in any strona neighbourhood of the identity in A, there is a
projection p such that IKxn—x)pll + 0 as n > o,

(**) for every faithful normal state ¢ on A and ¢ > 0, there exists
a projection p ¢ A with ¢(1-p) < ¢ such that II(xn-x)p|| > 0.

This follows immediately from the fact that if ¢ is a normal faithful

state then the strona topology in the unit ball S in A can be metrized
by the formula dist(x,y) =<1>[(x—y)*(x—y)]”2 (see Appendix).

1.1.3 THEOREM. [Let A be a von Neumann algebra with a faithful normal
state ¢. For bounded sequences of operators (xn) from A, the almost

uniform convergence implies the strong (o-strong) convergence of (x ).
2 : n

Proof. Let Xg ” 0 almost uniformly. In our case, the GNS representa-
tion of A associated with ¢ is faithful and normal so, without any loss
of generality, we can assume that A acts in its GNS reoresentation
space H¢ in a standard way. In particular, we have ¢(x) = (x£,£) for

x € A, where £ is a cyclic and separating vector in H¢. Let € > 0 be

given. Assume that [|x|| < 1. There is a projection p ¢ A with
¢(1-p) < € and ||xnp|| + 0. Let y ¢ A' (commutant of A). Then,
denoting by ||~||¢ the norm in H¢ we have

[ Ixg¥Elly < TIxppyelly + Vx (1-p)yel],.

But ||XnDYE||¢ < ||XnP|1'||y€|1¢ < ¢ for n large enouah, and
I C-pdyel 1y = Tlyx (L-p)el o < Tlyx 1T TTC-pel ]
= yx, 1Eo-p) 1Y% < J1yx |12,
which shows that leny£||¢ + 0 for all y ¢« A'. Since the set of

vectors {y&, y ¢ A'} is dense in H¢ and (xn) is uniformly bounded, it
implies the strong (o-strong) convergence of x, to zero. 0

1.2. Various kinds of 'almost sure' convergence in von Neumann algebras

In Definition 1.1.1 we introduced the concept of the almost
uniform convergence which generalizes to the von Neumenn algebra
context the notion of the almost sure convergence. One can consider
the other noncommutative versions of this notion.

Let A be as before a von Neumann algebra with a faithful normal
state ¢. Let us write four conditions for Xn and x in A.

(i) for any € > 0, there is a projection p in A with ¢(1-p) < ¢



and a positive integer N such that ||(xn—x)p|| < e for n > N.
(ii)for any € > 0, there is a projection p ¢ A with ¢(1-p) < ¢,
such that ||(xn-x)p(| + 0 as n > =,

(iii)for any € > 0, there is a sequence of projections (pn) in A
increasing to 1 (in the strong topology) such that
||(xn—x)pn|| < e forn=1,2,...

(iv)for any non-zero projection p in A there is a non-zero pro-
jection g ¢ A such that a < p and i](xn—x)qll > 0 as n > o,
0f course, the condition (ii) means the almost uniform (a.u.) conver-
gence of x_ to x. If the condition (i) or (iii) or (iv) is satisfied,
then (xn) is said to converge to x closely on large sets (c.1l.s.) or
nearly everywhere (n.e.) or quasi uniformly (q.u.), respectively.
Evidently, in the case of a commutative von Neumann algebra
Hm(Q,F,u), all four conditions just formulated are eauivalent to the

p-almost sure convergence.

1.2.1. THEOREM. ~Let A be a von Neumann algebra with a faithful normal
state ¢. For any bounded sequence (xn) tn A, all four conditions ()

through (iv) are equivalent.

Proof: We assume that x = 0 and ||xn\I <1 forn=1,2,... . Let
p ¢ Proj A, y ¢ A and ¢o(ply|®p) < €* < 1. Then, putting

q = pe[p’ez]{piylzp}, we have that q < p, ¢(p-q) < e and ||yq|]| < e.
Indeed, clearly, g < p. Moreover, ¢(p-q) < e’¢(ply|?p) < e, and
[lyall? = |lalyl?all = |laply|?p|| < €°.

Let us also notice that, for y ¢ A with [|y|[| < 1 and q,r <Proj A,
if |lq*r]| < « and ||yq|] < B, then ||yr|| < o + 8. To prove this it
is sufficient to estimate ||yrg|| < lyatre]] + |lyqre]].

From the facts just proved it follows that (i) implies the
following condition

(*) for each € > 0 and q ¢ Proj A, there is a projection r ¢ A
such that r < q, ¢(g-r) < ¢ and ]]xnr|| < ¢ for larae enough.

¥

Indeed, let 0 < €n
with ¢(r;) < e_ and a sequence of positive integers m(n) such that

0. By (i) we can find a sequence (rn) c Proj A

n
||xmrn|| < e, form >m(n). Let q ¢ Proj A be given. Then, by the
normality of &, ¢(qr;q) + 0 and we can fix " such that e, <€

0
and ¢(qr: g) < €*. Putting r = e, L q[0,5?), we have r < g,
0 L
¢(g-r) < e and ||r; r|] < . Moreover, ||xmr|| < 2¢ for m > m(no).

0
To prove the implication (i) - (ii), let us fix some € > 0 and assume



that (i) holds. By (*), we find a sequence (p

n) © Proj A such that
1= pp 2Py 2oees 0P -Ppyq) < 27" and [[x p, I

< e for m > m(n).

Put p = inf p, . Then o(pt) = 7 @(pn-Dn+]) < e, and
k n

|lxmp|| < |[xmpn Il < ¢ form > m(no). This means that X, > 0 almost
uniformly.

By an easy modification of the above proof we can show the
implication (i) = (iv). Namely, for a given 0 # p ¢ Proj A and ¢ > 0
we find a sequence of projections p = p; > p, >... with ||xmpn|| < g
for m > m(n) and ¢(pn-pn+]) < 2_(n+1)¢(p). Then it is enough to put
q = 1Ef Py - The implication (ii) »~ (i) is trivial.

Suppose now that (iii) holds so that, for ¢ > 0, there exist
projections p_ in A with P, 1 and ||xnpn|l < ¢ for all n. Then
¢(pm) > 1-¢ for n > m which means that (i) holds so that (iii) implies

(1) It remains to prove the implication (iv) - (iii). Let e > 0,

0 < € < €pay * E and 0 < ak ~ 0. To show that (iii) holds it is
enough to find an increasing sequence (qk) c Proj A and an increasing
sequence of positive integers such that ¢(qt) < & and |[ank{| < g
for n > N (then we can put p] = EEme = pn1 =0, pn1+] = ... = pn2= u],
etc. Thus it is enouah to show that if ¢ < e', § > 0 and lenpfl < e
for n > £, where p ¢ Proj A, then there exist q ¢ Proj A and £'> £
such that q > p, 6(q*) < & and ]|an|| < ¢' for n > 2g'. Let (pt, teT)
be a maximal family of mutually orthoagonal projections in A such

that Py < pt and I{xnpt|{ +~ 0 as n » «=for every t ¢ T. This family is
at most countable (because there is a faithful normal state ¢ on A:
comp. Appendix). Since ¢ is normal and faithful, from (iv) it follows
that there exists a seuauence (pk) of mutually orthoaonal projections

in A such that ¥ Py = pt and ][xnpk|| > 0 as n > » for k=1,2,...
k=1
N
Taking N larage enough we obtain q>(pl -z pk) < 8§ and, consequently,
k=1
N
6(q') < & for g =p + I Py - Moreover, ||an|{ < ¢' for n sufficiently
k=

large. The proof is completed. 0

1.2.2. THEOREM. If ¢ is a tracial faithful normal state (i.e. A is a

finite von Neumann algebra) then all four conditions are equivalent.)

Proof. The proof of (ii) - (i), (iii) » (i) and (iv) » (iii) is the
same as in Theorem 1.2.1, so it remains to prove the implications (i)
+ (iv) and (iv) > (ii). Let (i) hold, and let 0 # p ¢ Proj A. Put

k

e = 27 T4(p) > 0. We find q, ¢ Proj A such that 9(a)) < e



llank|| < g forn > n(k). Put q = p A(jqu. Obviously, IIXnQ|| + 0
(p*)

2(p*) + zolap) < ¢(ph) + o(p/2)<

k
<l.i.e. g # 0. Thus the implication (i) » (iv) is proved. Assume now
that (iv) holds. Then there exists a sequence (pk) of mutually ortho-

gonal projections in A such that & p, = 1 and I]xnpkll >0 asn >

as n > =, and q < p. Moreover ¢(q")

| A

k=1
N
for k=1,2,... . Taking N large enough we obtain ¢( = pk) > 1-¢ and
k=1 -
N
|Ix, = p Il ~ 0 as n >« The proof is completed. [
k=

1.2.3 Let us assume that ¢ is a trace (finite or semifinite). Consider
the *-algebra K of operators measurable with respect to (A,d) in the
sense of Segal-Nelson (see Appendix). The almost uniform converaence
(nearly everywhere converagence etc.) can also be considered for
sequences in A, in particular for sequences (xn) in IL1(A,¢). It
“is easy to modify~the Definition 1.%.1 in a suitable way. Namely, a
sequence (xn) in A is said to be convergent almost uniformly to x if,
for each € > 0, there is a projection p ¢ A such that ¢(p') < ¢,
(xn-x)p ¢ A forn >n_  and ||(xn-x)p|| > 0as n > o A similar
modification of the conditions (i), (iii) and (iv) we Teave to the
reader. In the sequel we shall also use the bilateral convergence.

1.2.4 DEFINITION. A sequence (xn) in A (in ; if ¢ is a trace) is said
to be bilaterally almost uniformly convergent to x ¢ A(A) if for each
€ > 0 there exists a projection p e A such that ¢(1-p) < e and
Ip(x,-x)pl| > 0 as n > .

We omit the formulation of natural versions of the conditions (i),
(iii) and (iv). Theorem 1.2.1 and Theorem 1.2.2 hold also for the
bilateral version of the conditions (i)-(iv). We leave the proof to

the reader.

1.3. Non-commutative version of Egoroff's theorem.

We start with the following proposition

1.3.1. PROPOSITION Let A be a von Neumann algebra acting in a Hilbert
space H. If a sequence (Xi) in A converges strongly to z, then, for
every € > 0, there exists a sequence (pi) c Proj A such that Py 1

strongly and ||(X1-X0)pill < € for i=1,2,...

Proof. We may assume ||x1|| <1 and x5 = 0. Put y, = x¥x,. Then, for
every h « H, we may have |ly;nl| = |Ixfxghl ] < 1xgl] Hixghl] < T1xghl



hence (y.) converges strengly to zero. Put p.= e.([O,sz]), where
i 1 1

e1(1) denotes the spectral measure of Y- Then
u
yi = [ uei(du) > e? [ Ezei(du) > sz(l—pi),
0 [e2,1]
which implies that (pi) converges strongly to 1. Moreover, we have
Lxgpi 17 = Tlpgxxepl | < [xixpil ] = [ygpgll < €2,
which ends the proof. O

1.3.2 THEOREM (Non-commutative Egoroff's theorem). Let A be a von

Neumann algebra with a faithful normal state ¢. Let (xn) be a sequence
in A converagent to x in the strong operator topology. Then, for every
projection p ¢ A and any € > 0, there exists a projection g < p in A
and a subsequence (xnk) of (xn) such that ¢(p-q) < ¢ and ]!(xnk-x)ql\

- 0 as k » o,

Proof. We may assume that p = 1 and x = 0. By Proposition 1.3.17,
there exists a sequence (pn) of projections in A such that |[xnon[]<z
and Pp 1 strongly. Choose the index ny such that ¢(1-pn) < e/2 for

n>mn,. Put g = pn]. Then ¢(1-q,) < e/2, {|xn]q1|1 <% and, of

course, x.q; > 0 stronaly. Putting yﬁ]) = q]x;an], we obtain a
bounded sequence in q]Aq1 which converges strongly to zero. Repeating

(1)

the reasoning for (yn ) we find a sequence (an] ) of projections

in q]Aq] such that q£1 > q1strong1y and |]y£1)q£])|| < 1/22; we choose

§ 2 2
an index n,>n; such that ¢(q]-q£])) < /2% and |ly£])q211 < 1/2%.

1
. 1 2 1 i
Putting q, = qu), we have o, < qq, ¢(q,-9;) < e/2° and IIY£2)q2||<22-
1
But [Ix,a,0[%= [lagxix a,l] = [la,ayxxx aqa,]] = llqzy,(] )qgll <

< ||y£])q2|| < 1/2% for n > n, Consequently |[x_ q2|| <1722, By

induction we obtain a decreasing sequence (qn) of projections in A
and a sequence of indices n; < n, <... such that ||xn qkll < 1/2k,
k

¢(Qk-qk+]) < c/2k. Putting g = inf q, we get ¢(1-q) < ¢ and
K =

||Xn ql| < 1/2k + 0, which completes the proof. 0
k

1.4 Notes and remarks. The 'pointwise' convergence in von Neumann
algebras discussed in Chapter 1 was introduced first by I. Segal [117]

and has been used systematically in the so called 'noncommutative



