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INTRODUCTION

Starting with the pioneering work of Lions and Stampacchia [73], much attention is
paid in the literature to the investigation of nonlinear partial differential equations involving
nondifferentiable and even discontinuous terms. This includes the case of variational inequalities
and free boundary problems and the main motivation of their interest is given by the many
models arising in such a form with an important area of applications. See the monographs of
Kinderlehrer and Stampacchia [62], Friedman [47], Ockendon and Elliott [45] where a large
number of examples from various domains are discussed.

A natural direction of development of the theory is the study of related control
problems and the first papers along these lines belong to Lions [71], Yvon [144], Mignot [74]. This
may be also viewed as a continuation of the classical analysis of control systems governed by
linear partial differential equations and we quote the wellknown book of Lions [68] in this
respect.

The present work may be inscribed as a contribution to the general effort of research
in nonsmooth optimization problems associated with nonlinear partial differential equations.

More precisely, the main aim of these notes is to examine distributed control
problems governed by nonlinear evolution equations (parabolic or hyperbolic), in the absence of
differentiability properties. In this setting, a special emphasis is given to nonlinear hyperbolic
problems which are less discussed in the literature.

In order to obtain a more complete image of the area of research we have mentioned
and to show other possible applications of the methods, several sections deal with problems
which don't enter strictly in the announced subject: nonlinear delay differential equations,
boundary control, elliptic problems and optimal design.

The material of the book is divided into three parts, after the type of the nonlinear
term which occurs in the state system: semilinear and quasilinear problems, variational
inequalities, free boundary problems. Among the different topics underlined throughout the work,
we refer to: existence of optimal pairs, first order necessary conditions, general and efficient
approximation procedures. Each time when this is possible, we indicate applications to regularity
or bang-bang results for the optimal control. Examples clarifying and motivating the theory are
included in every chapter.

An important role in the conception of the work is played by the methods: the
adapted penalization, V.Barbu [13], the unstable systems control theory, J.L.Lions [72], the

variational inequality approach [129]. From a technicai’point of view, in order to make these



v

notes more useful, we have tried to use different types of arguments in different problems, of
course in certain limits.

Chapter I, which introduces some fundamental notions, notations and results, is kept
at a minimum length. In particular, for the existence, uniqueness and regularity theory of the
various equations which appear in the text, we generally prefer to quote appropriately the
scientific literature. A precious auxiliary in this respect, containing a large amount of the
needed results, are the monographs of V.Barbu [12], H. Brezis [20].

The book is based mainly on the results obtained by the author during several years,
but it also gives a survey of the existing literature in this area of research, via numerous
comments, references, comparisons. However, as the subject is still under active development,
there is no attempt to be comprehensive in any sense. We mention only the contributions of
Barbu [17], Lions [72], Pawlow [90], Neittaanmaki and Haslinger [59], which are closer to our
topic.

In the elaboration of this work, we received constant support and encouragement
during the debates in the specialised seminars of the University of lasi, leaded by prof.dr.
V.Barbu and of the University of Bucharest, leaded by prof.dr. A.Halanay. To them and to all the
other participants in the seminars, we express our gratitude. We also acknowledge with thanks
the financial support of the Institute of Mathematics of the Romanian Academy of Sciences,

which was decisive in the preparation of the present work.

Bucharest, June 1990 Dan Tiba



LIST OF SYMBOLS

RN - the finite dimensional Euclidean space,

(1- bounded domain in RN,

mes{L- the Lebesgue measure of (,

[ =[] - the boundary of (),

Q =Nx]0,T(,

3 = ax[0,T],
D, CP;(O.) - the space of indefinitely differentiable functions, with compact support in(l,

D ")) - the space of distributions on N,

LP(, 1<p <o - the space of real functions, p-integrable in () (with the usual modification when
p =0),

Lp(ﬂ;X) - the space of p-integrable functions in the sense of Bochner, with values in the Banach
space X,

cmﬁ;x) - the space of m times continuously differentiable functions on N, with values in X,
Wk’p(ﬂ) - the Sobolev space of real p-integrable functions, with distributional derivatives up to
order k, p - integrable in{),

BV(0,T;X) - the space of bounded variation functions on [0,T], with values in X,

M(0,T;X) - the space of X-valued measures on ]0,TI[,

X* - the dual of the space X,

S(x,a) - the ball with centre x and radius a, in a given metric space,

('")Xxx*
(.,.)H - the scalar product in the Hilbert space H,

[-1 X the norm in the normed space X,

- the pairing between X and x*,

I*1- the Euclidean norm in RN,

dom(A) - the domain of the mapping A,

R(A) - the range of the mapping A,

A* - the adjoint of the linear operator A,

dist(v,M)X - the distance between vé X and the set MC X, in the metric of X,
int M - the interior of the set M,

M - the closure of the set M,

MxN - the cartesian product of the sets M and N,

[m,n] - an ordered pair in M x N,

cl f - the lower semicontinuous closure of f,

of - the subdifferential of the convex function f,

9K = [-EXK,ayK] - the subdifferential of the saddle function K,

Df - the Clarke generalized gradient of f,

grad f - the gradient of the differentiable function f on RN,

vf - the Gateaux differential of f in normed spaces,

vy ¥, Yp Yy dy/dt, ay/at, ay/ax - different notations of derivatives,
9/3n - the outward normal derivative to[.

Note: sometimes we use other notations, which will be specified in the text.



I. ELEMENTS OF NONLINEAR ANALYSIS

This introductory chapter contains some prerequisites in the theory of monotone
operators, convex analysis, generalized gradients, Sobolev spaces and nonlinear differential
equations, collected for easier reference .

For the sake of brevity, many of the results are indicated without proof and others
are omitted. The material presented here is standard and, with minor exceptions, may be found
in the wellknown monographs of V.Barbu [12], [13], V.Barbu and Th.Precupanu [14], H.Brezis [20],
[21], I.Ekeland and R.Temam [42], J.L.Lions [69], R.T.Rockafellar [99], D.Kinderlehrer and
G.Stampacchia [62], K.Yosida [145].

1. Function spaces and compactness principles

We denote R = ]-o0,+00[, RN, Ne¢ {1,2,...}, the finite dimensional Euclidean spaces. Let
N be a measurable subset in RN and X be a Banach space with norm |- | X By Lp(ﬂ;X) we mean
the space of equivalence classes, modulo the equality a.e., of functions strongly measurable in(2,
with values in X and with the norm p - integrable, 1< p <co, Lp(ﬂ;x) is a Banach space with

respect to the norm

Jul EP(Q;X) = [}u(x)‘idx .
9]

For p=eo, I°(0;X) is the space of equivalence classes of functions, modulo the
equality a.e., measurable from () to X and essentially bounded inf. It also is a Banach space

with the norm
lul oo X = esss(ulplu(x)|

Let ) be a bounded domain in RN. A remarkable subspace of L'’ (;X) is C(;X), the
Banach space of functions, continuous on(l, with values in X, endowed with the topology of the
uniform convergence. Two situations appear usually in the text:

-0 =10,TICR and we use the notations LP(0,T;X), L' (0,T;X), C(0,T;X);

- X = R and we use the notations L0, (D, ().

The spaces LP(O,X) have wellknown propertles [45], [125]. We state only the Egorov
theorem, which will be of frequent use:

Theorem 1.1. Assume that fof strongly in LP(, 1 < p <. Then for every €>0 there

is a measurable subsetnCD mes(-0),)<€ and ff uniformly on O .
We consxder the spaceéZ) () (sometimes also denoted by C% (ﬂ)) of infinitely




differentiable functions with compact support in(1 and its dual - the space of distributions D '()
to be known (see [145)). If u€¢ LP(n), 1< p<eo, then the functional

h -»fu(x)h(x)dx
n
defined onD (), is a distribution onN, denoted u, and called distribution of type function. Let k
be a natural number. The Sobolev space Wk’p(ﬂ) is the space of all the distributions ue®'() of
type function, such that all the distributional derivatives, D“u, up to order k, of u, are
distributions of type function and belong to LP). Wk’p(ﬂ) is a Banach space with the norm

[ ul fkop gy =la<lZ<:k L'D“U(X) (Pax,
where ot is a multiindex, (x| is its length and D™ is the distributional derivative of order .

The completion of D (N) in the topology of Wk’p(ﬂ) is denoted by w‘;’p(n) and its dual
is denoted by w9, p—1+q-1 =1. In the case p=2, the following notations are used
wh ) = H“(n), W‘;’Z(n)mg(n), w2 = BK). The spaces HX() are Hilbert spaces with the
scalar product

(UK ) = > jD"‘u.D"‘vdx.

<<k 1)

Analogously, we define the spaces of vectorial distributions.®'(0,T;X) is the space of
linear, continuous operators from(]0,T[) to the Banach space X. Wk’p(O,T;X) is the space of
vectorial distributions ueéd'(0,T;X) with the distributional derivatives up to order k in Lp(O,T;X).
The elements of V\'k’p(O,T:X) are absolutely continuous functions together with their
distributional derivatives, up to the order k - 1.

In the applications to parabolic problems, we write shortly Wz’l’p(Q). Q =10,T[x,
p> 1, for the space Lp(O,T;Wz*p(II))ﬂV\’l’p(O,T;Lp(ﬂ)).

Take()= RN. By means of the Fourier transform

F : f+Ff = (Zn)-N/zj N exp(-ix.¢)f(x)dx
R

we obtain the equivalent definition

H 2p et ™)}

H®MN) = {ueL2®N) 41
In this way, one can define HS(RN) for every s€R, which remains a Hilbert space by

the scalar product:

s/2 2)5/2

_ 2
(u,v)Hs(RN) =((Q + 1§17 “Fu, (1 + 161 Fv)LZ(RN)'

If the boundary [* of (1 is sufficiently regular, for instance if it is a C°® manifold, we
can define the spaces H5(I) by local charts.

Proceeding by interpolation, one obtains the spaces H3(), s€R. The norm in (o)



is equivalent with
lule(m =inf|v iHS(RN)’

where v is choosen such that its restriction to (1 equals u a.e. .

For the functions from Hs(ﬁ), s> 0, one may define the trace on[ and the normal
derivatives aju/anj up to the order [s-1/2] (the greatest positive integer majorized by s-1/2).
This is the so called trace theorem and the proof may be found in [70].

Theorem 1.2. The mapping

us{alwan; j=0,1,...[s - 1/21}

from D () E)i)(l")[s— 1720% may be extended to a linear, continuous operator from H%() onto

TasTY2r) =01, 0s-1/2] .

In particular, the space H§M) coincides with the kernel of the trace operator.
S S
If () is a bounded domain then the embedding H 1((I)CH 2((1), 8, > S is compact (the

Rellich theorem). Other types of embeddings are given by the Sobolev theorem:

Theorem 1.3.

i) For q~1 > p'l-kN~1 and 1<p,g<e, k>1, then W PECLI. Moreover, if p,q <o,
the embedding is compact.

ii) For m<k - Np ! we have WRP(Qcc™ A

We continue with several other specific compactness criterions, in function spaces:

Theorem 1.4. Arzela-Ascoli

A sequence { xn} is relatively compact in C((y;X) iff:

a) it is equibounded and equicontinuous,

b) {xn(z)} is relatively compaect in X for all z€().

Theorem 1.5. Helly - Foias [6 8]
Let VCU compactly, be Banach spaces. If { pn} is bounded in L™(0,T;V) and { (pn)t} is bounded in
LI(O,T;U) then, on a subsequence again denoted P We have

pn(t)-> p(t), te[0,T]

strongly in U and p€¢ BV(0,T;U).
Theorem 1.6. Dunford-Pettis
A sequence {fn} is weakly relatively compact in LlyX) iff the integrals of Ifnlx are

uniformly absolutely continuous on.
Theorem 1.7. Lions [71]

Let Bo’ B and B; be three Banach spaces such that BOEBCB1 and the injection BOCB is compact.

Then, for every £> 0 there is CE >0 such that: )

lu-wlg<eUulg +lwlg )+ CJu-wlg
o o 1



for all u,WEBO.
Theorem 1.8. Aubin [2] D
In the hypotheses of Theorem 1.7, let ¥ be a bounded subset in L O(O,T;Bo) with

|dv/dt | P <C, Vel
L (U,T;Bl)

P
where 1 < PPy <%0, Then 7V is relatively compact in L o(O,T;B).

We close this section with a variant of the Gronwall lemma, due to Brezis[20].
Proposition 1.9. Let mELl(O,T), m>0 a.e. [0,T] and a be a positive constant. Let
$€C(0,T) satisfy the inequality

t
12880 <1/20° + [ m©)ds)ds, tefo,T).
(o]

Then, we have:

t
Ié(t)lga + { m(s)ds, t€[0,T].
o

2. Monotone operators

Consider two sets, X and Y, and X x Y their cartesian product. A subset ACX x Y is

called a multivalued operator defined on X with valuesin Y. We have:

Ax ={y€Y; [x,y]eA}, XEX;
dom(A) = {x€X; Ax #d}C X;
R(A) = J AxCY, the range of A;

x€X
-1 _
A —{[y,x]; [x,y]e€ A}CY x X.
Let X be a Hilbert space. A (multivalued) operator A : X»X is called monotone if

(X = Xgr¥q = Vo)y 20 V[xi,yi]EA, i=1,2.

If the inequality is strict for X, # Xgy Xp5Xo€ dom(A), then A is strictly monotone. If,

moreover, the following relation holds:
2 i
(x1 - Xg¥q - yz)szlx1 - X, xr %> O,V[xi,yi]GA, i=1,2

then A is called strongly monotone.
The operator A : X-X is w- monotone if A +wl is monotone (the definition is useful

for w > 0). The monotone operator A : X+X is called maximal monbtone if its graph, as a subset
in X x X, is maximal, that is it cannot be strictly included in any other monotone graph from

X x X.




Proposition 2.1. Let A : X»X be a maximal monotone operator. Then:

i) A-1 is maximal monotone

ii) For every xedom(A), the set Ax is convex and closed in X.

iii) A is demiclosed, that is XX strongly in X, y >y weakly in X and y €Ax imply
that y€Ax.

The proof of this statement is based on the definitions and on the continuity of the
scalar product. The next two results are fundamental and their proof is less elementary and we
quote Barbu [12], Ch. II for a general argument.

A single valued operator A : XX with dom(A) = X is called hemicontinuous if for all
Xx€X, y€X we have A((1 - t)x + ty)>Ax, weakly in X, as t=0.

Proposition 2.2. A hemicontinuous monotone operator is maximal monotone.

Theorem 2.3. The following statements are equivalent:

i) A is maximal monotone in X x X.
ii) A is monotone and R(I+A) = X.

iii) (I+ XA)_l is a contraction (nonexpansive) mapping on the whole space X, for all

A> 0.

Let (. be a bounded, measurable set in RN and A be a maximal monotone operator in
the Hilbert space X. It is possible to define A on LZ(n;X) by veAu iff v(x)€Au(x) a.ell The
operator A is maximal monotone in LZ(n;X). The monotonicity of A is obvious. For the

maximality, we use Thm. 2.3. The equation
v(x) + Av(x)3 f(x), x€lL

with f€ LZ(ﬂ;X), has a unique solution v(x)€ X, a.e. xé. As (I+ A)_1 is nonexpansive, we see
that v € Lz(ﬂ;X) and it is the solution of the equation v + Av 3 f.
Now, assume that() is a bounded domain in RN, with smooth boundary. We consider

the nonlinear differential operator:
&Y m
Au= Y, (1) D%A (xu,..,DMu),
lett <'m

where A_(x,4) are real functions defined on ()x RK, satisfying the conditions:

1) A_ are measurable in x and continuous in §,

2) 1A ()< gl Pl + gx)

with geL9), 1, g L+ p L= 1.

D Y (A6 - A_(xNE-7) > 0
le<| < 'm =

for all §,n€E RK and a.e. X€ML ,
Here we denote by K the length of the vector with components u and all its

derivatives up to the order m.



To the operator A : W?’p((l)-’w_m’q(()), we associate its realization in LZ(Q) by:
A u=Au, uEdom(ALZ(Q))y

L2
m, . 2
dom(Ay 2 ={ue W "P(O); AueL (D).

This is a maximal monotone operator in Lz((l) if we assume one more condition:
4)(Au,u) B > u[ulp,m,p +C, >0,
WP x w9 Wy €3

for all uew"P(.
We recall that the operator A : X~>X is coercive iff

lim (Au,u)y/|u| = +eo,
ige XX

Theorem 2.4. A coercive, maximal monotone operator is surjective.

Proof
Let x*€ X be arbitrary fixed. By Thm 2.3, for every X > 0, there is X, € X such that

*

(%) Axy +Ax, =x,

where AC X x X is the given maximal monotone coercive operator. By shifting the domain of A,

we may assume that 0€ dom A and multiplying () by x |, we get
*
A xyl g <lao]y +1x] ¢

by the monotonicity of A. Then, again (%), shows that { Ax )\} is bounded in X and the coercivity
assumption yields that { x)\} is bounded in X. If we pass to a subsequence, we may assume that
X, X weakly in X and Ax>\—> x* strongly in X. The demiclosedness of A gives Ax = x*.

Remark 2.5. The monotonicity property may be defined in Banach spaces too, by
replacing the inner product with the pairing (- , -)X < X** All the above properties remain true in
the general setting of Banach spaces.

The nonlinear differential operator A, introduced above, is called the generalized
divergence operator or the Leray-Lions operator. If we consider it as acting between the spaces
W?’p(ﬂ) and W ™9 we remark that it is monotone and hemicontinuous, under hypotheses 1)-3).
Therefore, in this setting, it is maximal monotone without condition 4).

We say that an operator A : X=X is locally bounded in xoé X if there is a neigh-
bourhood V of X, in X, such that A(V) = xLEJVAX is a bounded subset of X.

Theorem 2.6. Any monotone operator A : ¥-+X is locally bounded on the interior of

dom(A).



Proof
By shifting dom(A), we may suppose that 0 ¢ intdom(A). If A is not locally bounded at
0, we shall derive a contradiction. Thus, consider {xn}c dom(A), x;e Axn, such that x> 0 and
lxglx-’oo as n->oo.
We take r positive and sufficiently small such that S(0,r) cdom(A). We show that

there exist y€ S(0,r) and a subsequence n > e such that

+) (x_ -y, x¥ )~ -oo.
nk nk X

By contradiction, we assume that for every u€ S(0,r) there is Cu > -o0 such that
*
(xn - u,xn)X > CU , ¥néEN,

If E ={ue s(o,r); (x, - u x;)X > -k, ¥ n€N}, then S(0,r) = UE, and a category
argument gives that there are £ > 0, kOE N, y€ S(0,r) such that S(y,€ )CEk . We get
o

*
(2xn +y- u,xn)X > C_y - ko ¥ nEN, V ueS(y, € ).

£ = -
Let n, be such that [xan§4for nzno.Thenu 2xn+y v€S(y,£)fornZnoand

Ivig 5%. In other words, it yields

* £
(v,xn)XZC ko,VnZno,Vllef_ﬁ,

-y

contrary to | x; | = o . This shows that (+) is true and the monotonicity of A implies that

X

(xnk -y Ay)x" —o0, 88 nk-’ 0 .

But {xn } is bounded and this final contradiction concludes the proof.

The next result is a generalization of Thm 2.4:

Theorem 2.7. Let A be a maximal monotone operator in X. Then A is surjective iff
A lis locally bounded.

The "only if" part is a direct consequence of Thm 2.6. For the "if" part, we prove that

R(A) is simultaneously a closed and open subset of X.
Let x;€ R(A) = dom(A™") and let {x;}CR(A) be such that x:-»x; as n oo, For

lx;, we have | xnl X < M be the hypothesis and we may assume tht X, > X

X € A - weakly in X.

We have

* *
(xn X7, X x)XZO

for all [x*,x]€ A~ ! and passing to the limit n >, we see that



* *
(xo—x !XO'X)xZO

for all [x,x*1€A, so [xo,x;]éA and x;( R(A) = R(A).
To show that R(A) is open in X, we take [xo,yO]EA and p > 0 such that A"l is bounded
on the subset { yER(A); |y - Yo 'X < y} . Since A is maximal monotone, the equation

Axe +£x£ = Exo)y
has a solution X € dom(A), for any € > 0. We have

(xE - XY -yo)XZO, Ve Y- EX YEX .

We take y€ X with |y - yol X < £/2 and the above inequality implies that
Elxg - x Iy <ly-yolx< P12, ve>0.

Then | Ve - yol < p and the boundedness properties of A yields that {xe} is bounded
in X. Since Y~y strongly in X and X, > X weakly on a subsequence in X, we get [x,yl€eA in
virtue of the maximal monotonicity of A and the set { y€X; |y - yol x < J’/Z}C R(A) which ends
the proof.

By Thm.2.3 one may define the mappings:

Iy XX, I x=(1+ A Ix, 2> 0,

Al :X2X, A

I PR
N x=x( Jk)x, A> 0.

X

They are called the resolvent, respectively the Yosida approximation of the maximal

monotone operator A. The following properties are valid:
Theorem 2.8. Let A : X»X be maximal monotone. Then:

(x), x€X;

i)lim J_x = Proj
x+0 > Jdom A)

ii) A N is maximal monotone and Lipschitzian of constant 1/) on X.
iii) For every xedom(A), we have:
o o
IA)‘XIXSIA xIX, A>\x+A X, A=+0
where A% = Proj, 0
Pt JAX ’
iv) AkxEAka, x€X.
Since the proof is quite lengthy we omit it and we refer to Brezis [21].
Now, we are able to state an important refinement of Proposition 2.1, iii):
Theorem 2.9. If >‘n" 0, X ¥X weakly in X, Axnxney weakly in X and moreover




limsup(xn—xm,A x -A. x ), <0,
n,m n m

then [x,y]€A and

lim (x —xm,A X -A. x ), =0.

n,M2w Ap M Am M %

Proof

We have:

(xn - xm,A)\ X - A N xm)X = (Jk X, - Jl xm,AJ) X~ AJA xm)X +

n m n

+ ('AnA )nxn - >‘mA )\mxm,A )\nxn -A )\mx )

Denoting J>\ X =X, since {A N xn} is bounded in X, we get that X =X weakly in

X and n n

llm(xn - xm,Axn - Axm)X =0

by the above identity and the monotonicity of A.
We may assume that on a subsequence N & ,A?Z )y = u. Then
npoony X

0= lim[ lim (xn - X JAX - Axnk)x] =2u - 2(x,y)X

n>e0 neo 1 k M
sop = (x,y) = lim (xn,Axn)X. For every [a,bJ€ A, we have
n-=oe

(’in-a,Axn-b)Xgo
and, passing to the limit, we see that
(x-ay- b)XZO ¥V [a,bl € A,

i.e. y€ Ax.

Generally, it is possible that the sum of two maximal monotone operators, A + B, is
not maximal monotone since, for instance, its domain may be void.

Theorem 2.10. Let A and B be maximal monotone operators in X x X such that
intdom(A)ndom(B) #@ . Then A + B is maximal monotone in X x X.

Proof

By P 2.2 and Thm 2.3, the equation
(x) x+Aux+B)\x=y

has a unique solution denoted x§ for any y€ X. Here X> 0, p > 0, Au and B, are the Yosida
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approximations of A, B and they are hemicontinuous. First, we keep the index p fixed and we
denote shortly X5 A instead of xg\, Au.

Without loss of generality, we may assume that 0€ int(dom(A))Ndom(B), 0€ A0,
0€ BO. Then (x) shows that { x,} is bounded in X.

By Thm 2.6, there are p > 0, M > 0 such that
lo<M, Vx*e U ax.

IxIy<p
. _fe _ _ _ i

We define vy = 2(y kak x>\)/|y B>\xx x)l X and we notice that

lxX

i

ly)\‘ X5§y S°|AY)\I X_<_ M.

Using the monotonicity of A, we get

0< (x)\ - Yy JAXy - Ay} )X = (xx ,Ax)\ )X + (y) ,Ay>\ )X - (y) ,Ax) )X - (xx,Ay) )X .
Then

? -

EIAx)‘ | X = (y)\ ,Ax) )X < constant
where we also use that

_ 2 _
(g AKXy Dy = =1 Xy Ly = By XXy )y + (955 )y <oy )y

Thus, we have shown that {x%} . {ka) 4 {Axx} are bounded subsets of X and we
may assume that Xy > X, B>x>‘—~ X Axy > X, weakly in X, on a subsequence. Again, by the

monotonicity of A, we have

0>(x>-xe Xy T X )X+(B)‘x>\—B£x€ » Xy = X )X'

therefore

limsup (B, x, - B_x, , X, - X.)y <0

2E0 ATX (1 A €'X =
and Thm 2.9 gives that XIE on and

lim (Byx, -B. X, , X, - X, )y =0.

ags0 NN EETITTEX
Consequently

limsup (x, - X, , X{+Axy{ - X, - Ax, ), =0

AE >0 5, %6 BEs 2T Xe £’x

and applying once more Thm 2.9 to the operator I+ A,“we see that Xy = A“x0 (we recall that in

fact A stands for Ap up to now).
Assume that 0€intdom(B), for the moment. The same argument as above allows to
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take p-> 0. Then, we see that the equation

x,\+ Ax>\+ B>‘x>\ Dy

has a unique solution under the conditions of Thm 2.10. Since 0€ intdom(A), we can iterate the
above proof and we obtain the desired conclusion by Thm 2.3.
Remark 2.11. There is a strong relationship between the maximal monotone operators

and the nonlinear contraction semigroups. This idea will be stressed in the last section.
3. Generalized gradients

3.1. The subdifferential of a convex function

A remarkable class of monotone operators is given by the subdifferentials of convex
functions.

Let X be a Banach space and ¥: X+[ -0, +0] be a convex function. Then, we define
dom(¥) ={x€X;P(x) < +e0} and ¥ is called proper if dom(¥) # @ and ¥(x) > -eo for all x€X.

The closure of ¥, denoted cl¥, is the lower semicontinuous hull of y:

(el f)(x) = liminf¥(y),
VX
if (x)>- for all x€X, and cl¥ = -0 otherwise. The convex function ¥ is said to be closed if
Y= cl¥. In particular, for a proper, convex function, the closedness is equivalent with the lower
semicontinuity.
The subdifferential of the function ¥, denoted 9%, is the (possibly multivalued)

operator in X x X*, given by

9P(x) ={wEX*;‘P(x) -f(v) < (w,x—v)X « X*,VVGX} .

Obviously, X, is @ minimum point for ¥ iff 0 € B*P(xo).
Theorem 3.1. In Banach spaces, the subdifferential of a lower semicontinuous, proper,

convex function Y is a maximal monotone operator.

We give the argument for the case of reflexive Banach space X. For the general
situation, we quote Rockafellar [98]. By the renorming theorem of Asplund [1 ], we may assume
that X and X* are strictly convex too.

The monotonicity of 3¥ is obvious by the definition.

According to the extension of Thm 2.3 to Banach spaces, we have to show that the

equation

Fx +3P(x)> x*



