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1

INTRODUCTION

1 do not recollect the mystical moment when the thought to prepare this compendium
captured my imagination. It was not unnatural to conceive of it after I had completed
my book Nonlinear Ordinary Differential Equations and Their Applications, since
published by Marcel Dekker (1991), but I was only vaguely aware of the task ahead, and the
enormity of the effort that would be demanded of me. As I plodded on, thumbing through
literally hundreds of volumes of journals, hunting out useful, interesting, known and not-so-
well-known equations, I realized that the volume I had envisioned as modest in size would
grow and that it could never be exhaustive. However, the search continued and the material
piled up. It took a relentless effort of five years to bring this work to its present stage of
completion. I ransacked mathematics sections of many libraries: the Courant Institute,
NYU, Rutgers, New Jersey Institute of Technology, St. Andrews (UK), TIFR and IIT,
Bombay, and the Indian Institute of Science, Bangalore. Almost all journals in applied
mathematics, physics, and engineering that deal with nonlinear phenomenon were browsed
through. That explains the large size of the biblography and, of course, of the compendium
itself. Yet it does not seem possible to exhaust all the equations, since new ones get added
to the literature almost every day. The present collection should, nevertheless, meet the
needs of a large majority of scientists, engineers, and applied mathematicians.

I, like several generations of engineers, scientists, and mathematicians, had often con-
sulted the classic collection of E. Kamke (1959) to ascertain whether a nonlinear ordinary
differential equation that I encountered in my research just might be there. Despite the
fact that this work is in German, it has been immensely popular outside Germany. This
book, I believe, has been my principal inspiration. Although it concerns mostly linear
ordinary differential equations, there are a small number (266) of nonlinear equations. The
corresponding collection in English by Murphy (1960) does not go much beyond Kamke.

Since Kamke’s book, research in physics, mathematics, and engineering has spawned
such a large number of new and interesting equations that a compendium on the subject
has long been overdue. (This gap has been widened enormously by the appearance of
that ubiquitous phenomenon called chaos.) I decided that the equations should be dealt
with in the following way: If an equation can be solved quickly in a closed form, the
steps to arrive at the solution should be given sparsely; otherwise, a summary of the
asympototics, stability, existence, or numerical results may be appended to each equation.
The contributions of various authors to the same equation are generally not combined;
instead, their individual results are enunciated at the same location in the compendium.
Equations in an abstract setting; stiff, delay, or stochastic equations; and functional or
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differential-difference equations have not been included. A large majority of equations in
the compendium have arisen from physical models directly or through transformations such
as the similarity reduction; initial and boundary conditions have been included wherever
these have been imposed. Since the compendium is pretty large as it is, there is no scope
for including notes for various classes of equations, as found in Kamke’s book. However,
the author’s book Nonlinear Ordinary Differential Equations and Their Applications
will be found useful for elements of qualitative analysis of nonlinear ordinary differential
equations.

Categorization of such a large number of equations posed some difficulty; the book of
Kamke again provided useful clues. A detailed rationale for the classification of equations
is given in Section 1.1. However, the basic principle adopted was to list the equations in
order of increasing complexity, as they would appear to the user: One should be able to
look for an equation in the same manner as one would look for a word in the dictionary.
For the convenience of the reader, the equations belonging to each order—second, third,
fourth, fifth, and higher—have been divided into a large number of subclasses; equations
in cach subclass bear a subtitle and have been ordered as explained below. The scheme
given here may not be perfect but should be adequate.

There are equations, such as those of Lorenz, Van der Pol, and Painlevé, to which
entire shelves of literature have been devoted. We have given only a few recent results
concerning these equations. On the other hand, the present compendium includes many
less known equations that the reader will find interesting, curious, or useful.

The present volume may be helpful in many ways. It should be a standard reference
in the sense that Kamke’s book has been for (almost precisely) five decades: An engineer
or scientist can look up an equation and may find a ready-made analysis with a reference
thereto or a set of similar examples of known behavior. The compendium provides a wealth
of examples for teaching and exposition. Moreover, since the equations have been drawn
from diverse fields, the book should cross-fertilize thinking and analysis in unrelated fields.

1.1 Instructions to the User

The equations have been ordered like the words in a dictionary; once the user has fa-
miliarized himself or herself with the system of organization that we have employed, any
equation in the book can be located rapidly. The user will then find concise information
about explicit solutions and the method of solution, when these can be found, and indica-
tions of the nature and behavior of solutions where explicit solutions may not be found.
Also, references to the source material are given. Equations of related type will be found
in close proximity.

The basis of our ordering scheme is the following hierarchy of functions of a single
variable f(z):

Polynomials

Rational functions (P/Q where P and @ are polynomials)

Functions involving fractional powers [e.g., 2%/, (1 + z?)'/?, etc

Functions involving unspecified powers (e.g., ¥, where p is not necessarily an integer)

Trigonometical functions

Functions involving exp
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Functions involving ln

Functions involving a modulus (e.g., |z|, etc.)

Unspecified functions

Polynomials a,z" + a, 12" ' + -+ + ay are ordered according to a dictionary ordering
of the “word” a,a, _;---ag. The “alphabet” of coefficients has the following order:

(a) Zero

(b) Positive numbers, in increasing order

(¢) Negative numbers, in decreasing order

(d) Unspecified constants

Having established the ordering scheme for functions of a single variable, consider the
problem of ordering functions of two variables, f(z,y). We regard them as functions of y,
with parameters that can be numbers or functions of . Thus we append to the alphabet
of coefficients of a polynomical in y, coefficients that are

(e) Functions of
Similarly, functions f(z,y,y’) are ordered by regarding them as functions of y', with pa-
rameters that can be numbers, functions of z, or

(f) Functions of z and y
Proceeding in this way, we arrive at a principle for ordering a list of differential equations.
To render it completely rigorous would involve more detailed considerations (e.g., does
sin’z precede or follow sinz??). That was not our aim. Our aim was only the pragmatic
one of devising a scheme to facilitate looking up a differential equation.

For further convenience, the work has been divided into sections, cach containing equa-
tions of a general type. For example:

21 y'+f(y) =0

2.2 y'+g(z)h(y) =0

23 y'+ f(z,y) =0
The rule at this level of organization is that separable functions g(z)h(y) precede in-
separable functions f(z,y). The scheme is less formidable than might appear from its
description. Further clarification can be obtained, if necessary, simply by looking through
the pages to see how it looks in practice.

Ambiguities can arise because, to a certain extent, the form of a nonlinear equation is
dependent on how one chooses to write it (for example, zy” +2y' +ze? = 0 and y” +2y' /2 +
e = 0 would occupy different positions in our scheme of ordering). In general, we have
chosen to leave each equation in the form in which it appeared in the source literature.
In a few instances we have deviated from this principle when it would have led to the
separation of an equation from the class of equations to which it naturally belongs. The
user is advised to multiply or divide by an obvious factor if an equation is not found where
expected, and to try again.

No linear equations, and no first order equations, have been dealt with. The major
parts of the book have been labeled 2, 3, 4, 5, 6, N to denote second order, third order,
..., sixth and higher orders, and Nth order. At the end of each of these parts are collected
systems of simultaneous equations, of the appropriate order.

The systems of each order have been grouped according to the highest order of differ-
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entiation that occurs (the independent variable is always either z or ¢, with differentiation
denoted by a prime or a dot, respectively). Within each group, the ordering scheme is
exactly like that for single equations, except that the dependent variable and its derivatives
(y,y, etc.) are now vector quantities. To facilitate the use of this scheme to look up a
system of equations, the systems have been written with all terms involving derivatives of
the dependent variables on the left-hand side and all undifferentiated terms on the right.
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SECOND ORDER EQUATIONS

2.1 4"+ f(y) =0, f(y) polynomial

1. y'+uy+y*—C=0,
where p and C are constants.
Put
- — (L) (2 12 _ _
y = au(f) +u,u = 3 {(/l. +40C) u},G—rz,
; 1\ .
ro= (p+2u)?a= (5) r?
to obtain the canonical form of the given DE as
v +u+ (1/2)u? = 0. (1)
A first integral of (1) is .
u’ = E—u®— (1/3)u, (2)

where I/ is an integration constant related to the energy of the oscillator. The phase
diagram of (2) is drawn. The closed orbit solutions, filling the region inside the loop of the
separatrix, namely,

ys = 3sech®(6/2) — 2, E =4/3, (3)
are easily drawn. These closed (periodic) solutions tend asymptotically to the separatrix.
Goldshtik, Hussain, and Shtern (1991)
2. y' +4y(y—1)—-A =0,

where A is a constant.

Multiplying the given DE by y’ and integrating once, we have

3 [ dr 2 3
2 <é> =—y’ + §y2 +34Ay + B = (y — )y — u2)(ys —y), say, (1)

where y; < y» < y3. The general form of the cubic in (1) is drawn. It is evident that
2
dy\~

the only real solutions of this equation occur when (_y) > 0; thus the solution is either

dz

5
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y =y, or a nonlinear oscillation between y, and y;. Two special cases of the general cubic
are when y, — ¥, giving the solitary wave, and when y, — y3, giving a discontinuity
between y; and y3. The solution can be written in terms of a Jacobian elliptic function
cn(u;v) as
2 . 1/2 .
y =1 + (ys — y2) en? (w [(2/3) (ys — 1) /%3 v)

where v = (y3 — y2)/(ys — y1). In the case A = B =0, v = 1 and the solution becomes
y = (3/2) sech®z, the solitary wave. Johnson (1970)

2 y'+6y*+a=0, y(0)=y(mr) =0,

where a € R is a parameter.

It is shown that for all k& € N, there exist values ay < --- < a; such that for a < a,
there exist k solutions of the given Sturm-Liouville problem. Ruf and Solimini (1986)

4. Y —y—(1/4)y* =0, —1<z<1,y(—1)=y(1)=1
Multiplication by 3" and integration leads to
? 2 g v % £
v =y — o+ (1/6)(y" — yo) (1)

on using evenness of solution in z, and setting y(0) = yo, as yet unknown. Separation of
variables in (1) and integration yields a solution in terms of elliptic functions,

y(x) = yo — uy scA(A 1672z m),

where w12 = —3(1 + y0/2) £ (1/2)[3(2 — 1) (6 + y0)]'/%, A1 = (1/2)(~uy)'/?, and m =
(u1 — u2)/(—u2).

In order to satisfy the BC, we require that y, satisfies
yo=1+usc*(A 1673 m) = f(yo)- (2)
Numerical solution of (2) leads to yo = 0.60850. Hart (1980)
5. y' —y—(1/4)y* =0, —1<z<1l,y(-1)=1, y(1)=1.

(a) The given DE arises in the determination of the stationary temperature distribution
in a bar whose ends # = £1 are kept at the temperature y = 1, etc. It is stated from
previous results that the given problem has a unique solution such that 0 < y(z) < 1 and
the bounds are given by

ail(z) < y((z) < ea(z), bi(z) < y(z) < bo(x),
where

1-0.35(1 —z?) — 0.05(1 — ),
1—0.35(1 — z?) — 0.04(1 — =),

ci(z)
Cg(.’C)

and

bi(z) = {cosh(3/2)"2z}/cosh(3/2)"?,
ba(z) {cosh z}/{cosh 1}.

Il
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These bounds are considerably improved upon, by using the maximum principle. Numer-
ical results are also given.

(b) The given DE is autonomous. Its general solution is easily found to be
y(z) = (z — xp) In(z — ) + a(z — x),

where z; and « are arbitrary constants. Anderson and Arthurs (1982), Kruskal and Clark-
son (1992)

6. y —y—y:=0.

The given DE has (y',y) = (0,0) as a saddle point, while (y',y) = (—1,0) is a center.
Writing y = —1+e€z, we find that 2"+ 2z = ez*, 2(0) = 1, 2/(0) = 0. Putting we = 6, w* =
1 — en(e), we have

. d
" = 1- . '=—.
Z'+z=€{nz+ (1 —en)z"}, pT: (1)

An equivalent integral equation form of (1) is

z(6)

Il

0
cos 6 + e/ sin(6 — 7)[nz + (1 — en) z%|d,
0
0
Z'(#) = —sinf+ 6/ cos(8 — 7)[nz + (1 — en) 2*]dr. (2)
0
We know that for e small enough the solutions of (2) are periodic. Expanding z and 7 in
powers of € and applying the periodicity condition, we find that n(e) = 0. — (5/6)e + €2,
with T' = 2x/w, Ty = 27, Ty = 0,7y = 57 /6. Verhulst (1990), p.143
7. y'—(3/2)y* =0, y(1)=1,y(1) =1

Writing the given DE as y'y” — (3/2)y*y’ = 0, integrating twice, and using the IC, we
have y = 4(3 — z) 2. Reddick (1949), p.192

8. y' —2y*+y =0, y(0)=1, y'(0)=0.

Upper and lower bounds of the solution are found. Exact solution is y = sec z. Eliason
(1972)

9. y' —6y® =0.

d; 5 y
Put p(y) = v/, p£ =6y, y = £(4y° — C))'%, y = P(z + C,); P is the Weierstrass
P-function with invariants g, = 0,93 = C); C; and C, are arbitrary constants. Kamke
(1959), p.542; Murphy (1960), p.380

10. y' —6y° + (3/2)y5 =0, y(zo) = yo, y'(z0) = 0.
The solution is easily found to be

y =10+ (3/2)yo ta,ng[(Syo/?)l/z(m — xo)].

Bartashevich (1973)
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11. y' —6y% + 4y = 0.

Multiply by ¥’ and integrate:

y'2—4y3+4y2+C=0, + Cy;

/{4y —4y —C}l/2

the solution is obtained in terms of elliptic functions. C and C) are arbitrary constants.

For C =0, )

sin’(z + C)’
Kamke (1959), p.543

12, y' —k*y? =0,

where k is a constant.

d . .
—p; we can integrate the resulting DE twice

Putting y' = p, we have y" = pdy

d
(using p= d—y) to obtain
T

dy N
{C1+ (2/3)k*y?}1 /2

Cz = :’:(B,

where C; and C, are arbitrary constants. The quadrature may be evaluated explicitly.
Martin and Reissner (1958), p.77

13. ey’ —y* =0, e<1, y(0)=a, y(1)=4.
Two boundary layer solutions are constructed. They are

¥ = a/{1+ (a/6) Y + - & = ze /2
and
y'=B/{1+(8/6)/*CF +---,( = (1—z) /e
near z = 0 and = = 1, respectively. Nayfeh (1985), p.347
14. y' + kY =0,
where k is a constant.

d
Writing y' = p,y" = pr, we can integrate the resulting DE twice to obtain
dy

/[c,1 _(2/3 k2 3]]/2"‘02::*:73,

where C; and C, are arbitrary constants. The quadrature may be evaluated explicitly.
Martin and Reissner (1958), p.77



2.1. ¥y"+ f(y) =0, f(y) polynomial 9

15. ey’ +y*—1=0.

Multiplying by 3" and integrating, we get
(1/2)ey” + (1/3)y* —y = E,

where FE is a constant. The solution of this equation is y = a{(z/é) +b, where ((z) satisfies
the equation _
¢" =4(1 —m?)¢ —4(1 — 2m?)¢? — am?¢>.

The coefficients a, b, and § are related to m and € according to

b
)

(1—2m?)/(m* —m? + 1), a=3m?/(m*—m?+1)/2,
[2e(m* —m? +1)"2)2 b —3b—3E =0.

More explicitly,

y = [3m?/(m* —m?+ 1) cn®[(z — z1)/{2e(m* — m? +1)/%}1/%; m)
~(om? ~ 1)/(m* — m? + 1)1

Note that the period of cn(z) is 4K(m). The exact solution is related to asymptotic
solutions, using a variational approach. Kath, Knessl, and Matkowsky (1987)

16. y' —my?’+n=0, y(0)=0,y(1/2)=1, y'(1/2) =0,

where m € R is given. The constant n forms the eigenvalue.

The given problem occurs in viscous flow between parallel plates, and is solved in terms
of elliptic functions by Tang (1967). Bespalova (1984)

17. Y +y+ey?=0,

y(0) = A, y'(0) = 0. Here € is small.

A uniform perturbation solution to O(€*) is

y(0,e) = Acosh+ e(A?/6)(—3 + 2cos B + cos 26)
+€*(A%/3)[—1 + (29/48) cos 8 + (1/3) cos 20 + (1/16) cos 36] + O(€%),

where 6 = wz and w(e) = 1 — €2(54%/12) + O(€®). Mickens (1981), p.39
18. ¥y +y—ay®?=0, a>O0.
The method of harmonic balance gives the approximate solution for small « as
Yy =c+ acoswez,
where w? = 1 — 2ac, ¢ = 1/(2a) — {[1/(22) }(1 — 2a%a*)'/?, implying that the frequency-

amplitude relation is
w=(1-2a%%" a <1/(2a)"2.

Jordan and Smith (1977), p.120



10 SECOND ORDER EQUATIONS

19. y —ey* +y—a=0,

where « and € are positive constants.

This is the relativistic equation for the central orbit of a planet, where y = 1/r, and
r,x are polar coordinates of the planet in the plane of its motion. The term ey is the
Einstein correction; € and « are positive constants with e very small. The equilibrium
point y = {1+ (1 — 4ea)'/?}/2 is a center according to linear approximation. Jordan and
Smith (1977), p.58

20. y' +wly—ey’ =0, y(0)=0, y(X)=L,

where w, e, X, and L are constants.

Introducing A = 4/(0) and putting ( = wy/L, we get a first integral of the given system
dc

dr
where a = 2eA/(3w?), P(¢) = ¢*— (1/a)¢*+1/a; Ais yet an unknown constant. Equation
(1) may be solved subject to ((0) = 0,((X) = wL/\. Assume that o < 2/3(3)"?, so
that P(¢) = 0 has three real roots, (;, (s, and (3 ((; > ¢ > (3). For A > 0, the general
solution can be expressed in terms of elliptic integrals as wz = a /2>y 'F(¢/8), where
F(¢/B) is the elliptic integral, v = (1/2)(Ci — ()%, sin’ 3 = (& — &)/(G — C), and
cos® ¢ = (C1 — )G = G)/{(G = GG - O}
Similar results may be obtained when A < 0. Explicit approximate solution is obtained
when « is small. Numerical results are depicted. Becket (1980)

as

= +w o'*P(()"?, (1)

a1 . y' +y—k(1+ey?) =0,

where € < 1 and k are parameters.

The given DE is the orbital equation of a planet about the sun. The perturbation
solution with the initial conditions y(0) = k(e 4+ 1),4'(0) = 0, where e is the eccentricity
of the unperturbed orbit, is

y = k(ecosz +1) + ek*{exsinz + (1/2)e’ + 1 — {(*/3) 4+ 1} cosz — (?/6) cos 2z} + O(€?).
Jordan and Smith (1977), p.149
22. Y —ey’ +y—pn=0,

where € (small) and g are constants.

Writing y = p+acos(6+¢), ¥ = —asin(6+1), and following the Lagrange method of
averaging, we obtain, by substitution in the original DE, equations for a and 4 as functions
of 6:

d
d_; = —e{p+acos(f+ ’l,b)}g sin(6 + ),
(1)
da
d_g = —(e/a){p+ acos(f + 1) }? cos(d + ).
Averaging the RHSs of (1) with respect to 6 over 0 to 27 gives

da dv

¥} =0, ¥ = —€U. (2)



