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trated near a point on the left hand side. The dark part shows the region where u < 0.



Preface

Linear elliptic equations arise in several models describing various phenomena in
the applied sciences, the most famous being the second order stationary heat equa-
tion or, equivalently, the membrane equation. For this intensively well-studied linear
problem there are two main lines of results. The first line consists of existence and
regularity results. Usually the solution exists and “gains two orders of differenti-
ation” with respect to the source term. The second line contains comparison type
results, namely the property that a positive source term implies that the solution
is positive under suitable side constraints such as homogeneous Dirichlet bound-
ary conditions. This property is often also called positivity preserving or, simply,
maximum principle. These kinds of results hold for general second order elliptic
problems, see the books by Gilbarg-Trudinger [198] and Protter-Weinberger [347].
For linear higher order elliptic problems the existence and regularity type results re-
main, as one may say, in their full generality whereas comparison type results may
fail. Here and in the sequel “‘higher order” means order at least four.

Most interesting models, however, are nonlinear. By now, the theory of second
order elliptic problems is quite well developed for semilinear, quasilinear and even
for some fully nonlinear problems. If one looks closely at the tools being used in
the proofs, then one finds that many results benefit in some way from the positivity
preserving property. Techniques based on Harnack’s inequality, De Giorgi-Nash-
Moser’s iteration, viscosity solutions etc., all use suitable versions of a maximum
principle. This is a crucial distinction from higher order problems for which there is
no obvious positivity preserving property. A further crucial tool related to the max-
imum principle and intensively used for second order problems is the truncation
method, introduced by Stampacchia. This method is helpful in regularity theory, in
properties of first order Sobolev spaces and in several geometric arguments, such
as the moving planes technique which proves symmetry of solutions by reflection.
Also the truncation (or reflection) method fails for higher order problems. For in-
stance, the modulus of a function belonging to a second order Sobolev space may
not belong to the same space. The failure of maximum principles and of truncation
methods, one could say, are the main reasons why the theory of nonlinear higher
order elliptic equations is by far less developed than the theory of analogous second
order equations. On the other hand, in view of many applications and increasing
interest especially in the last twenty years, one should try to develop new tools suit-
able for higher order problems involving polyharmonic operators.

vii



viii Preface

The simple example of the two functions x — +|x|*> shows that already for the
biharmonic operator the standard maximum principle fails. Nevertheless, taking also
boundary conditions into account could yield comparison or positivity preserving
properties and indeed, in certain special situations, such behaviour can be observed.
It is one goal of the present exposition to describe situations where positivity pre-
serving properties hold true or fail, respectively, and to explain how we have tackled
the main difficulties related to the lack of a general comparison principle. In the
present book we also show that in many higher order problems positivity preserving
“almost”™ occurs. By this we mean that the solution to a problem inherits the sign
of the data, except for some small contribution. By the experience from the present
work, we hope that suitable techniques may be developed in order to obtain results
quite analogous to the second order situation. Many recent higher order results give
support to this hope.

A further goal of the present book is to collect some of those problems, where the
authors were particularly involved, and to explain by which new methods one can
replace second order techniques. In particular, to overcome the failure of the maxi-
mum principle and of the truncation method several ad hoc ideas will be introduced.

Let us now explain in some detail the subjects we address within this book.

Linear Higher Order Elliptic Problems

The polyharmonic operator (—A )™ is the prototype of an elliptic operator L of order
2m, but with respect to linear questions, much more general operators can be con-
sidered. A general theory for boundary value problems for linear elliptic operators
L of order 2m was developed by Agmon-Douglis-Nirenberg [4-6, 148]. Although
the material is quite technical, it turns out that the Schauder theory as well as the
LP-theory can be developed to a large extent analogously to second order equations.
The only exception are maximum modulus estimates which, for linear higher order
problems, are much more restrictive than for second order problems. We provide a
summary of the main results which hopefully will prove to be sufficiently wide to
be useful for anybody who needs to refer to linear estimates or existence results.
The main properties of higher — at least second — order Sobolev spaces will be
recalled. Since more orders of differentiation are involved, several different equiv-
alent norms are available in these spaces. A crucial role in the choice of the norm
is played by the regularity of the boundary. For the second order Dirichlet problem
for the Poisson equation a nonsmooth boundary leads to technical difficulties but,
due to the maximum principle, there is an inherent stability so that, when approxi-
mating nonsmooth domains by smooth domains, one recovers most of the features
for domains with smooth boundary, see [46]. For Neumann boundary conditions
the situation is more complicated in domains with rather wild boundaries, although
even for polygonal boundaries they do not show spectacular changes. For higher
order boundary value problems some peculiar phenomena occur. For instance, the
so-called Babuska and SapondZyan paradoxes [28,358] forces one to be very careful
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in the choice of the norm in second order Sobolev spaces since some boundary value
problems strongly depend on the regularity of the boundary. This phenomenon and
its consequences will be studied in some detail.

Positivity in Higher Order Elliptic Problems

As long as existence and regularity results are concerned, the theory of linear higher
order problems is already quite well developed as explained above. This is no longer
true as soon as qualitative properties of the solution related to the source term are
investigated. For instance, if we consider the clamped plate equation
A’u=f inQ,
Ju 0.1)
u= 5t =00n0dQ,

the “simplest question” seems to find out whether the positivity of the datum implies
the positivity of the solution, Or, physically speaking,

does upwards pushing of a clamped plate yield upwards bending?

Equivalently, one may ask whether the corresponding Green function G is positive.
In some special cases, the answer is “yes”, while it is “no” in general. However,
in numerical experiments, it appears very difficult to display the negative part and
heuristically, one feels that the negative part of G — if present at all — is small in a
suitable sense compared with the “dominating” positive part. We discuss not only
the cases where one has positive Green functions and develop a perturbation theory
of positivity, but we shall also discuss systematically under which conditions one
may expect the negative part of the Green function to be small. We expect such
smallness results to have some impact on future developments in the theory of non-
linear higher order elliptic boundary value problems.

Boundary Conditions

For second order elliptic equations one usually extensively studies the case of
Dirichlet boundary conditions because other boundary conditions do not exhibit
too different behaviours. For the biharmonic equation A% = f in a bounded do-
main of R” it is not at all obvious which boundary condition would serve as a role
model. Then a good approach is to focus on some boundary conditions that describe
physically relevant situations. We consider a simplified energy functional and derive
its Euler-Lagrange equation including the corresponding natural boundary condi-
tions. We start with the linearised model for the beam. From a physical point of
view, as long as the fourth order planar equation is considered, the most interest-
ing seem to be not only the Dirichlet boundary conditions but also the Navier or
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Steklov boundary conditions. The Dirichlet conditions correspond to the clamped
plate model whereas Navier and Steklov conditions correspond to the hinged plate
model, either by neglecting or considering the contribution of the curvature of the
boundary. Each one of these boundary conditions requires the unknown function
to vanish on the boundary, the difference being on the second boundary condition.
These three boundary conditions have their own features and none of them may be
thought to play the model role. We discuss all of them and emphasise their own pe-
culiarities with respect to the comparison principles, to their variational formulation
and to solvability of related nonlinear problems.

Eigenvalue Problems

For second order problems, such as the Dirichlet problem for the Laplace operator,
one has not only the existence of infinitely many eigenvalues but also the simplicity
and the one sign property of the first eigenfunction. For the biharmonic Dirichlet
problem, this property is true in a ball but it is false in general. Again, a crucial role
is played by the sign of the corresponding Green function. Concerning the isoperi-
metric properties of the first eigenvalue of the Dirichlet-Laplacian, the Faber-Krahn
[162,254,255] result states that, among domains having the same finite volume it
attains its minimum when the domain is a ball. A similar result was conjectured to
hold for the biharmonic operator under homogeneous Dirichlet boundary conditions
by Lord Rayleigh [351] in 1894. Although this statement has been proved only in
domains of dimensions n = 2,3, it is the common feeling that it should be true in
any dimension. The minimisation of the first Steklov eigenvalue appears to be less
obvious. And, indeed, we will see that a Faber-Krahn type result does not hold in
this case.

Semilinear Equations

Among nonlinear problems for higher order elliptic equations one may just mention
models for thin elastic plates, stationary surface diffusion flow, the Paneitz-Branson
equation and the Willmore equation as frequently studied. In membrane biophysics
the Willmore equation is also known as Helfrich model [228]. Moreover, several
results concerning semilinear equations with power type nonlinear sources are also
extremely useful in order to understand interesting phenomena in functional analysis
such as the failure of compactness in the critical Sobolev embedding and in related
inequalities.

One further motivation to study nonlinear higher order elliptic reaction-diffusion
type equations like

(—A)"u= f(u) (%)
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in bounded domains is to understand whether the results available in the simplest
case m = 1 can also be proved for any m, or whether the results for m = 1 are special,
in particular as far as positivity and the use of maximum principles are concerned.
The differential equation () is complemented with suitable boundary conditions. As
already mentioned above, if m = n = 2, equation («) may be considered as a non-
linear plate equation for plates subject to nonlinear feedback forces, one may think
e.g. of suspension bridges. In this case, () may also be interpreted as a reaction-
diffusion equation, where the diffusion operator A? refers to (linearised) surface
diffusion.

The first part of Chapter 7 is devoted to the proof of symmetry results for pos-
itive solutions to (*) in the ball under Dirichlet boundary conditions. As already
mentioned, truncation and reflection methods do not apply to higher order problems
so that a suitable generalisation of the moving planes technique is needed here.

Equation (%) deserves a particular attention when f(u) has a power-type be-
haviour. In this case, a crucial role is played by the critical power s = (n+2m)/(n—
2m) which corresponds to the critical (Sobolev) exponent which appears when-
ever n > 2m. Indeed, subcritical problems in bounded domains enjoy compactness
properties as a consequence of the Rellich-Kondrachov embedding theorem. But
compactness is lacking when the critical growth is attained and by means of
PohoZaev-type identities, this gives rise to many interesting phenomena. The ex-
istence theory can be developed similarly to the second order case m = 1 while
it becomes immediately quite difficult to prove positivity or nonexistence of cer-
tain solutions. Nonexistence phenomena are related to so-called critical dimensions
introduced by Pucci-Serrin [348, 349]. They formulated an interesting conjecture
concerning these critical dimensions. We give a proof of a relaxed form of it in
Chapter 7. We also give a functional analytic interpretation of these nonexistence re-
sults, which is reflected in the possibility of adding L>*~remainder terms in Sobolev
inequalities with critical exponent and optimal constants. Moreover, the influence
of topological and geometrical properties of £2 on the solvability of the equation is
investigated. Also applications to conformal geometry, such as the Paneitz-Branson
equation, involve the critical Sobolev exponent since the corresponding semilinear
equation enjoys a conformal covariance property. In this context a key role is played
by a fourth order curvature invariant, the so-called Q-curvature. Our book does not
aim at giving an overview of this rapidly developing subject. For this purpose we
refer to the monographs of Chang [89] and Druet-Hebey-Robert [ 149]. We want to
put a spot on some special aspects of such kind of equations. First, we consider the
question whether in suitable domains in euclidean space it is possible to change the
euclidean background metric conformally into a metric which has strictly positive
constant Q-curvature, while at the same time, certain geometric quantities vanish on
the boundary. Secondly, we study a phenomenon of nonuniqueness of complete met-
rics in hyperbolic space, all being conformal to the Poincaré-metric and all having
the same constant Q-curvature. This result is in strict contrast with the correspond-
ing problem involving constant negative scalar curvature.

We conclude the discussion of semilinear elliptic problems with some
observations on fourth order problems with supercritical growth. Corresponding
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second order results heavily rely on the use of maximum principles and constructions
of many refined auxiliary functions having some sub- or supersolution property.
Such techniques are not available at all for the fourth order problems. In symmetric
situations, however, they could be replaced by different tools so that many of the
results being well established for second order equations do indeed carry over to the
fourth order ones.

A Dirichlet Problem for Willmore Surfaces of Revolution

A frame invariant modeling of elastic deformations of surfaces like thin plates or
biological membranes gives rise to variational integrals involving curvature and area
terms. A special case is the Willmore functional

/sza),
Jr

which up to a boundary term is conformally invariant. Here H denotes the mean cur-
vature of the surface I in R?. Critical points of this functional are called Willmore
surfaces, the corresponding Euler-Lagrange equation is the so-called Willmore
equation. It is quasilinear, of fourth order and elliptic. While a number of beautiful
results have been recently found for closed surfaces, see e.g. [35,156,263-265,372],
only little is known so far about boundary value problems since the difficulties men-
tioned earlier being typical for fourth order problems due to a lack of maximum
principles add here to the difficulty that the ellipticity of the equation is not uni-
form. The latter reflects the geometric nature of the equation and gives rise e.g.
to the problem that minimising sequences for the Willmore functional are in gen-
eral not bounded in the Sobolev space H. In this book we confine ourselves to a
very special situation, namely the Dirichlet problem for symmetric Willmore sur-
faces of revolution. Here, by means of some refined geometric constructions, we
succeed in considering minimising sequences of the Willmore functional subject
to Dirichlet boundary conditions and with suitable additional C'-properties thereby
gaining weak H>- and strong C'-compactness. We expect the theory of boundary
value problems for Willmore surfaces to develop rapidly and consider this chapter
as one contribution to outline directions of possible future research in quasilinear
geometric fourth order equations.
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Chapter 1
Models of Higher Order

The goal of this chapter is to explain in some detail which models and equations
are considered in this book and to provide some background information and com-
ments on the interplay between the various problems. Our motivation arises on the
one hand from equations in continuum mechanics, biophysics or differential geom-
etry and on the other hand from basic questions in the theory of partial differential
equations.

In Section 1.1, after providing a few historical and bibliographical facts, we re-
call the derivation of several linear boundary value problems for the plate equation.
In Section 1.8 we come back to this issue of modeling thin elastic plates where
the full nonlinear differential geometric expressions are taken into account. As a
particular case we concentrate on the Willmore functional, which models the pure
bending energy in terms of the squared mean curvature of the elastic surface. The
other sections are mainly devoted to outlining the contents of the present book. In
Sections 1.2-1.4 we introduce some basic and still partially open questions concern-
ing qualitative properties of solutions of various linear boundary value problems
for the linear plate equation and related eigenvalue problems. Particular emphasis
is laid on positivity and — more generally — “almost positivity” issues. A significant
part of the present book is devoted to semilinear problems involving the biharmonic
or polyharmonic operator as principal part. Section 1.5 gives some geometric back-
ground and motivation, while in Sections 1.6 and 1.7 semilinear problems are put
into a context of contributing to a theory of nonlinear higher order problems.

1.1 Classical Problems from Elasticity

Around 1800 the physicist Chladni was touring Europe and showing, among other
things, the nodal line patterns of vibrating plates. Jacob Bernoulli II tried to model
these vibrations by the fourth order operator 57—\4‘; + %; [54]. His model was not
accepted, since it is not rotationally symmetric and it failed to reproduce the nodal
line patterns of Chladni. The first use of A? for the modeling of an elastic plate is at-
tributed to a correction of Lagrange of a manuscript by Sophie Germain from 1811.
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2 1 Models of Higher Order

For historical details we refer to [79,250, 325,398]. For a more elaborate history
of the biharmonic problem and the relation with elasticity from an engineering point
of view one may consult a survey of Meleshko [300]. This last paper also contains a
large bibliography so far as the mechanical engineers are interested. Mathematically
interesting questions came up around 1900 when Almansi [8,9], Boggio [62,63] and
Hadamard [222,223] addressed existence and positivity questions.

In order to have physically meaningful and mathematically well-posed problems
the plate equation A%u = f has to be complemented with prescribing a suitable set
of boundary data. The most commonly studied boundary value problems for second
order elliptic equations are named Dirichlet, Neumann and Robin. These three types
appear since they have a physical meaning. For fourth order differential equations
such as the plate equation the variety of possible boundary conditions is much larger.
We will shortly address some of those that are physically relevant. Most of this book
will be focussed on the so-called clamped case which is again referred to by the
name of Dirichlet. An early derivation of appropriate boundary conditions can be
found in a paper by Friedrichs [173]. See also [58, 141]. The following derivation is
taken from [388].

1.1.1 The Static Loading of a Slender Beam

If u(x) denotes the deviation from the equilibrium of the idealised one-dimensional
beam at the point x and p(x) is the density of the lateral load at x, then the elastic
energy stored in the bending beam due to the deformation consists of terms that
can be described by bending and by stretching. This stretching occurs when the
horizontal position of the beam is fixed at both endpoints. Assuming that the elastic
force is proportional to the increase of length, the potential energy density for the
beam fixed at height O at the endpoints a and b would be

Ju(u)z./ab( l+u’(x)2—l>dx.

For a string one neglects the bending and, by adding a force density p, one finds

J(u) = ./“b <\/ 1+u(x)2—1— p(x)u(x)) dx.

For a thin beam one assumes that the energy density stored by bending the beam is
proportional to the square of the curvature:

b u//(X)Z ;
.Ix;,(u)=/a m\/l+u(.x)2dx. (1.1)

Formula (1.1) for Jg, highlights the curvature and the arclength. A two-dimensional
analogue of this functional is the Willmore functional, which is discussed below in



