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SERIES EDITOR’S PREFACE

‘Et moi, ..., si Javail su comment en revenir,
je n’y serais point allé’
Jules Verne

The serics is divergent; therefore we may be
able to do something with it.

One service mathematics has rendered the
human race. It has put common scnse back
where it belongs, on the topmast shelf next
to the dusty canister labelled ‘discarded non-
sense’.

Eric T. Bell
0. Heaviside .

Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non-
linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for
other sciences.

Applying a simple rewriting rule to the quote on the right above one finds such statements as:
‘One service topology has rendered mathematical physics ..."; ‘One service logic has rendered com-
puter science ..."; ‘One service category theory has rendered mathematics ...". All arguably true. And
all statements obtmr\ablc this way form part of the raison d’étre of this series.

This series, Mathematics and Its Applications, started in 1977. Now that over one hundred
volumes have appeared it seems opportune to reexamine its scope. At the time I wrote

“Growing specialization and diversification have brought a host of monographs and
textbooks on increasingly specialized topics. However, the ‘tre¢’ of knowiedge of
mathematics and related fields does not grow only by putting forth new branches. It
also happens, quite often in fact, that branches which were thought to be completely
disparate arc suddenly seen to be related. Further, the kind and level of sophistication
of mathematics applied in various sciences has changed drastically in recent years:
measure theory is used (non-trivially) in regional and theoretical economics; algebraic
geometry interacts with physics; the Minkowsky lemma, coding theory and the structure
of water meet one another in packing and covering theory; quantum fields, crystal
defects and mathematical programming profit from homotopy theory; Lie algebras are
relevant to filtering; and prediction and electrical engineering can use Stein spaces. And
in addition to this there are such new emerging subdisciplines as ‘experimental
mathematics’, ‘CFD’, ‘completely integrable systems’, ‘chaos, synergetics and large-scale
order’, which are almost impossible to fit into the existing classification schemes. They
draw upon widely different sections of mathematics.”

By and large, all this still applies today. It is still true that at first sight mathematics seems rather
fragmented and that to find, see, and exploit the deeper underlying interrelations more effort is
needed and so are books that can help mathematicians and scientists do so. Accordingly MIA will
continue to try to make such books available.

If anything, the description I gave in 1977 is now an understatement. To the examples of
interaction areas one should add string theory where Riemann surfaces, algebraic geometry, modu-
lar functions, knots, quantum field theory, Kac-Moody algebras, monstrous moonskine (and more)
all come together. And to the examples of things which can be usefully applicd let me add the topic
‘finite geometry’; a combination of words which sounds like it might not even exist, let alone be
applicable. And yet it is being applied: to statistics via designs, to radar/sonar detection arrays (via
finite projective planes), and to bus connections of VLSI chips (via difference sets). There seems to
be no part of (so-called pure) mathematics that is not in immediate danger of being applied. And,
accordingly, the applied mathematician needs to be aware of much more. Besides analysis and
numerics, the traditional workhorses, he may need all kinds of combinatorics, slgebra, probability,
and so on.

In addition, the applied scientist needs to cope increasingly with the nonlinear world and the
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extra mathematical sophistication that this requires. For that is where the rewards are. Linear
models are honest and a bit sad and depressing: proportional efforts and results. It is in the non-
linear world that infinitesimal inputs may result in macroscapic outputs (or vice versa). To appreci-
ate what I am hinting at: if electronics were linear we woifd have no fun with transistors and com-
puters; we would have no TV; in fact you would not be reading these lines.

There is also no safety in ignoring such outlandish things as nonstandard analysis, superspace
and anucommuting integration, p-adic and ultrametric space. All three have applications in both
clectrical engineering and physics. Once, complex numbers were equally outlandish, but they fre-
quently proved the shortest path between ‘real’ results: Shmluly, the first two topics named have
already provided a number of ‘wormhole’ paths 'lhcm is no tcllmg where all this is leading -
fortunately.

Thus the original scope of the series, which for vanous (sound) reasons now comprises five sub-
series: white (Japan), yellow (China), red (USSR), blue (Bastern Europe), and green (everything
else), still applics. It has been enlarged a bit to include books treating of the tools from one subdis-
cipline which are used in others. Thus the series still aims at books dealing with:

- a central concept which plays an important role. m seve:al different mathematical and/or
scientific specialization areas;

- new applications of the results and ideas from one area of scientific endeavour into another;

- influences which the results, problems and concepts d one field of enquiry have, and have had,
on the development of another.

This js the greatly modified and supplemented second dmn of the first book on Davydov solitons
and related matters which appeared in 1985 and is now pueucany sold out. The main differences
_ are a large new chapter on the quantum theory of solitons, 2 thorough discussion of two component
solitons and a great amount of attention paid to dischssians of the physical consequences of the
theory. These last two aspects have caused modifications and additions throughout the book (as
compared with the first edition).

As 1 wrote in my preface to the first edition there is a good, albeit heuristic - there is mathemati-
cal work to be done here - argument that says that the next approximation after the linear one for
(quasi) one-dimensional wave like phenomena will, inevitably, involve soliton equations. Develop-
ments since 1985 on quasi one-dimensional structures (such as protein chains), the topic of this
book, have done much to bear this out, and soliton waves appear practically all the time in such
structures.. Examples are the soliton waves of energy transport along protein chains; these are
called Davydov solitons, after their discoverer - the author of this book.

It is a pleasure to welcome this totally-up-to-date new version of this work, which is, discounting
the st edition, still the unique comprehensive volume on the topic.

The shortest path between two truths in the
real domain passes through the p
domain.

J. Hadamard

La physique ne nous donne pas seulement
I ion de résoudre des proble - clle
nous [ait pressentir la solution.

H. Poincaré

Bussum, 7 October 1990

Never lend books, for no one ever returns

them; the only books I have in my library

are books that other folk have lent me.
Anatole France

The function of an expert is not to be more
right than other people, but to be wrong for
more sophisticated reasons.

David Butler

Michiel Hazewinkel



Preface

The problem of electrons pairing i quasi-one-dimensional structures with the for-
mation o bisolitons is discussed. A new bisoliton mechanism of high-7, supercon-
ductivity of quasi-one-dimensional nonmetallic complex compounds with strong
electron-phenon coupling is investigated by means of nonlinear equations. In such
. compounds, the coherence length is small (~ 15A) compared 10”*cm inherent for
metals described by the BCS theory. The conditions.of the generation of solitofls
and Dbisolitons at the boundary of a soft quasi-one-dimensional structure are also
studied.

In a new and rather large Chapter, the basis of a quantum theory of solitons is
presented which enables heat vibrations to be taken into account. The material
dealing with proton conductivity via moiecular chains with hydrogen bonds
between molecules has been extended. The role of proton conductivity in the
near-surface layers of water is also discussed.

Pekar’s theory of polarons in iomic crystals is modified. The importance of an
account of the spatial dispersion of c{'inical phonons characterizing polarization of
a crystal is demonstrated, if this is neglected, as has been done in all previous
theories, polarons cannot move in a érysta.l.

In conclusion, A.A. Eremko, V.N. Ermakov, A.V. Zolotariuk, N.I. Kislukha,
G.M. Pestryakov, A.l. Sergienko, and V.Z. Enol'skii who participated in the
development of the original studies of the theory of solitons involved in this book,

E.M. Zaika for her help in the preparation of this book for publication, and E.S.
Kryachko for his English translation.

Alexander S. Davydov



Preface to the Second Edition

The first English edition of the present book was published in 1985 (also by
Kluwer Academic Publishers). Hdwever, since then the theory of solitons in
molecular systems has been developed considerably so that a second edition is
more than justified.

This second edition iy greatly modified and supplemented in view of the
modern state of theory of two-cbmponcnt solitons in quasi-one-dimensional
moiecular systems. Compared with. the first edition, some mathematical details
have been omitted. Great attention has been paid to a discussion of the physical
results of the theory outlined and its possible applications.

In molecular systems, solitons are’ two-component formations arisiag due to the
norlinear interaction of two types of quasiparticles, or fields. One should
emphasize that these nonlinear formations move only with velocities less than
scme limiting velocity. The reasons leading to such a constraint are analyzed in
the present book.

A considerable part of the book is devoted to modern approaches in the study
of energy transduction and electrons in quasi-one-dimensional molecular systems
and of protons in macro-molecules with hydrogen bonds. The dominant role of
nonlinear phenomena in biology leading to the formation of solitons is demon-
strated, and based on these concepts, some problems of modern bioenergetics are
discussed. An important role of solitons in clucidating the contraction mechanism
of muscles of animals, the motion of bacteria plaits, and intracellular motions are
aiso considered.
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Introduction

For a long time linéar equations have been used for describing diverse phenomene
in physics, chemistry, biology, and related applications. However, these take intc
account only a linear response of a system to an external influence. Consequently,
if the intensity of an external influence increases, the response increases at the
same rate.

Fundamental to the linear equations of mechanics (Newton’s equations), elec-
trodynamics (Maxwell's equations), and quantum theory (Schrodinger’s equation)
is the superposition principle, which enables any physical quantity to be
represented as a sum of its elementary components. For instance, white light may
be considered as the sum of various monochromatic, or singe-frequency com-
ponents.

Many properties of systems consisting of a large number of interacting
molecules and atoms have been explained using linear equations. In particular, the
introduction of the concept of collective excitations has been extremely fruitful. A
collective excitation characterizes 2 mutual and consistent, or coherent, motion of
a large number of particles. Acoustic waves in gases, liquids, and solids are exam-
ples of such collective excitations. An acoustic wave is an oscillation of particles of
average density which propagates in a wavelike manner on a background of a
huge number of disordered heat vibrations. Simple acoustic waves are mono-
chromatic and are therefore characterized by a specific frequency and wavelength.

The concept of elementary excitations of different types is widely found in
solid state physics, e.g. phonons are quanta of collective vibrations of atoms and
molecules, excitatons are quanta of collective excitations of solids whdse frequen-
cies correspond to those of visible and ultraviolet light, and magnons are quanta
of spin (magnetic) excitations. All these elementary excitations are described by
monochromatic waves. A strongly monochromatic wave has an infinite spatial
extension. For this reason, it is unable to carry energy and information. Hence,

1



2 Introduction

energy is transferred only by vibrational excitations which move with a given velo-
city and are localized within a rather small spatial region. Such localized excita-
tions are called wave packets since they are formed by a large number of mono-
chromatic waves.

In various media, the phase velocity of monochromatic waves, i.e., the velocity
of motion of a constant phase, depends on the wavelength. These media are called
dispersive. As far as the motion of a wave packet in such a media is concerned,
the different monochromatic componehts move with different velocities, which
results in an increasing spatial dimension of the wave packet. One can say that a
wave packet ‘runs’ with a time. The effect of ‘running’ is one of the main
difficulties connected with the transfer of energy by wave-packet-type excitations.
A second noteworthy shortcoming is that a wave packet loses encrgy in motion.
" This energy is transferred io random vibrations of atoms and molecules, i.e., to
heating of the medium.

It has recently been recognized that the ideal model of transport of vibrational
excitations, electrons, and protons in a medium is their transfer in the form of sol-
itary waves known as solitons. Unlike ordinary waves which represent a spatial
periodical repetition of elevations and hollows on a water surface, or condensa-
tions and rarefactions of a density, or deviations from a mean value of various
physical quantities, solitons are single elevations, such as thickenings, etc., which
propagate as a unique entity with a given velocity. The transformation and motion
of solitons are described by nonlinear equations of mathematical physics.

The word ‘soliton’ was first coined by Zabusky and Kruskal [278] in 1965 to
designate briefly solitary waves corresponding to particular solutions of some non-
linear equations describing the propagation of excitations in continuous media
with dispersion and nonlinearity. However, the first qualitative description of sol-
itary waves was observed in 1834 on a surface in a shallow channel at Edinburgh,
Scotland, by the naval engineer John Scott-Russell and described in “The Report
on Wavss’ [261]. Based on initial observations, Scott-Russell emphasized the

" extreme stability and auto self-organization of solitary waves. The great stability
of solitons has led to numerous attempts in recent years to explain many novel
phenomena in terms of solitons in different branches of physics and other sci-
ences.

The mathematical description of solitary waves on a water surface in shallow
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channels was first given on a basis of the equation,

‘i+u—+ﬁ~~831 }u =0, u=ux?). )]

proposed in 1895 by Korteweg and de Vries (KdV equation) [213].

Interest in solitary waves has considerably increased due to related studies in
plasma physics. In 1958, Sagdeev [104,105], showed that solitary waves, similar
those observed on a water surface, could propagate in plasma in a strong mag-
netic field. Kadomtsev and Karpman [73] have given a complete review of mag-
netic and ionic-acoustic solitons in plasmas, and have considered in particular the

nonlinear Schrodinger equation whose one-dimensional analogue has the form

L0 A
iR+

'aa_fzr"'cltl'lz Wz =0,
where G is a nonlinearity parameter and where #*/2m is associated with dispersion.
This equation is used for describing the self-focus phenomena in nonlinear optics,
one-dimensional self-modulation of a monochromatic wave in plasma, etc.

Some problems in the theory of superconductivity and ferromagnetism lead to
the sine-Gordon equation (see Chapter X):

[a’ 8 ) = dnuen
822 a[: J"’(zv ) - 51n‘l"("- s

I
L

Besides the equations mentioned above, are known many other nonlinear equa-
tions involving dispersion, whose solutions have a form of stable solitary waves
due to the mutual compensation of nonlinear and dispersion eflects. The forma-
tion of waves in a continuum described by nonlinear equations is related to a
spontaneous breakdown of the local symmetry of a homogeneous svstem, i.e., with
self-localization of the excitation energy, electric charge density, or other physical
quantities.

The exceptionally important peculiarity of nonlinear equations is that they can-
not be studied by means of a linearization procedure, even with subsequent treat-
ment of small nonlinearities via perturbation thecry based or expansion into nor-
mal linear modes. Nonlinear equations lead to nonlinear phenomena, such as sol-
itons, kinks, breathers, and others which are impossible to obtain within finite-
order perturbation treatment. These nonlinearities are fundamental as
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quasiparticles of linear theories, they give important information relating to the
properties of appropriate media, and they play an important role in energy
processes, in energy and charge transfer phenomena, and in structural transitions.

Solitary waves possess some remarkable properties which make it possible to
compare them with particles. For instance, the conservation of shape and velocity
after interaction is a particle-like property. It is, in fact, such properties which
prompted Zabusky and Kruskal to call them solitons [278).

Together with ordinary extended ;?vaves, the solitary-like excitations are
inherent to many nonlinear dynamical systems. Their analytical description is,
however, well developed for one-dimensional systems only. In the one-dimensional
case the nonlinear equations mentioned possess an infinite number of conservation
laws and admit exact solutions via the so-called method of inverse scattering for
the auxiliary linear operator. This method originated in the work of Gardner et al.
[229], and was further developed by Zakharov, Faddeev, Novikov, Calogero, Mar-
chenko, and others. The book by Zakharov et al. [66] is devoted to a complete
treatment of this method. In the mathematical literature, the description ‘soliton’
is used only with respect to the localized solutions of completely integrable one-
dimensional systems. Localized excitations described by incompletely integrable
nonlinear equations are usually called solitary waves.

In the descriptioﬁ of real systems, one cannot restrict the treatment to com-
pletely integrable equations alone, since the latter correspond to idealized dynami-
cal systems. This neglects phenomena relating to the existence of boundaries and
other degrees of freedom, dissipation, and small physically relevant perturbations
due to surrounding bodies (complete isolation is, in fact, impossible). Unstable
solitary waves can be used for a description of realistic systems if their lifetimes
are larger compared with the time inherent for the phenomenon under study.

Here, the term ‘soliton’ is applied in a broader sense, i.e., to describe any self-
localized excitations propagating without substantial change of form and velocity,
due to a dynamical balance between nonlinearity and dispersion.

In solid state physics, approximate ideas of elementary excitations, as quasipar-
ticles described by plane waves or, strictly, by wave packets, are of a current
interest. General solutions of many linear phenomena are expressed in terms of
such linear or quasilinear modes. One can suggest that solitons should play the
same role in nonlinear dynamics.
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The present book is devoted to the study of nonlinear phenomena occurring in
quasi-one-dimensional molecular structures and their explanation in terms of soli-
tons. However, we would like to begin our treatment of nonlinear phenomena by
the example of the classical solitary waves observed by John Scott-Russ@ll [261] in
1834 on a water surface in a shallow rectangular channel. As mentioned before,
surface waves in such a channel are described by a dimensional equation of the
type (1) given by Korteweg and de Vries (for short, KAV equation).

The function u(x,f) in eqn. (1) characterizes a deviation from an average magni-
tude of velocity density, or any other real classical quantity, which is useful for a
description of diverse phenomena in physics. The KdV equation is applied partic-
ularly to the study of ion-acoustic [271], magneto-hydrodynamical waves in
plasma [203,207], acoustic waves in an anharmonic lattice [265-270,275,277], and
many other phenomena. A complete treatment of the KdV equation is presented
in the reviews of Kadomtsev and Karpman [73] and Toda [267], in the monograph
by Karpman [74], and in other works.

Ina pé.rticular case, when the function u(x,f) in eqn. (1) characterizes a velocity
in a continuum, we redesignate it by ®(x,r) and rewrite eqn. (1) as follows

D, +6gD0, +B0,.. =0, @ = O(x,0). ®))
Henceforth, we shall use subindices of functions for denoting the appropriate

derivatives. The nonlinear equation (2) describes a perturbation which propagates
in a medium with nonlinearity and dispersion,

w(g) = cog—Ag’, ' (©)
where ¢, is the phase velocity of small vibrations described by a plane wave with
wavenumber ¢ in the limit g — 0.

Neglecting the nonlinear term, g = 0, one can transform eqn. (2) into the linear
one,

D,+p0,.; =0, )

which is traditionally called the linearized KdV equation. It is noteworthy that
eqns. (2) and (4) are written within the coordinate frame x,¢ where a phase velocity
co, involved in the dispersion (3), vanishes. Within this coordinate frame moving
with velocity co, eqn. (4) possesses a particular solution of a plane-wave type,



