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Preface

The study of transition metals and their compounds occupies a prominent place in
most first-degree chemistry courses. In many cases considerable attention is paid to
the first-row transition series. much less attention to the second- and third-row
metals, while the lanthanides and actinides are treated with the utmost brevity. The
origin of this imbalance is probably to be found in a combination of two factors.
The first is that the industrially important, well-known and abundant transition
metals are the 3d metals such as copper, iron and nickel. Secondly, the quantitative
aspects of ligand-field theory are more readily applied to the 3d metals than to the
4d, 5d, 4f and 5f metals because of the relative magnitudes of the physical para-
meters, such as the spin-orbit coupling constant and the crystal-field splitting para-
meter, that are involved. N

This book, which is a sequel 16 a cognate volume' dealing with the 3d metals,
gives an account of the 4d. 5d. 4f and 5 metals. which it is hoped will be adequate
for any first-degree requirements and for postgraduate courses dealing with general
aspects of transition-metal chemistry. The treatment is given in sufficient range
and detail to allow considerable latitude to the course organiser and student in their
choice of precise topic and level of approach. We have not hesitated to include a
high proportion of descriptive chemistry. in the conviction that a sound knowledge
of experimental facts forms the basis of any scientific discipline. This stvle of
treatment may also be useful to research workers requiring a general view of some
particular area of 4d, 5d, 4f and 51 chemistry: it is not intended, however, to
provide a detailed introduction to resecarch.

We would like to thank a number of our colleagues. particularly Professor D. C.
Bradley, Dr D. M. P, Mingos and Dr P. Thornton for reading portions of the
manuscript and making constructive comments. Any remaining errors are our own
responsibility. We also wish to thank Mrs H. Matthewman and Mrs T. Gue for their
very efficient typing of the manuscript. Finally, we both wish to thank Mrs Eileen
Hart for preliminary typing and for much assistance and encouragement.

S. A. Cotton
F. A. Hart
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Abbreviations for Common Ligands

acac acetylacetone anion

bipy 2,2 -bipyridyl

bzac benzoylacetone anion

cp cyclopentadienyl anion

diars o-phenylenebisdimethylarsine

diglyme 2.2 -dimethoxydiethylether

diphos 1.2-diphenylphosphinoethane

dma N,N-dimethylacetamide

dtpa diethylenetriaminepenta-acetic acid anion
EDTA ethylenediaminetetra-acetic acid anion
hal halogen anion

hfac hexafluoroacetylacetone anion

nta nitrilotriacetic acid anion

oxine 8-hydroxyquinoline anion

phen 1.10-phenanthroline

Py pyridine

THF tetrahydrofuran
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1 Zirconium and Hafnium

The three pairs of metals Y. Lu: Zr, HIZ Nb. Ta show a striking resemblance bet-
ween the lighter and the heavier metal of each pair, arising from the predominant
stability of the highest, or group. oxidation state. together with the ionic nature of
the bonding and the close similarity of ionic radii. Thus both zirconium and
hafnium are rather poorly represented in oxidation states other than +4, and the
ionic radii are Zr** =74 pm and Hf** = 75 pm. leading to chemical properties that
differ only in comparatively minor respects. However, hatnium has been investi-
gated to a smaller extent than has zirconium. so the factual basis for the statement
that their properties are similar is less complete than might be desirable. The
chemistry is relatively straightforward, being mainly that of the 4+ ions. Since
these are fairly large, high co-ordination numbers are frequent. There are no
known carbonyls but numbers of - and m- bonded organometallics have been pre-
pared.

The metals occur as zircon, ZrSiOy4. and baddeleyite, a form of ZrO,. As would
be expected on account of their similar properties. they always occur together but
hafnium is much less abundant than zirconium and only one zirconium atom in
fifty is on average isomorphously replaced by hafnium.

1.1 The Metals and their Aqueous Chemistry

Zirconium metal was isolated by Berzelius in 1824 by potassium reduction of a
fluoride. Hafnium was not obtained until 1923, a lengthy fractional crystallisation
of complex fluorides (as with niobium and tantalum) being necessary before the
pure hafnium complex could be reduced with sodium. The hatnium had remained
undetected by ordinary chemical methods and its presence was first demonstrated
by X-ray spectroscopy.

Either metal is now prepared by reduction of the tetrahalide vapour.

ZrCly + 2Mg "% 2MaCl, + 71

Excess Mg and MgCl, are removed by vacuum distillation; il necessary, the product
may then be zone refined.

Both metals are high melting, having m.p.s 18527 (Zr) and 2150° (Hf). They
have the hexagonal close-packed structure at ordinary temperatures. Zirconium
metal is resistant to corrosion by air, most cold acids, and alkalis, but is attacked by
hot aqua regia or hydrofluoric acid. Since it also has a low neutron absorption
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cross-section (weighted average ol five isotopes. OL1TS harns® ) it may be used o
atomic-pile construction. Hafniun must be absent. however, since its average (siv
isotopes) is 105 barns. This separation is achicved by fon-excliange chromatography
or by solvent extraction with tributylIphosphate in wavs essentially similar to those
used tor separations within the lanthanide and actinide series. The separation is. ol
course, carried out betore preparation of the tetrahalide and reduction to the metal.
Zirconium-niohium alloys are usetul superconductons.

Because of hvdrolysis. the hydrated ions [MOLO) | apparentiy do nor exist
in solution. Hydrous zirconium and hatnium oxides are soluble inaqueaons HE.
HCL 11L,SO4 and HNO L. Unlike the neighbouring metals, Nband Taowhich form
MO*", there is no evidence for ZrO*" or HEO . Thus an Xeray analvsis of the
compound ZrOCT, . 8HLO. obtamed from dilute Tivdiochlorie acud soiution. shows
that it contains the polvmeric cation | Zr (OFD(H.O) ™7 The Zo (O 74

'\f

® HH‘

. . O = oH

Figure 1.1 The tetrameric [ Zr OO 1™ cation tound in ZrOCH S0
(after T.C.oWoMak. Cun. J. Chem., 46 (1968). 349 1)

bridges and the eight-co-ordination. dodecahedral in this case. are as expected for a
moderately large cation with a rather high charge number (see figure 1.1). Ttis
uncertain whether this species predominates in aqueous sotution: the degree of
polvmerisation is pl dependent. increasing with rise of plL There is some evidence
that a trimeric species is present in 2.8 a1 HCL There is no true hyvdroxide.
hydrated torms Zr(OH)L,(11,0), being obtained.

The fluoride and sulphate anions have greater affinities for Zr'" than has €1 and
uncharged or anionic species are readily formed at fairly low acid concentrations.
Thus the hvdrated sulphate Zr(SO4 ), . 4H, 0 erystallises from 6. a1 1,80, the
structure involves square antiprismatic co-ordination of zirconium. Fluoro-
complexes include Zr, Fy . 6115,0 (dodecahedral co-ordination  see figure 1.24)
and HfF4(H,0), . HL O (square antiprism with four bridging fluorines see figure
1.2b).

| barn = 107 m?
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Figure 1.2 (a) The dimeric structure of Zrk, . 3H,0: (b) the polymeric structure of
HiF4.3H,0 (after D. Hall. C. E. F. Rickards and T. N. Waters, Chem. Ind. (1964),
T13: Nature, Lond., 207 (1965), 405)

Other salts of interest include the complex hydrated oxalate
Nay [Zr(C,04),].3H,0, which has dodecahedral co-ordination, and the hydrated
nitrate Zr(NO;);.5H,0, obtained from cold concentrated nitric acid. The un-
solvated nitrate Zr(NOj )3 may be obtained by

Zr(‘lq + 4N:()< - Z](NO} )4 + 4N01(‘|

It is volatile and the zirconium is doubtless eight-co-ordinated in a dodecahedral
manner with bidentate nitrate groups: there is some spectroscopic evidence (infra-
red and Raman) for this. The hafnium compound firmly holds on to a molecule
0f N,Os as Hf(NO3)4 . N, Os.

1.2 Oxides

Apart from a volatile unstable species, probably the monoxide. formed by heating
zirconium-zirconium dioxide mixtures. the dioxides are the only oxides. At
ordinary temperatures, monoclinic forms with irregular seven-co-ordination are
stable: at very high temperatures the fluorite structure is adopted. The dioxides
may be obtained by heating the hydrated hydroxides. Zirconium dioxide, being a
rather inert substance after strong ignition (for example, it is then unattacked by
hot aqueous HF) and being stable up to over 2000°, forms a useful refractory
material and ceramic opacifier or insulator. For these purposes, addition of a little
CaO gives a stable fluorite structure, thus avoiding the adverse mechanical conse-
quences of phase changes on repeated heating and cooling.

‘“n



