LNCS 2426

Jean-Michel Bruel
Zohra Bellahséne (Eds.)

Advances in
Object-Oriented
Information Systems

00IS 2002 Workshops
Montpellier, France, September 2002
Proceedings

€) Springer

Jean-Michel Bruel Zohra Bellahsene (Eds.)

Advances 1n
Object-Oriented
Information Systems

OOIS 2002 Workshops
Montpellier, France, September 2, 2002
Proceedings

f@

Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Jean-Michel Bruel

LIUPPA, Computer Science Research Department
University of Pau

B.P. 1155, 64013 Pau Cedex, France

E-mail: Jean-Michel. Bruel @univ-pau.fr

Zohra Bellahséne

LIRMM

161 rue Ada, 34392 Montpellier Cedex 5, France
E-mail: bella@lirmm.fr

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Advances in object oriented information systems : OOIS 2002 workshops,
Montpellier, France, September 2, 2002 ; proceedings / Jean-Michel Bruel ;
Johra Bellahsene (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong
Kong ; London ; Milan ; Paris ; Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 2426)

ISBN 3-540-44088-7

CR Subject Classification (1998): H.2, H4, H.5, H.3,1.2,D.2,D.4, K4.4,].1

ISSN 0302-9743
ISBN 3-540-44088-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Da-TeX Gerd Blumenstein
Printed on acid-free paper SPIN: 10873861 06/3142 543210

Lecture Notes in Computer Science 2426
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Preface

For the first time four workshops have been held in conjunction with the 8th
Object-Oriented Information Systems conference, OOIS 2002, to encourage in-
teraction between researchers and practitioners. Workshop topics are, of course,
inline with the conference’s scientific scope and provide a forum for groups of
researchers and practitioners to meet together more closely and to exchange
opinions and advanced ideas, and to share preliminary results on focused issues
in an atmosphere that fosters interaction and problem solving.

The conference hosted four one-day workshops. The four selected workshops
were fully in the spirit of a workshop session hosted by a main conference. Indeed,
OOQIS deals with all the topics related to the use of object-oriented techniques for
the development of information systems. The four workshops are very specific
and contribute to enlarging the spectrum of the more general topics treated in
the main conference. The first workshop focused on a very specific and key con-
cept of object-oriented development, the specialization/generalization hierarchy.
The second one explored the use of “non-traditional” approaches (at the edge
of object-oriented techniques, such as aspects, Al, etc.) to improve reuse. The
third workshop dealt with optimization in Web-based information systems. And
finally the fourth workshop investigated issues related to model-driven software
development.

Each workshop was organized by a group of international organizers, lead-
ing a program committee in the process of reviewing submissions. Together the
workshops selected 30 papers, involving about 80 authors, and gathered a good
number of participants to the campus of the University of Montpellier on Septem-
ber 2, 2002.

The editors would like to thank Springer-Verlag for publishing this year both
the main conference and workshops proceedings in the Lecture Notes in Com-
puter Science series. They would also like to thank all the workshop organizers
and program committee members for their support and collaboration in the
success of this first series of workshops and in the preparation of this volume.
Finally, they are also grateful to the local organizers for their support.

September 2002 Jean-Michel Bruel
Zohra Bellahsene

Organization

This volume is a compilation of the four OOIS workshops organized at the
University of Montpellier. It is organized in four chapters. Each chapter contains
an introduction, written by the workshop organizers, which provides an overview
of the workshop contribution, along with the Program Committee and details of
other related information, followed by the accepted papers of the workshop.
The proceedings of the main conference were published as LNCS Vol. 2425.

OOIS 2002 Executive Committee

General Chair: Colette Roland, Paris I University, France
Program Co-Chairs: Zohra Bellahséne, LIRMM, France
Dilip Patel, South Bank University, UK
Workshops: Jean-Michel Bruel, LIUPPA, France
Computer Science Research Department,
B.P. 1155,

F-64013, Pau Université, Cedex, France
E-mail: Jean-Michel.Bruel@univ-pau.fr

Lecture Notes in Computer Science

For information about Vols. 1-2346

please contact your bookseller or Springer-Verlag

Vol. 2347: P. De Bra, P. Brusilovsky. R. Conejo (Eds.),
Adaptive Hypermedia and Adaptive Web-Based Systems.
Proceedings, 2002. XV, 615 pages. 2002.

Vol. 2348: A. Banks Pidduck, J. Mylopoulos, C.C. Woo,
M. Tamer Ozsu (Eds.), Advanced Information Systems
Engineering. Proceedings, 2002. XIV, 799 pages. 2002.

Vol. 2349: J. Kontio, R. Conradi (Eds.), Software Qual-
ity — ECSQ 2002. Proceedings, 2002. X1V, 363 pages.
2002.

Vol. 2350: A. Heyden, G. Sparr, M. Nielsen, P. Johansen
(Eds.), Computer Vision — ECCV 2002. Proceedings, Part
1. XXVIII, 817 pages. 2002.

Vol. 2351: A. Heyden, G. Sparr, M. Nielsen, P. Johansen
(Eds.), Computer Vision — ECCV 2002. Proceedings, Part
1. XXVIII, 903 pages. 2002.

Vol. 2352: A. Heyden, G. Sparr, M. Nielsen, P. Johansen
(Eds.), Computer Vision— ECCV 2002. Proceedings, Part
1. XXVIII, 919 pages. 2002.

Vol. 2353: A. Heyden, G. Sparr, M. Nielsen, P. Johansen
(Eds.), Computer Vision — ECCV 2002. Proceedings, Part
IV. XXVIII, 841 pages. 2002.

Vol. 2355: M. Matsui (Ed.). Fast Software Encryption.
Proceedings, 2001. VIII, 169 pages. 2001.

Vol. 2356: R. Kohavi, B.M. Masand, M. Spiliopoulou, J.
Srivastava (Eds.), WEBKDD 2002 — Mining Log Data
Across All Customers Touch Points. Proceedings, 2001.
X1, 167 pages. 2002. (Subseries LNAI).

Vol. 2358: T. Hendtlass, M. Ali (Eds.), Developments in
Applied Artificial Intelligence. Proceedings, 2002 XIII,
833 pages. 2002. (Subseries LNAI).

Vol. 2359: M. Tistarelli, J. Bigun, A.K. Jain (Eds.),
Biometric Authentication. Proceedings, 2002. X, 197
pages. 2002.
Vol. 2360: J. Esparza, C. Lakos (Eds.), Application and
Theory of Petri Nets 2002. Proceedings, 2002. X, 445
pages. 2002.

Vol. 2361: J. Blieberger, A. Strohmeier (Eds.), Reliable

Software Technologies — Ada-Europe 2002. Proceedings,
2002 XIII, 367 pages. 2002.

Vol. 2362: M. Tanabe, P. van den Besselaar, T. Ishida
(Eds.), Digital Cities II. Proceedings, 2001. X1, 399 pages.
2002.

Vol. 2363: S.A. Cerri, G. Gouarderes, F. Paraguagu (Eds.),
Intelligent Tutoring Systems. Proceedings, 2002. XX VIII,
1016 pages. 2002.

Vol. 2364: F. Roli, J. Kittler (Eds.), Multiple Classifier
Systems. Proceedings, 2002. XI, 337 pages. 2002.

Vol. 2365: J. Daemen, V. Rijmen (Eds.), Fast Software
Encryption. Proceedings, 2002. XI, 277 pages. 2002.

Vol. 2366: M.-S. Hacid, Z.W. Ras, D.A. Zighed, Y.
Kodratoff (Eds.). Foundations of Intelligent Systems. Pro-
ceedings, 2002. XI1, 614 pages. 2002. (Subseries LNAI).

Vol. 2367: J. Fagerholm, J. Haataja, J. Jarvinen, M. Lyly.
P. Rdback, V. Savolainen (Eds.), Applied Parallel Com-
puting. Proceedings, 2002. X1V, 612 pages. 2002.

Vol. 2368: M. Penttonen, E. Meineche Schmidt (Eds.),
Algorithm Theory — SWAT 2002. Proceedings, 2002.
X1V, 450 pages. 2002.

Vol. 2369: C. Fieker, D.R. Kohel (Eds.), Algorithmic
Number Theory. Proceedings, 2002. IX, 517 pages. 2002.

Vol. 2370: J. Bishop (Ed.), Component Deployment. Pro-
ceedings, 2002. XII, 269 pages. 2002.

Vol. 2371:S. Koenig, R.C. Holte (Eds.), Abstraction, Re-
formulation, and Approximation. Proceedings, 2002. XI,
349 pages. 2002. (Subseries LNAI).

Vol. 2372: A. Pettorossi (Ed.), Logic Based Program Syn-
thesis and Transformation. Proceedings, 2001. VIII, 267
pages. 2002.

Vol. 2373: A. Apostolico, M. Takeda (Eds.), Combinato-
rial Pattern Matching. Proceedings, 2002. VIII, 289 pages.
2002.

Vol. 2374: B. Magnusson (Ed.), ECOOP 2002 - Object-
Oriented Programming. XI, 637 pages. 2002.

Vol. 2375: J. Kivinen, R.H. Sloan (Eds.), Computational
Learning Theory. Proceedings, 2002. X1, 397 pages. 2002.
(Subseries LNAI).

Vol. 2377: A. Birk, S. Coradeschi, T. Satoshi (Eds.),
RoboCup 2001: Robot Soccer World Cup V. XIX, 763
pages. 2002. (Subseries LNAI).

Vol. 2378: S. Tison (Ed.), Rewriting Techniques and
Applications. Proceedings, 2002. X1, 387 pages. 2002.

Vol. 2379: G.J. Chastek (Ed.), Software Product Lines.
Proceedings, 2002. X, 399 pages. 2002.

Vol. 2380: P. Widmayer, F. Triguero, R. Morales, M.
Hennessy, S. Eidenbenz, R. Conejo (Eds.), Automata,
Languages and Programming. Proceedings, 2002. XXI,
1069 pages. 2002.

Vol. 2381: U. Egly, C.G. Fermiiller (Eds.), Automated
Reasoning with Analytic Tableaux and Related Methods.
Proceedings, 2002. X, 341 pages. 2002 .(Subseries LNAI).

Vol. 2382: A. Halevy, A. Gal (Eds.), Next Generation
Information Technologies and Systems. Proceedings,
2002. VIII, 169 pages. 2002.

Vol. 2383: M.S. Lew, N. Sebe, J.P. Eakins (Eds.), Image
and Video Retrieval. Proceedings, 2002. XII, 388 pages.
2002.

Vol. 2384: L. Batten, J. Seberry (Eds.), Information Se-
curity and Privacy. Proceedings, 2002. XII, 514 pages.
2002.

Vol. 2385: J. Calmet, B. Benhamou, O. Caprotti, L.
Henocque, V. Sorge (Eds.), Artificial Intelligence, Auto-
mated Reasoning, and Symbolic Computation. Proceed-
ings, 2002. X1, 343 pages. 2002. (Subseries LNAI).

Lecture Notes in Computer Science

For information about Vols. 1-2346

please contact your bookseller or Springer-Verlag

Vol. 2347: P. De Bra, P. Brusilovsky. R. Conejo (Eds.),
Adaptive Hypermedia and Adaptive Web-Based Systems.
Proceedings, 2002. XV, 615 pages. 2002.

Vol. 2348: A. Banks Pidduck, J. Mylopoulos, C.C. Woo,
M. Tamer Ozsu (Eds.), Advanced Information Systems
Engineering. Proceedings, 2002. XIV, 799 pages. 2002.

Vol. 2349:). Kontio, R. Conradi (Eds.), Software Qual-
ity — ECSQ 2002. Proceedings, 2002. X1V, 363 pages.
2002.

Vol. 2350: A. Heyden, G. Sparr, M. Nielsen, P. Johansen
(Eds.), Computer Vision - ECCV 2002. Proceedings, Part
1. XXVIII, 817 pages. 2002.

Vol. 2351: A. Heyden, G. Sparr, M. Nielsen, P. Johansen
(Eds.), Computer Vision - ECCV 2002. Proceedings, Part
IT. XXVIII, 903 pages. 2002.

Vol. 2352: A. Heyden, G. Sparr, M. Nielsen, P. Johansen
(Eds.), Computer Vision — ECCV 2002. Proceedings, Part
I, XXVIII, 919 pages. 2002.

Vol. 2353: A. Heyden, G. Sparr, M. Nielsen, P. Johansen
(Eds.), Computer Vision - ECCV 2002. Proceedings, Part
IV. XXVIII, 841 pages. 2002.

Vol. 2355: M. Matsui (Ed.). Fast Software Encryption.
Proceedings, 2001. VIII, 169 pages. 2001.

Vol. 2356: R. Kohavi, B.M. Masand, M. Spiliopoulou, J.
Srivastava (Eds.), WEBKDD 2002 - Mining Log Data
Across All Customers Touch Points. Proceedings, 2001.
X1, 167 pages. 2002. (Subseries LNAI).

Vol. 2358: T. Hendtlass, M. Ali (Eds.), Developments in
Applied Artificial Intelligence. Proceedings, 2002 XIII,
833 pages. 2002. (Subseries LNAI).

Vol. 2359: M. Tistarelli, J. Bigun, A.K. Jain (Eds.),
Biometric Authentication. Proceedings, 2002. X, 197
pages. 2002.

Vol. 2360: J. Esparza, C. Lakos (Eds.), Application and
Theory of Petri Nets 2002. Proceedings, 2002. X, 445
pages. 2002.

Vol. 2361: J. Blieberger, A. Strohmeier (Eds.), Reliable
Software Technologies — Ada-Europe 2002. Proceedings,
2002 XIII, 367 pages. 2002.

Vol. 2362: M. Tanabe, P. van den Besselaar, T. Ishida
(Eds.), Digital Cities II. Proceedings, 2001. XI, 399 pages.
2002.

Vol. 2363: S.A. Cerri, G. Gouarderes, F. Paraguagu (Eds.),
Intelligent Tutoring Systems. Proceedings, 2002. XXVIII,
1016 pages. 2002.

Vol. 2364: F. Roli, J. Kittler (Eds.), Multiple Classifier
Systems. Proceedings, 2002. X1, 337 pages. 2002.

Vol. 2365: J. Daemen, V. Rijmen (Eds.), Fast Software
Encryption. Proceedings, 2002. X1, 277 pages. 2002.
Vol. 2366: M.-S. Hacid, Z.W. Ras. D.A. Zighed, Y.
Kodratotf (Eds.), Foundations of Intelligent Systems. Pro-
ceedings, 2002. XII, 614 pages. 2002. (Subseries LNAI).

Vol. 2367:). Fagerholm, J. Haataja, J. Jirvinen, M. Lyly.
P. Rdback, V. Savolainen (Eds.), Applied Parallel Com-
puting. Proceedings, 2002. XIV, 612 pages. 2002.

Vol. 2368: M. Penttonen, E. Meineche Schmidt (Eds.),
Algorithm Theory — SWAT 2002. Proceedings, 2002.
X1V, 450 pages. 2002.

Vol. 2369: C. Fieker, D.R. Kohel (Eds.), Algorithmic
Number Theory. Proceedings, 2002. [X, 517 pages. 2002.

Vol. 2370: J. Bishop (Ed.), Component Deployment. Pro-
ceedings, 2002. XII, 269 pages. 2002.

Vol. 2371: S. Koenig, R.C. Holte (Eds.), Abstraction, Re-
formulation, and Approximation. Proceedings, 2002. XI,
349 pages. 2002. (Subseries LNAI).

Vol. 2372: A. Pettorossi (Ed.), Logic Based Program Syn-
thesis and Transformation. Proceedings, 2001. VIII, 267
pages. 2002.

Vol. 2373: A. Apostolico, M. Takeda (Eds.), Combinato-
rial Pattern Matching. Proceedings, 2002. VIII, 289 pages.
2002.

Vol. 2374: B. Magnusson (Ed.), ECOOP 2002 - Object-
Oriented Programming. X1, 637 pages. 2002.

Vol. 2375: J. Kivinen, R.H. Sloan (Eds.), Computational
Learning Theory. Proceedings, 2002. XI, 397 pages. 2002.
(Subseries LNAI).

Vol. 2377: A. Birk, S. Coradeschi, T. Satoshi (Eds.),
RoboCup 2001: Robot Soccer World Cup V. XIX, 763
pages. 2002. (Subseries LNAI).

Vol. 2378: S. Tison (Ed.), Rewriting Techniques and
Applications. Proceedings, 2002. XI, 387 pages. 2002.

Vol. 2379: G.J. Chastek (Ed.), Software Product Lines.
Proceedings, 2002. X, 399 pages. 2002.

Vol. 2380: P. Widmayer, F. Triguero, R. Morales, M.
Hennessy, S. Eidenbenz, R. Conejo (Eds.), Automata,
Languages and Programming. Proceedings, 2002. XXI,
1069 pages. 2002.

Vol. 2381: U. Egly, C.G. Fermiiller (Eds.), Automated
Reasoning with Analytic Tableaux and Related Methods.
Proceedings, 2002. X, 341 pages. 2002 .(Subseries LNAI).

Vol. 2382: A. Halevy, A. Gal (Eds.), Next Generation
Information Technologies and Systems. Proceedings,
2002. VIII, 169 pages. 2002.

Vol. 2383: M.S. Lew, N. Sebe, J.P. Eakins (Eds.), Image
and Video Retrieval. Proceedings, 2002. XII, 388 pages.
2002.

Vol. 2384: L. Batten, J. Seberry (Eds.), Information Se-
curity and Privacy. Proceedings, 2002. XII, 514 pages.
2002.

Vol. 2385: J. Calmet, B. Benhamou, O. Caprotti, L.
Henocque, V. Sorge (Eds.), Artificial Intelligence, Auto-
mated Reasoning, and Symbolic Computation. Proceed-
ings, 2002. XI, 343 pages. 2002. (Subseries LNAI).

Table of Contents

MAnaging SPEcialization/Generalization HIerarchies

MAnaging SPEcialization/Generalization Hlerarchies

(Workshop OVEIVIEW)vuvunenttetn it aeennns

Marianne Huchard, Hernan Astudillo, and Petko Valtchev

“Real World” as an Argument for Covariant Specialization

in Programming and Modeling ...,

Roland Ducournau

Maintaining Class Membership Information

Anne Berry and Alain Sigayret

Hierarchies in Object Oriented Conceptual Modeling

Esperanza Marcos and Jose Maria Cavero

Specialization/Generalization in Object-Oriented Analysis:

Strengthening and Multiple Partitioning

Pieter Bekaert*, Geert Delanote, Frank Devos, and Eric Steegmans

Towards a New Role Paradigm for Object-Oriented Modeling

Stéphane Coulondre and Thérése Libourel

Analysing Object-Oriented Application Frameworks

Usitig: Concept ANALYSIS v . vmssmusmssnmsome s was ame oo s smes o s s s w5 o5

Gabriela Arévalo and Tom Mens

Using Both Specialisation and Generalisation

in a Programming Language: Why and How?

Pierre Crescenzo and Philippe Lahire

Automatic Generation of Hierarchical Taxonomies

from Free Text Using Linguistic Algorithms

Juan Lloréns and Herndn Astudillo

Guessing Hierarchies and Symbols for Word Meanings

through Hyperonyms and Conceptual Vectorscouvun..

Mathieu Lafourcade

Reuse in OO Information Systems Design

Reuse in Object-Oriented Information Systems Design

(WOorkshop OVEIVIEW)uuititt e e

Daniel Bardou, Agnés Conte, and Liz Kendall

....64

VIII Table of Contents

Software Reuse with Use Case Patternsc.c.ouiiiiiiinnnnaeennns 96
Maria Clara Silveira and Raul Moreira Vidal

Promoting Reuse through the Capture of System Description 101
Florida FEstrella, Sebastien Gaspard, Zsolt Kovacs, Jean-Marie Le Goff,
and Richard McClatchey

A Specification-Oriented Framework
for Information System User Interfacescooooiiiiiiiiii., 112
Eliezer Kantorowitz and Sally Tadmor

The Role of Pattern Languages in the Instantiation
of Object-Oriented Frameworksooiiiiiiiiiniiiiiniiennnn.. 122
Rosana T. V. Braga and Paulo Cesar Masiero

IS Components with Hyperclassesouiiiiiiiiiieiniieinneneannn 132
Slim Turki and Michel Léonard

Collaborative Simulation by Reuse of COTS Simulators

with a Reflexive XML Middlewarelccoiiiiiiiiiiiiiniinnenn.. 142
Mathieu Blanc, Fabien Costantini, Sébastien Dubois, Manuel Forget,

Olivier Francillon, and Christian Toinard

Efficient Web-Based Information Systems

Efficient Web-Based Information Systems (Workshop Overview) 152
Omar Boucelma and Zoé Lacroix

Semantic Integration and Query Optimization

of Heterogeneous Data SOUICESo.cviiiiiiiiiiiiiiiieainnnennn. 154
Domenico Beneventano, Sonia Bergamaschi, Silvana Castano,

Valeria De Antonellis, Alfio Ferrara, Francesco Guerra,

Federica Mandreoli, Giorgio Carlo Ornetti, and Maurizio Vincini

Extracting Information from Semi-structured Web Documents 166
Ajay Hemnani and Stephane Bressan

Object-Oriented Mediator Queries to Internet Search Engines 176
Timour Katchaounov, Tore Risch, and Simon Zircher

Warp-Edge Optimization in XPath i, 187
Haiyun He and Curtis Dyreson

A Caching System for Web Content Generated
from XML Sources Using XSLT ... cu s s s s s e s sios s wise aiits s s oo s 60506 5100 » 197
Volker Turau

Finding Similar Queries to Satisfy Searches Based on Query Traces 207
Osmar R. Zaiane and Alexander Strilets

Table of Contents IX

WOnDA: An Extensible Multi-platform Hypermedia Design Model 217
Dionysios G. Synodinos and Paris Avgeriou

Model-Driven Approaches to Software Development

Model-Driven Approaches to Software Development
(WOTkshop ONETVIEW) mesmasuosomss s wiosssas s s o0 o5 s ke s sra s o105 86 5 8 978 1 9% 5 229
Dan Turk, Robert France, Bernhard Rumpe, and Geri Georg

Executable and Symbolic Conformance Tests

for Implementation Modelso 231
Thomas Baar
Object-Oriented Theories for Model Driven Architecture 235

Tony Clark, Andy Evans, and Robert France

Systems Engineering Foundations of Software Systems Integration 245
Peter Denno and Allison Barnard Feeney

Using the Model Paradigm for Real-Time Systems Development:
ACCORDJTINE wosvuasmesons s peme e s o sssassmip 565 s s GHs e i o8 0e8 wusse 260
Sébastien Gérard, Francois Terrier, and Yann Tanguy

Generating Enterprise Applications from Models 270
Vinay Kulkarni, R Venkatesh, and Sreedhar Reddy

Tool Support for Aspect-Oriented Designcoooiiiiiiiiiennn.. 280
Frangois Mekerke, Geri Georg, and Robert France

Model-Driven Architectureoiiiiiiiiiiiiiiiiiiniiniineeennn 290
Stephen J. Mellor, Kendall Scott, Azel Uhl, and Dirk Weise

Model-Based Development of Embedded Systems 298

B. Schatz, A. Pretschner, F. Huber, and J. Philipps

Author Index ...t e e e 313

MAnaging SPEcialization/Generalization
Hlerarchies

Marianne Huchard!, Hernan Astudillo?, and Petko Valtchev®

! L.I.R.M.M., France
2 Financial Systems Architects, New York, USA
3 Université de Montréal, Canada

Preface

In object-oriented approaches (modeling, programming, databases, knowledge
representation), the core of systems is, most of the time, a specialization hierar-
chy, that organizes concepts of the application domain or software artifacts useful
in the development. These concepts are usually known as classes, interfaces and
types. Software Engineering methods for design and analysis are concerned by
application domain modeling as well as transferring the model into the target
programming language chosen for implementation. For programming languages
and database systems, the specialization hierarchy is implemented by inheri-
tance, that also supports feature (specification or code) sharing and reuse. In
Knowledge Representation and data-mining approaches, the modeling aspect of
a class hierarchy prevails, whereas its main purpose is to guide the process of
reasoning and rule discovery.

Despite their wide and long use in these domains, specialization hierarchies
still give rise to controversial interpretations and implementations. The design,
implementation and maintenance of such hierarchies are complicated by their
size, the numerous and conflicting generalization criteria, and the natural evo-
lution of the domains themselves and of the knowledge about them, which of
course must be reflected by the hierarchies.

The fact that two workshops (“The Inheritance Workshop” at ECOOP 2002
[2] and MASPEGHI at OOIS 2002) hold the same year on close topics indicates
that it is time to bring to the fore specialization/generalization as a specific
research field.

Among the 15 early submissions, we selected 9 papers that cover five main
areas:

— general discussion about common sense specialization and its implementa-
tion,

— lattice/order theory (aspects useful for hierarchy manipulation),

modeling (points of view and new paradigms),

— programming (analysis of practices, meta-programming),

linguistic issues (taxonomy construction).

The web site of MASPEGHI remained open until the workshop for refereed late
submissions that are gathered in [1].

J.-M. Bruel and Z. Bellahséne (Eds.): OOIS 2002 Workshops, LNCS 2426, pp. 1-2, 2002.
© Springer-Verlag Berlin Heidelberg 2002

2 Marianne Huchard et al.

Organization

The workshop was organized by Marianne Huchard (LIRMM, France), Hernan
Astudillo (Financial Software Architects, USA) and Petko Valtchev (Université
de Montréal, Canada).

Program Committee

Michel Dao (France Télécom R&D, France)

Robert Godin (UQAM, Canada)

Haim Kilov (Financial Systems Architects, USA)
Thérese Libourel (LIRMM, France)

Juan Lloréns (Universidad Carlos III, Spain)
Joaquin Miller (Financial Systems Architects, USA)
Amedeo Napoli (INRIA Lorraine, France)

Ruben Prieto-Diaz (James Madison University, USA)
Derek Rayside (University of Toronto, Canada)
Houari Sahraoui (Université de Montréal, Canada)
Markku Sakkinen (Jyviskyldn yliopisto, Finland)
Gregor Snelting (Universitat Passau, Germany)

Additional Referees

Y. Ahronovitz, G. Ardourel, R. Ducournau, M. Lafourcade, C. Roume (LIRMM,
France); Gillian Gass, Sara Scharf (University of Toronto, Canada).

Primary Contact

For more details about the workshop please contact:
Marianne Huchard

LIRMM, CNRS et Université Montpellier 2

161, rue Ada — 34392 Montpellier cedex 5, France
email: huchard@lirmm.fr

tel: +33 (0)4 67 41 86 58

fax: +33 (0)4 67 41 85 00

url: http://www.lirmm.fr/ huchard/MASPEGHI/

References

1. M. Huchard, H. Astudillo and P. Valtchev (editors) Late Submissions of
the workshop Managing SPEcialization/Generalization Hlerarchies (MASPEGHI),
0O0IS’2002 Research Report LIRMM, CNRS et Université Montpellier 2, n.02087,
August 2002.

2. A. Black, E. Ernst, P. Grogono and M. Sakkinen (editors) Proceedings of the
Inheritance workshop at ECOOP 2002 Publications of Information Technology
Research Institute, University of Jyvaskyla, 12/2002, ISBN: 951-39-1252-3.

“Real World” as an Argument for Covariant
Specialization in Programming and Modeling

Roland Ducournau

L.ILR.M.M., Université Montpellier 2
161, rue Ada — 34392 Montpellier cedex 5, France
ducournau@lirmm.fr
http://www.lirmm.fr/~ducour/

Abstract. Class specialization is undoubtedly one of the most original
and powerful features of object orientation as it structures object models
at all stages of software development. Unfortunately, the semantics of
specialization is not defined with the same accuracy in the various fields.
In programming languages, specialization is constrained by type theory
and by a type safe policy, whereas its common sense semantics dates back
to the Aristotelian tradition. The well known covariant vs. contravariant
controversy originates here. In this paper, we investigate how modeling
and programming languages deal with this mismatch. We claim that type
errors are part of the real world, so they should be taken into account
at all stages of software development. Modeling as well as programming
languages should adopt a covariant policy.

1 Introduction

Originated in SIMULA more than 30 years ago [3], object orientation has become,
by now, quite hegemonic in the field of programming languages and software en-
gineering, not to speak of databases or knowledge representation. This hegemony
has often been explained by the closeness of various object-oriented concepts to
corresponding common sense notions as they have been elaborated in classic
philosophy [21,22]. Noticing that, one could hope for a seamless development
process from so-called real world to program implementation, through analysis
and design steps. However, this apparently uniform model presents some discon-
tinuities, particularly when specialization is concerned.

Class specialization is undoubtedly one of the most original and powerful
features of object orientation, yielding most of its qualities and breaking with
previous programming paradigms. A large part of the literature is devoted to it,
and it is the central point of many active topics of research such as inheritance
(programming languages), classification or subsumption (knowledge representa-
tion), polymorphism or subtyping (type theory). Unfortunately, the semantics
of specialization is not defined with the same accuracy in those various fields.
Moreover, specialization may be constrained, in some field, by some external
considerations. For instance, the well known covariant vs. contravariant contro-
versy (e.g. 8], [18, chapter 17] or [25]) can be explained as a conflict between the

J.-M. Bruel and Z. Bellahséne (Eds.): OOIS 2002 Workshops, LNCS 2426, pp. 3-12, 2002.
© Springer-Verlag Berlin Heidelberg 2002

4 Roland Ducournau

demands of a type safe policy and the needs for expressivity. In this paper, we
look at this well known controversy from the point of view of our common sense
understanding of the “real world” and investigate whether modeling languages
answer adequately to this requirement. Type errors are part of the real world.
A dramatic example has been given by the “mad cow” disease: cows, as a spe-
cialization of herbivorous, should only eat grass, not meat, but it happened
that they were feeded with remains of cows. So, we claim that type errors should
be taken into account at all stages of software development: analysis and design
methods, as well as programming languages should adopt a covariant policy.
The rest of this paper is organized as follows: section 2 briefly recalls the
de facto standard object model, then states how specialization can be related to
common sense reasoning and Aristotelian tradition and gives some hints regard-
ing how knowledge representation formalizes it. Next section takes the viewpoint
of programming languages and type theory and states the covariance vs. con-
travariance controversy. The case of most widely used languages is examined and
some alternatives such as multiple dispatch are investigated. Section 4 looks at
analysis and design methods, mainly UML, and concludes to their current ab-
dication to impose a semantics in front of JAVA’s one. In conclusion, we sketch
out the specifications of a language adapted to the semantics of specialization.

2 Semantics of Specialization

The de facto standard object model is the class-based model, consisting of
classes, organized in a specialization hierarchy, and objects created as instances
of those classes by an instantiation process. Each class is described by a set of
properties, attributes for the state of its instances and methods for their behav-
ior. Applying a method to an object follows the metaphor of message sending
(also called late binding): the invoked method is selected according to the class
of the object (called the receiver). This is the core of the model and it suffices to
state the point of the specialization semantics. It is a de facto standard since it
covers all of the widely used languages as the core of analysis and design models.

Though novel in computer science, specialization has quite ancient roots in
the Aristotelian tradition, in the well known syllogism: Socrates is a human,
humans are mortals, thus Socrates is a mortal. Here Socrates is an instance,
human and mortal are classes. The interested reader will find in [21,22] a deep
analysis of the relationships between object orientation and Aristotle syllogistic.

2.1 Inclusion of Extensions, Intensions and Domains

According to the Aristotelian tradition, as revised with the computer science
vocabulary, one can generalize this example by saying that instances of a class
are also instances of its superclasses. More formally, < is the specialization rela-
tionship (B < A means that B is a subclass of A) and Exzt is a function which
maps classes to the sets of their instances, their ertensions. Then:

B < A = Ezxt(B) C Ext(A) (1)

“Real World” as an Argument for Covariant Specialization 5

This is the essence of specialization and it has two logical consequences: inclusion
of intensions (i.e. inheritance) and inclusion of properties’ domains (i.e. covariant
refinement). When considering the properties of a class, one must remember that
they are properties of instances of the class, factorized in the class. Let B be
a subclass of A: instances of B being instances of A, have all the properties
of instances of A. One says that subclasses inherit properties from superclasses.
More formally, Int is a function which maps classes to the sets of their properties,

their intensions:
B < A= Int(A) C Int(B) (2)

Properties have a value in each object and can be described in the class by a
domain, that is the set of values taken by the property in all the class’s instances.
For instance, the class Person has a property age whose domain is [0, 120]. When
specializing a class, one refines the domains of inherited properties: for instance,
a subclass Child of Person will have domain [0, 12] for its property age. The
function Dom maps classes and properties to sets of values. Then:

B <A & P € Int(A) = Dom(B,p) C Dom(A,p) 3)

The age example concerns attributes. Methods may have several domains, for
parameters and returned value. As an example, consider classes of Animals, in
a hierarchy a la Linnaeus, with a method eat defined with different domains in
classes such as herbivorous, carnivorous, and so on. [18, chapitre 17] develops
a longer example, more oriented towards programming languages.

The inclusions of extensions and intensions have opposite directions, while
those of extensions and domains have the same: intensions can be said contravari-
ant whereas domains are covariant, both w.r.t. extensions, i.e. specialization.

2.2 Specialization in Knowledge Representation

Though quite intuitive, inclusion (3) cannot be proved to be entailed by (1)
without a careful definition of class extensions which needs a model-theoretic
approach. Such a semantics of specialization has been formalized in knowledge
representation systems called description logics or languages of the KL-ONE
family [27,10]. In previous works, we showed that such a formalization could be
exported to a more standard object model but this is not a common approach
[12]. A main feature of this semantics is that the equations corresponding to
(1-3) can be equivalences, not mere implications: in other words, classes can be
defined as necessary and sufficient conditions and specialization between classes
(then called subsumption) can be deduced from class properties, which leads to
classification. Previous examples obviously need such semantics since adult
and child are defined by their age, as well as herbivorous and carnivorous
by what they eat. However, such a semantics is not necessarily adapted to
programming languages nor to analysis and design modeling, as it has a major
drawback, being essentially monotonous: one can add values, not modify them.
Nevertheless, it could give some hints to precise the semantics of object models,
as well as semantical bases to automatic computation of class hierarchies [13].

6 Roland Ducournau
3 Programming Languages, Subtyping and Polymorphism

Object-oriented programming languages can be considered as a mixture of
object-oriented notions and programming languages notions. We will just con-
sider the notion of type, central in programming languages, and focus on stat-
ically typed languages. Arguments in favor of static typing are numerous. The
main one concerns reliability. Static, i.e. compile-time, analysis is needed to avoid
dynamic, i.e. run-time, errors. Static typing allows a simple and efficient static
analysis, whereas dynamic typing requires more expensive and less effective anal-
yses. Anyway, static typing is another de facto standard.

3.1 Contravariance of Subtyping

In a statically typed language, every entity in the program text which can be
bound to a value at run-time is annotated by a type, its static type. At run-time,
every value has a type, its dynamic type, i.e. the class which creates the value
as its instance. In such a context, an entity is said to be polymorphic when it
can be bound to values of distinct types, and the dynamic types of the values
must conform to the static type of the entity. Otherwise, there is a run-time
type error, which may lead to an unknown message error when a method, called
upon this entity, is known by the static type, not by the dynamic one.

Types and classes are quite similar—a type can be seen as a set of values
(extension) and a set of operators (intension)—and the conformance relation-
ship between types, denoted by j:, is analogous to specialization between classes.
Statically typed languages allow a static (compile-time) type error checking, i.e.
a type safe compilation. A simple way to allow this is to define conformance
through the notion of substitutability: a type t2 conforms to a type t; iff any
expression of type ¢; can be substituted by (bound to) any value of type t2 with-
out any run-time type error. Types can be identified with classes or, preferably,
types can be associated to classes but the very point is to liken class specializa-
tion and subtyping. Class specialization can support polymorphism—an instance
of a subclass can be substituted to an instance of a superclass—as long as the
type of the subclass conforms to the type of the superclass. Of course, with a
type safe policy. Class specialization is thus constrained by type safety.

This constraint revolves around the way types of properties can be redefined
(overridden) in a subclass. Let A be a class and m a method defined in A,
noted m4. Method types are noted in a functional way, with arrow types: m4
has, for instance, type t — t’. Let B a subclass of A, where m is redefined in mp,
with type u — u/. The type of B conforms to the type of A, only if u — ' is a
subtype of ¢ — t’. Subtyping on arrow types is defined as follows [7]:

u—ujpt—t = tiu & vt (4)

A function of type t — t’ can be replaced by a function of type u — v’ if the
latter accepts more values as parameter (tj:u) and returns less values (u’j:t').
Following Cardelli, the return type is said covariant, while the parameter type is
contravariant: this is known as the contravariance rule. Attribute redefinition is

