

O IFAG

International Federation of Automatic Control

SAFETY OF COMPUTER CONTROL SYSTEMS 1985
Achieving Safe Real Time Computer Systems

SAFETY OF COMPUTER
CONTROL SYSTEMS 1985
(SAFECOMP ’85)
Achieving Sate Real Time
Computer Systems

Proceedings of the Fourth IFAC Workshop
Como, Italy, 1-3 October 1985

'Edited by
W. J. QUIRK

Computer Science & Systems Division,
Atomic Energy Research Establishment, Harwell, U.K.

Published for the
INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL

by
PERGAMON PRESS
“ OXFORD - NEW YORK - TORONTO - SYDNEY - FRANKFURT

UK.
USA.

CANADA

AUSTRALIA

FEDERAL REPUBLIC OF
GERMANY

Pergamon Press Lid.. Headington Hill Hall, Oxford OX3 OBW, England
Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.

Pergamon Press Canada Lid., Suite 104, 150 Consumers Road, Willowdale, Ontario M2j 1P9.
Canada

Pergamon Press (Aust.) Pty. Lid., P.O. Box 544, Potts Point, N.S.W. 2011, Australia

Pergamon Press GmbH, Hammerweg 6, D-6242 Kronberg-Taunus,
Federal Republic of Germany

Copyright © 1985 IFAC

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or iransmitted in
any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or
otherwise, without permission in writing from the copyright holders.

First edition 1985

Library of Congress Cataloging in Publication Data

IFAC Workshop (4th : 1985 : Como, Italy) ’

Safety of computer control systems 1985

(SAFECOMP '85)

1. Automatic control — Reliability — Congresses.

2. Computers — Reliability — Congresses. 3. Industrial safety — Congresses.

L. Quirk, William J. II. International Federation of Automatic Control. I11. Title
Tj212.2.1338 1985 629.8'95 85-19088 -

British Library Cataloguing in Publication Data

SAFECOMP ‘85 (Conference : Como)

Safety of Computer Control Systems 1985 : (SAFECOMP '85) : achieving safe real time
computer systems : proceedings of the fourth IFAC workshop, Como, Italy, 1-3 October 1985.
1. Control theory — Data processing 1. Title II. Quirk, W.]J. III. International Federation of
Automatic Control 1V. Series

629.8'312 QA402.3

ISBN 0-08-032570-X

These proceedings were reproduced by means of the photo-offse! process using the manuscripts supplied by the
authors of the different papers. The manuscripts have been typed using different typewriters and typefaces. The
lay-out, figures and tables of some papers did not agree completely with the standard requirements; consequently
the reproduction does not display complete uniformity. To ensure rapid publication this discrepancy could not be
changed; nor could the English be checked ramflrtzly. Therefore, the readers are asked to excuse any deficiencies
of this publication which may be due to the above mentioned reasons.

The Editor

Printed in Great Britain by A.-Wheaton & Co. Ltd., Exeter

FOURTH IFAC WORKSHOP ON SAFETY OF
COMPUTER CONTROL SYSTEMS (SAFECOMP ’85)
Achieving Safe Real Time Computer Systems

Organized by

The Associazione Nazionale Italiana per I'Automazione (ANIPLA)

Sponsored by

The International Federation of Automatic Control (IFAC) through
Comitato Nazionale per la Ricerca e per lo Sviluppo dell’Energia Nucleare e delle

Energie Alternative (ENEA)

Raggruppamento Ansaldo S.p.A.

Centro Studi ed Applicazioni in Tecnologie Avanzate (CSATA)

International Programme Cominittee
E. de Agostino (Chairman) (Italy)
T. Anderson (U.K.)

S. Bologna (Italy)

Don Bristol (U.S.A))

P. Ciompi (Italy)

G. Dahll (Norway)

B. K. Daniels (U.K.)

J. Dobbins (U.S.A.)

W. Ehrenberger (Germany)

H. Frey (Switzerland)

R. Genser (Austria)

E. Johnson (U.K.)

National Organizing Committee

S. Bologna (ENEA) (Chairman)
S. Anderloni (ENEL)

E. de Agostino (ENEA)

Th. Lalive d’Epinay (Switzerland)
R. Lauber (Germany)
A. Mariotto (Italy)

V. Massari (Italy)

P. G. Mirandola (Italy)
W. J. Quirk (U.K))

J. M. Rata (France)

I. C. Smith (U.K.)

B. J. Sterner (Sweden)
U. Voges (Germany)
R. W. Yunker (U.S.A))
R. Zoppoli (Italy)

PREFACE

Computers continue to be used in more and more areas.
Once the province of high technology industry, they
now pervade the electronics controlling everything
from space vehicles to domestic appliances. Further,
they are expected not only to control and monitor,
but also to provide speedy and accurate information
concerning the state of their environment; not only
at the superficial level of their raw input data,
but increasingly in terms of the likely fundamental
causes of that data. Many research projects are
already underway on the use of artificial intelligence
to aid operator in plant control rooms. The robot,
not so long ago firmly in the world of science
fiction, is now an industrial reality. No doubt it
- will soon be a domestic reality too. Not only must
such a device act safely despite its programmer, it
must also act safely despite the baby, the dog and
the precious antiques.

Since the first SAFECOMP, held in 1979 in Stuttgart
FDR, much has been learned concerning the successful
implementation of computer systems where safety is
a primary concern. The operational benefits to be
gained from using computers, in terms of the enhanced
control and safety capabilities which can be
implemented, are readily acknowledged. Subsequent
SAFECOMPs in 1982 at West Lafayette USA and in 1983
at Cambridge UK have reported the continuing progress
in achieving and demonstrating these benefits.

The initiative and impetus for these events continues
to be TC 7, the “System Safety and Security” technical
committee of the European Workshop on Industrial
Computer Systems. TC 7 is a body of experts concerned
with all aspects of safety and security arising from
the use of computers in potentially hazardous
situations. It addresses the problems of protecting
human wellbeing, the environment and the plant itself
against hazards arising from failures in computer
control or safety systems however these may occur.
The objectives of TC 7 include the determination and
dissemination of procedures to construct, document,
test and verify the safe performance of such systems.
The “Call for Papers” for the present SAFECOMP"85
reaffirmed the continuing interest and activity in

vii

this area: many more replies were received than
could possibly be accommodated in a workshop.
Contributions were proffered from 15 different
nations, of which 14 are represented in this volume.

These papers cover a wide range of topics; both
hardware and software receive attention, as do
theoretical and practical aspects both experimental
and real life. The systems of interest range from
direct process control through robotics to operator
assistance, with safety aspects being central in
each case. Construction techniques, including
diversity, are balanced against reliability assessment
techniques.

The programme committee wish to record their thanks
to the sponsoring organisations: the International
Federation of Automatic Control (IFAC), the
Associazione Nazionale Italiana per 1l Automazione
(ANIPLA), the Comitato Nazionale per la Ricerca e
per lo Sviluppo dell“Energia Nucleare e delle Energie
Alternative (ENEA), the Raggruppamento Ansaldo
S.p.A., and the Centro Studi ed Applicazioni in
Tecnologie Avanzate (CSATA); also to the National
Organising Committee and ENEA for their administrative
efforts, to TC 7, particularly to the past and
present chairmen W.D. Ehrenberger and J.-M.A. Rata
whose enthusiasm has kept the committee united
through financially troubled times, and to the Safety
and Relilability Society of Great Britain for their
supportive efforts. The editor is grateful for the
assistance of the staff of the IFAC Publisher
Pergamon Press and of Mrs. W.A. James of Harwell in
the preparation of these proceedings. It is hoped
that this event continues the fine tradition of
previous SAFECOMPs and will lead to many more in the
future.

WeJe Quirk
AERE Harwell

CONTENTS

‘

SESSION 1 - DIST’RIBmD SYSTEMS
Chaired by J.-M.A. Rata

Structuring Processes as a Sequence of Nested Atomic Actions
F. Baiardi and M. Vanneschi

A Dynamic System Architecture for Safety Related Systems
W.J. Quirk

SESSION 2 - MAN-MACHINE INTERFACE
Chaired by R. Zoppoli

Safety Integrity Assessment of Robot Systems
K. Khodabandehloo, R.S. Sayles and T.M. Husband

Reliability and Integrity of Computer Assisted Decision Making Process
M. Hashim

A Soft Control Desk for Power Generation
D.M. Usher

SESSION 3 - VERIFICATION AND VALIDATION
Chaired by S. Bologna

Design Verification for (Safety Related) Software Systems
P, Baur and R. Lauber

Verification and Validation Program for a Distributed Computer
System for Safety Application
D.M. Rao and S. Bologna

Validation of a Computerized Operator Support System
S. Fukutomi, S. Yoshimura, Y. Takizawa, J. Itoh and N. Mori

A Tool for Specification Analysis: 'Complete' Decision Tables
A.M, Tragverso

SESSION 4 - RELIABILITY AND SAFETY ASSESSMENT
Chaired by B.K. Daniels

Software Tools as an Aid for Hardware and Software Reliability
Analysis
R. Benejean, J.C. Michon and J.P. Signoret

On Some New Reliability Importance Measures
B. Bergman

' Reliability Evaluation of a Safety Related Operating System
W. Ehrenberger, J. Mirtz, G. Glve and E.-U. Mainka

Computer Aided Design for Reliability Assessment, A Package
Specification
A.M. Featherstone and B.K. Daniels

ORIGINAL PAGE IS
OF POOR QUALITY

21

25

31

39
47

53

57
61

65

73

X Contents

SESSION 5 - HARDWARE
Chaired by Th. Lalive d'Epinay

Real-Time Systems with Highly Reliable Storage Media: A Case Study 79
M. La Mama

Requirements and Design for a Distributed Computerized System for Safety
and Control Applications 85
S. Bagnasco, F. Manzo and F. Piaaza

Design of a Self-checking Microprocessor for Real-Time Applications 95
A. Osseiran, M. Nicolaidis, J.P. Schoellkopf, B. Courtois,
D. Bied-Charreton and B. LeTrung

Fault Handling Capabilities in Bus Architectures 101
M. Pauker

SESSION 6 - FAULT TOLERANCE

Chaired by N.G. Leveson .
Broadcast Remote Procedure Calls for Resilient Computation 109
H.R. Aschmamn

Stable Paths for an Efficient Recovery in Real-Time Distxibm':od
Systems 117
P. Mancini, P. Ciompi and L. Simomeini

Fuzzy Based Safety System as a Part of Computer Control Software 123
P, Vaija, K. Keskinen, M. Jurveldinem and M. Dohnal

Modelling ‘the Effect of Transient Faults in Fault Tolerant Computer
Systems 129
Y.W. Yak, K.E. Forward and T.S. Dillon

Specification and Design of Reliable Systems in Terms of Unreliable

Components 135
J. Gorski
Reliability Versus Safety) 141

M. Mulazazant

Fault Tolerant Software Techniques for a Railway Electronic Interlocking
Device 147
I. Ruello and F. Torielli

SESSION 7 - DIVERSITY
Chaired by G. Dahll

Project on Diverse Software - An Experiment in Software Reliability 153
P. Bishop, D. Esp, M. Barmes, P. Humphreys, G. Dahll, J. Lahti and
. Yoshimura ’

Correlated Failures in Multi-Version Software 159
J.C. Knight and N.G. Leveson

Software Fault-Tolerance and Design Diversity: Past Experience and
Future Evolution 167
L. Strigint and A. Avi¥ienis

Software Fault-Tolerance by Design Diversity - DEDIX: A Tool for

Experiments 173
A. Avi¥ienis, P. Gumningberg, J.P.J. Kelly, R.T. Lyu, L. Strigini,

P.J. Traverse, K.S. Tso and U. Voges

Author Index 179
Subject Index 181

Copyright © IFAC SAFECOMP 85
Como, Iwaly, 1985

DISTRIBUTED SYSTEMS

STRUCTURING PROCESSES AS A SEQUENCE
OF NESTED ATOMIC ACTIONS

F. Baiardi and M. Vanneschi
Dipartimento di Informatica, Universita di Pisa, Corso Italia, 40, 56100 Pisa, Italy

Abstract. Implementation of atomic actions by means of concurreat programming
constructs is discussed. It is shown that several trade-offs between performance and
reliability may be obtained when an atomic action is defined through the composition

of conetructs and not as an elementary one.

Several alternative implementations are then discussed with reference to the ECSP

concurrent language.

Eaphasis is placed on process structuring,

parallel activation end terminationm.

Keywords. Atomic actiom; Concurrent programming; Distributed system; Reliability;

Performance.

INTRODUCTION

It is by now widely recognized that the notion of
distributed atomic action is essential for the
development of reliable distributed software
(Liskov, 83; Randell, 78; Lomet, 77).

A computation can be easily structured into a
sequence of steps, each implemented by an atomic
action. Because of the "all or nothing" property
of atomic actions, a failed step does not modify
its input data and hence can be easily recovered.
Purthermore, the ability of nesting atomic actions
supports high granularity for both error detection
and recovery.

As a counterpart of these advantages, usually
atomic actions constrain the degree of concurrency
and of asynchronicity of a computation since, as
an example, the components of the action are
forced to enter and to leave the action
simultaneously (Gray, 78). This condition is not
necessary for an action to be atomic, but is
imposed to guarantee atomicity independently from
the semantics of the computation of each compoment
(Jensen, 83). Several advantages, in terms of
efficiency, are ©possible 1if the previous
constraint is relaxed provided that it is allowed
by the action semantics. This can be done when
the notion of atomic action is not primitive in
the adopted programmi lan; e. Instead, atomic
actions should be defined in terms of the
composition of constructs for error recovery and
synchronization. In this way the degree of
synchronization and the amount of data to be saved
may depend upon the particular computation that is
made atomic.

In this paper we describe the implementation of
distributed atomic actions in terms of the
constructs of ECSP, a message passing concurrent
language defined by a set of extensions to the CSP
model (Hoare, 82). The extensions allow the
programmer to define, among others, a continuation
on the occurrence of a command .failure. ECSP ‘has
been designed to be able to support
fault-tolerance policies based upon cooperation
among autonomous partners with the same authority.

Process cooperation 1is based not only wpon
communication but also upon process structuring
and process termination handling. Termination
handling is the fundamental mechanism for error
detection and confinement, as well as the basis
for forward and backward error recovery. Forward
recovery is possible by establishing alternative
communications © with processes that are
functionally equivalent to those that are supposed
to be faulty. Backward recovery is instead based
upon the ability of preventing the update oa the
state of a process when one of its commands fails.

ECSP is briefly reviewed in sect. 2, where we also
discuss the failure model we assume, as well as
some assumptions om ECSP implementation in a
distributed system. The implementation of atomic
actions in ECSP is discussed in sect. 3. In
sect. 4 we show some solutions to a problem of
stream manipulation. Each solution is based upon
the notion of atomic action, but it offers a
different trade-off between efficiency and

reliability.
COOPERATION AND ERROR RECOVERY IN ECSP

We give here a short introduction to the main
constructs of ECSP (Baiardi, 81, 84a, 84b). The
sequential part of: the language, which ie
Pascal-like, and some concurrent constructs mnot
relevant here will not be described. Furthermore,
some familiarity with the CSP model is assumed.

Communication and nondeterminism Control

Processes of an ECSP program can exchange values
through the execution of input/output (i/o0)
commands. The result of the joint execution of an
output command Alc(expr) and of an input command
B?c(y) in processes B and A respectively, is the
assignment to y of the wvalue of expr. The
communication has place through typed channels,
each one individuated by the triple (source
process, destination process, message type). The
message type is a pair (constructor, type of
value) where the constructor is an identifier that
may be absent. As an example, the two
previous i/o commands exploit a channel
(A, B, (c, type of y)).

2 F. Baiardi and M. Vanneschi

In ECSP communications can be asynchronous and
each channel contains a constant amount of buffers
implementing a FIFO queue. A synchronous
communication with rendez-vous may be obtained as a
particular case by not declaring any buffers for a

given channel.

ECSP channels are not shared objects, instead
they are considered as data structures local to the
receiver process. As an example, the declarations
of the amount of buffers appear in the receiver
process only. Because of the absence of shared
objects, we can avoid the introduction of
protection mechanisms distinct from those for
communications (Baiardi, 84c).

Both dynamic and static channels may be defined. A

dynamic channel is exploited when the partner name

in an i/o command is given by the value of a

processname variable.. The range of values of a

processname X declared in a process P is given ky

the names of processes that can be referred by P

and the undefined value 2. The following operations

are defined on X (they can be executed only by P):

a) connect(X,name), connect(X,Y): the constant
value "name" or the value of the processname Y
is assigned to X. All the commands using X refer
now to a process distinct from the one referred
by the previous value of X;

b) detach(X): the undefined value @ is assigned to
X. All the i/o commands using X do no longer
refer to any process;

c) is(X) : this is a boolean functions that returns
true only when the value of X is different from
2

d) eq(X, name), eg(X,Y) this is a boolean
function that returns true when. the value of X
is "name" or is equal to that of Y.

Cynamic channels are the main ECSP mechanism to
implement protection and reconfiguration of
communication channels. They support the
implementation of policies based upon the "minimum
privilege" principle (Denning,76), since a process
can create a dynamic channnel to communicate with
another one and destroy the channel as soon as it
decides that the communication is terminated.

Taking into account dynamic channnels, we can
define the termination conditions of an i/o command
as follows:

a) with successs: for an output command this means
that the message value has been either copied
into a channel buffer or assigned to a variable
in the receiver. In the case of an input command
this means that a value has been assigned to the
target variable;

b) with failure because of the partner termination;

The failure of an i/o command may be handled by
the cnfail clause

i/o command onfail

terminated : CL1

disconnected : CLZ

failed : CL3
After a failure, the appropriate command list, if
present, is executed and then the execution goes on
as if the command were successful; an unhandled
failure results in the process termination with

failure.

To control and express nondeterminism, ECSP
adopts the alternative and repetitive commands with
input guards of CSP. Each guard may be associated
an integer variable to express the priority of the
corresponding alternative. This allows the
programmer to express directly scheduling policies
and real-time decisions.

The termination conditions of guarded commands
are similar to those of CSP. The failure of an
alternative command may be handled by the onfail
clause.

N
Process Structuring

ECSP supports nesting of parallel commands.
Therefore each program has a hierarchical-parallel
structure to support the implementation of the
required degree of modularity and parallelism. As
an example, a process P can activate processes Pl
and P2 by the parallel commanc

out(X,Y,2)

[P1 :: in(X,2); ...; out(T)

1IP2 :: in(X,Y); ...; ggt(Z)]

in(T,2);

This causes the simultaneous activation of Pl and
P2, and suspends the execution of P until the
command is terminated, i.e. wuntil both Pl and P2
are terminated. A process terminate by the
execution of the command terminate(succ) or
terminate(fail). A‘ paralllel command terminates
successfully only when all the activated processes
terminate successfully.

The nested structure of processes induces a
visibility rule for process names. Let PR(Pi) be
the set of process that can be referred to by Pi.
If Pi has been activated by process P through a
command including processes Pl, ooy Pn then
PR(Pi)=PR(P)U(P1, ...,Pi-1, Pi+l, ..., Pn). In the
previous example, PR(P1)=PR(P)U(P2),
PR(P2)=PR(P)U(P1). This implies that a process Q
that can refer to P cannot refer to Pl or to P2,
while Pl and P2 inherit from P the knowledge of the
name Q. Hence Pl and P2 can send/receive messages

c) with failure because the (dynamic) channel has
been disconnected: this failure signals that the
partner has uptated (or has not yet updated) the
value of a processname variable and hence no
communication is possible on the channel
individuated by the command; ;

d) with failure because of the wunability to
communicate with the node where the partner is
allocated; this outcome models decisions of the
diagnostic procedures in the communication
protocol of the language run time support.

to/from Q, while Q cannot detect whether the
partner of a .communication is P or Pl or P2.
Implementation of nested parallel commands is
discussed in (Baiardi, Bda, b).

Communication among P and Pl and P2 is
implemented through import/export—4{l1/E) lists. The
clause out(list of variables) in P specifies the
export list, i.e. the variables whose values are to
be transmitted to Pl and P2. The clause in(list of
variables) in P specifies the variables that will
be assigned the values received from Pl and P2. Pl
and P2 include, in turns, an import and an export
list to specify the variables that receive a value
from, and those whose values are to be transmitted
to, P. The value of a variable in an export list is

Structuring Processes

assigned to the variable with the same name in the
corresponding import list. To avoid ambiguities,
the export list of Pl and P2 have to be disjoint.
In the given example, on the execution of the
parallel command, the values of X, Z are assigned
to variables in Pl while the values of X, Y are
assigned to variables in P2. When the parallel
command ends, the values of T in Pl and of Z in P2
are transmitted to P and assigned to the
corresponding variables.

According to the ECSP
assigrements to variables in the input list of P
are executed only if the . parallel commands
terminates successfully. This is the ECSP mechanism
for backward recovery policies as well as the basis
for the definition of atomic actions.

The failure of a parallel command may be
handled by the onfail clause, where a distinct
recovery action may be executed for each distinct
subset of failed processes.

semantics, the

Failure Model and Language Implementation

In the following we assume that any fault in thé
system corresponds to.an inconsistent behaviour of
a set of processes. By inconsistent behaviour we
mean, for example, a process unexpected termination
or an erroneocus communication attempt.

The language run time support should include
mechanisms that transform an error into an
inconsistent behaviour. As an example, the support
transforms the crash of a processor into the
termination with failure of all the the processes
(Pi) allocated to the processor. In turn, this
induces the termination with failure (kind b) of
any i/0 command referring to a Pi. When, instead, a
Pi is executing a parallel command, its anomalous
termination has to be masked until the parallel
command terminates. Hence a proper implementation
has to be adopted to prevent the crash from
affecting the processes of the parallel command not
allocated to the crashed processor.

Another essential hypothesis is that, even when
physical communication media are unreliable, the
diagnostic mechanisms at the communication level

are reliable. This corresponds to say that the
termination conditions of an i/o command are
uniquely distinguishable. The mechanisms to grant
the non ambiguity condition about the kinds of a
command termination are implemented:
a) in a way that strongly depends upon language
constructs for the cases a),b),c) of sect. 2.1;
b) by implementing mechanisms as diagnostic
procedures in the run time support for the case
d).

IMPLEMENTATION OF ATOMIC ACTIONS IN ECSP

)

The basic mechanism to implement atomic actions
is the parallel command with I/E lists. In this
section we introduce some sufficient conditions to
guarantee that a set of parallel commands is an
atomic action.

Let us consider, at first, a single command

out(LO)

[P1:: in(LO1); ... ; out(LIl)
] .

[1Pn:: in(LOn); ... ; gg&(LIn)]
in(L1) onfail

If the following conditions are verified, the

command is an atomic action:

cl) each Pi can communicate only with processes
belonging to the command;

c2) the output of the command are the values to te
assigned to LI and they depend only upon the
values transmitted by LO.
The two conditions guarantee, respectively,
idempotency and restartability of the command.
Condition cl can be relaxed: consider the case when
a Pj invokes a server process Q to execute a
function f on a value X. If X is not stored into
Q's state after computing f(X), the communication
between Pj and Q does not violate atomicity.
Condition c2 guarantees that the outputs of the
action can be made persistent, e.g. stored on an
external device, only after the termination of the
action.
It is worth discussing now some noticeable
characteristics of the implementation of atomic
action in terms of ECSP parallel comman&s.
Consider the case when a Pj fails. After this
failure, it is known that the work executed by the
other processes is useless, since the command will
fail anyway and hence no results will - be
transmitted to the process executing the parallel
command . Thus, in this case, all the other
processes of the parallel cc d could be aborted.
In ECSP, instead, the other processes terminate
only when they detect that the failure of Pj
prevent them from accomplishing their tasks. This
choice preserves the autonomy of each process whose
behaviour cannot be affected by other processes. In
particular, a process cannot be forced either to
terminate or to take part in an interaction.
The abandonement of the autonomy principle,
though it could increase the efficiency of some
computations, may introduce "privileged" system
components that could strongly reduce the overall
reliability and, furthermore, would make it very
difficult to express forward recovery policies.
Anyway, since a process is informed of the failure
of a Pj through the failure of its i/o commands
referring to Pj, it is very simple to stop a
computation by propagating process termination.
Consider now a set S of parallel commands (PCl1,
«sey PCn), where each PCi activates processes
(Pij, 1<j S mi) that receive values in LOi and
returns values in LIi. S is an atomic action if we
can guarantee that:
c3) a Pij activated by PCi can communicate only
with a process Pkl activated by PCk;

c4) communications between processes not belonging
to the same parallel command exploit dynamic
channels that are connected before executing
the parallel command and detached when a
failure occurs; .

c$) all the parallel commands-end in the same way.

Condition ¢3 corresponds to ¢l since it
guarantees thet no intermediate result is visible
outside the action. Condition c4 is instead related

4 F. Baiardi and M. Vanneschi

to the scope rule for process names. Since two
processes Pij and Pkl activated by distinct
parallel commands of S cannot refer to each other
directly, an anomalous termination of Pij cannot be
detected by Pkl. When the communication is

implemented by dynamic channels, these channels can

be detached by the process activating Pij and thus
the i/o commands of Pkl will return a failure of
kind "disconnected channel". Furthermore, since the
state of a dynamic channel is reinitialized when
the channel is detached or connected to a new
partner, c4 guarantees idempotency with respect to
communications.

By structuring an atomic action into several
parallel commands it is po-siﬁle to increase the
amount of concurrency among components.

As illustrated in the following, conditions c3
and c4 can also be relaxed depending upon the
semantics of the action.

ALTERNATIVE IMPLEMENTATIONS OF ATOMIC ACTIONS

To show alternative implementations of atomic
actions we will refer to the following problem:
given two data streams, S1 and S2, produced from
data structures IS1 and IS2 respectively, compute
the stream S3 defined as follows:

53J-l(h(51j;,523) if jg L1, jgL2; 83j=h(82j) if
L1€) @L2;

S3J=k(S1j) if L2¢j €L1

where Li is the length of Si and Sij is the j-th
element of Si.

The solutions we present are all structured as
follows. The program is partitioned into two sets
of prec : pro in the first one receive
IS1 and IS2 from processes in the other and return
to them the whole stream S3. The second partition
will be modelled by a single process called Other:
this is not a limitation since parallelism inner to
Other may be expressed by nested processes.

Let us consider a first simple solution that does
not take into account reliability or robustness.

Prog::[P1lIP2||P3||Pa||Other]

Pl and P2 receive IS1 and IS2 from Other, and
produce S1 and S2, respectively. As soon as an
element of the stream is produced, Pl sends it to
P3 and P2 to P4. Pl and P2 end when the last
element of the corresponding stream has been
produced.

The programs of P3 and P4 are:

P3::{declarations)
begin
*[P17new —= Pa!h(new)];
terminate(succ);
end
P4::{declarations)
begin
#[P27x1 —e rec:=false;
* [not(rec), P3?x2 —e rec:=true;
Rl append(S3,g(x2,x1))
] H
if not(rec) then begin
append(S3, k(x1));

*[P2?7x1 — append(s3, k(x1))]
: end
UPS?xZ -=s rec:=false;
®[not(rec), P2?x1 — rec:=true;
R2 append(S3, g(x2,x1))
1;
if not(rec) then begin
’ append(S3, x2);
* P37x2 — append(S3, x2)]

end
);
terminate(succ)
end

Process P3 applies function h to all elements of
S1l. The termination of Pl will produce the failure
of the guard and the successfull termination of P3,
P4 waits for a pair of elements, one from P2 and
the other from P3. When both producers end, the
repetitive command ends successfully. If one stream
is longer than the other, then either Rl or R2 will
end because of the failure of the input guard. In
this case, P4 will wait only for elements of the
longer stream. Notice that P3 and P4 assume that
the communication from the producer fails iff the
stream is terminated.

To transform the computation of P1-P4 into an
atomic action, we can nest the processes into
another one that receives IS1 and IS2 and returns
S3. the corresponding program is :

Program:: [Rstream||Other]

Rstream: : ¢(declarations)
begin
Other?1S1;
Other?1S82;
done:=true;
nret:=0;
repeat
out(IS1,1S2)
Criiir2liP3liPa]
in(S3) onfail begin
nret:=nret+l;
done:=false
end;
until done or (nret >max);
if done then Other!S3 else ...;
terminate(succ)
end

In this solution, Pl and P2 receive their inputs
by I/E lists and P4 returns S3 to Rstream in the
same way. If any Pi fails, this will prevent the
assignement to S3 and the parallel command will be
executed again. If we do not modify the program of
P4, it will not detect the anomalous termination of
P2 or P3 and thus it will append to S3 the elements
received from the other producer. This can be
avoided by forcing P3 and P2 to communicate
explicitly their termination and by replacing the
repetitive command in P4 by the following repeat
command:

Structuring Processes 5

regglt
if not(endl) then € P27x1 — skip

- O P2?end() — endl:=true
if not(end2) then [P3?x2 — skip
- Op37end() -—= end2:=true
1
case endl, end2 of
begin
false, false : append(S3, g(x1,x2))
true, false : append(S3, x2)
false, true : append(S3, k(xl))
true, true : skip
end;
until endl and end2

If neither a value nor the message end() is
received from a producer, then P4 will fail
immediately, thus inducing the termination of the
other producer. Notice that this solution is much
more synchronous that the previous one since both
1S1 and IS2 have to be received before the parallel
command is executed. Other synchronization are
introduced to stop the computation on the failure
of a producer.

Let us consider now a solution where the atomic

In the programs of Rstreaml and Rstream2, we
have assumed that a failure of P3 or of P4 is due
to a line fault. In this case the recovery action
consists in a new execution of the parallel command
in both processes. As an example, after the failure
of P3, Rstreaml will detach the processname
variable sink thus inducing a failure in P4 and the
termination of the parallel command in Rstream2.
Then Rstreaml and Rstream2 will exchange the
message detect() and connect sink and source before
executing again the parallel command.

It is possible that P3 (P4) is affected by s
fault after having sent (received) the last message
to (from) P4 (P3). In this case the disconnection
of the dynamic channel has no effect on the
partner: this is a consequence of the "“uncertainity
principle" (Gray, 78) and it will be considered as
a "disaster" similar to that induced by a crash
during the "commit" phase of a distributed atomic
action.

The programs of Rstreaml and Rstream2 assume that
the failure of the process working on the input
sequence is due to a processor crash. An
appropriate recovery action may be, in this case,
the execution of a parallel command activating
processes with the same input/output behaviour of
the failed ones. As an example, in Rstreaml

action is 1nglo-ontad by a pair of parallel
commands .

Program: :[Rstreaml || Rstream2 || Other]

Rstreaml:: ...
Other?1S51;
repeat
connect(sink, Rstream2);
Rstream2?ready();
out(1S1,sink)
[P11iP3] onfail begin
(P1, P3) :{processsor recovery)
(P3) : done:=false;
nret:=nret+l;
detach(sink);
Rstream2?detect();
end;
until done or (nret>max);
Rstream2 :: ...
Other?182
repeat
connect(source,Rstreaml);
Rstream2!ready();
out(1S2,source);
Tr211pa) in(s3) onfail begin
(P2, P4) :¢processor recovery)
(P4) : done:=false;
nret:=nret+l;
detach(source);
Rstreaml!detect();
end
until done or (nret>max);

The dynamic channnels corresponding to the
processname variables sink and source implement the
communications among processes of the two parallel
commands. To assure that these channels have been
properly connected, Rstreaml and Rstream2 are
synchronized by the message ready().

£ processor recovery)= detach(sink);
Rstream2?detect();
connect(sink, Rstream2);
Rstream2?ready();
out(1s1, sink)
. Cradipa+]
where Pi' may be a copy of Pi allocated to a
distinct processor.
The programs of Pl, P3, P4 in this solution may
be the following:

Pl:: in(ISl1)

while IS1# 0 do
begin «
produce new;
P3tnew onfail terminate(succ);
end;
P3lend()
end
P3:: in(sink)
begin
[P17el— sink!h(el)
O P17end() — sink!end()
I
" terminate(succ)
end;
P4:: in(source)

begin

endl:=end2:=false;
repeat

until endl and end2;
terminate(succ);
end

The program of P2 is similar to that of Pl. Notice
that the failure of the output command is
transformed into the termination with success of Pl
or P2.

6 F. Baiardi and M. Vanneschi

The implementation of the distributed atomic
action by a pair of parallel commands supports a
larger degree of concurrency. As a matter of fact,
we have that:

i) 1S1 and 1S2 are received concurrently by
distinct processes;

ii) as soon as S1 has been produced, Rstreaml may
continue its execution without waiting for the
termination of the parallel command in Rstream2.
This increase in concurrency is paid in terms of
reliability: as previously discussed, a fault in P2
or P4 cannot be recovered when the parallel command
of Rstreaml is already terminated.

Another trade-off between performance and
reliability can be achieved if we require that the
two parallel commands are initiated asynchronously,
i. e. the message ready is eliminated. In this
case, the input command of P4 and the output
command in P3, using respectively sink and source,
could fail since the other process has not yet
connected its processname variable. Since in ECSP
this kind of failure can be distinguished, the
process can recover the failure and attempt later
the communication.

This behaviour can be described, in the case of
P3, by the following program:

P3:: in(sink)
end:=false;
repeat
C Pl?el — if empty(S') then x:=el
else append(S', el);

done:=true;
sink!el onfail
disconnected : done:=false
D P17end() — end:=true

»
thil end or done;
if end then begin
Timer!delta;
#[not(done), Timer?delta —e
sink!x onfail
disconnected : done:=false
J
Timer!stop();
end;
while not(empty(sS')) do
begin
x:=first(S');
sink!x;
end;
if not(end) then ¢ previous program for P4);

We have assumed that S1 is not empty. Timer is a
process that, after receiving a time interval
delta, sends 'a signal each delta units of time,
uotil it receives a message stop(). The loss of
reliability is due to the fact that P3 can detect
that the dynamic channel has been disconnected only
after it has succeded in sending at least one
message. When instead, P4 fails before receiving
the first message, P3 will assume that the channel
has still to be connected and hence will g0 on
. attempting the communication.

Other trade-offs are possible, bug it ' is
important to notice that in the same program we can
have several distinct implementations of atomic

actions, even nested one into the other.
Furthermore, the ability of nesting parallel
commands, and hence atomic actions, makes it
possible to recover some faults not detected by
inner actions.

CONCLUSION

We have shown how it is possible to define
nested atomic actions using a small set of
programming constructs. These constructs support
several trade-offs between reliability and
efficiency, thus allowing to exploit:information
about the semantics of the action to be
implemented.

As far as concern the implementation of these
constructé, it can be shown that no efficiencl is
lost by obtaining atomic actions through the
composition of constructs (Baiardi, 81, 84b).

R REFERENCES

Baiardi, F. and others, (1981). Mechanisms for a
robust multiprocessing environment in the MuTEAM
kernel. Proc. of 11th Fault Tolerant Computing
Symp., Portland,June 1981, pp.20-24,

Baiardi, F., Ricci, L. and Vanneschi, M. (1984a).
Static checking of interprocess communications
in ECSP. ACM SIGPLAN Symp. on Compiler
Construction, Montreal, June 1984.

Baiardi, F. and others, (1984b). Distibuted
implementation of nested communicating processes
and termination. 13th Int. Conf. on Parallel
Procesaing. Aug. 1984.

Baiardi, F. and others, (1984c). Structuring
processes for a cooperative approach to fault
tolerant distributed software. Proec. of 4th

. Symp. on Reliability in Distributed Software and
Database Systems, Silver Spring, Oct. 1984, pp.
218-231. '

Denning, P.J. (1976). Fault tolerant operating
systems. ACM Computing Surveys; 8,4, pp.359-
389Gray, J.N. (1978). Notes on database

operating systems. in Operating systems - An
advanced course, Lect. Notes in Comp. Science,
Springer & Verlang, Berlin.

Hoare, C.A.R. (1982). A calculus of total
correctness for communicating processes. Science
of Computer Programming; 1,1, PP.49-72,

Jensen, E.D., and others, (1983). Distributed
cooperating processes and transactions. ACH
SIGCOMM Symposium, Oct. 1983, pp.98-105,

Liskov, B. and Scheifler, R. (1983). Guardians and
actions: linguistic support for robust,
distributed programming. ACM TOPLAS; 5, 3, pp.
381-404 '

Lomet, D.B. (1977). Process structuring,
synchronization and recovery using atomic
transactions. ACM SIGPLAN Notices, 12, 3. L

Randell, B. Lee, P.A. and Treleaven, P.C. (1978).
Reliability issues in computer system design.
ACM Computing Surveys; 10, 2, pp. 123-165.

Copyright © 1IFAC SAFECOMP '85
Como, Italy, 1985

A DYNAMIC SYSTEM ARCHITECTURE FOR
SAFETY RELATED SYSTEMS

W. J. Quirk
Atomic Energy Research Establishment, Harwell, Oxfordshire, UK

Abstract. Safety related applications usually demand the provision of redundant resources
within the system and some method of reconfiguration when a failure is detected. One
problem with such an approach is that it has proved to be very difficult to design,
implement and test adequately this reconfigurability. A dynamic system architecture is
described which obviates some of these difficulties. This architecture takes advantage
of the fact that the processing associated with any set of inputs and at any instant of
_ time is of finite cduration. By arranging for sufficient parallel redundancy to be
available so that the system is not compromised by a single process instance failure,
system error recovery becomes almost trivial. There is no need to recover the single
instance failure (because of the available redundancy) and future processing will be
initiated by normal process initiation. Little error-recovery specific procedure is
necessary other than producing an effective fail-stop processor. The efficient
implementation of such a system depends crucially on a number of issues. These include
a novel, fully distributed scheduling procedure and the topology and functiomality of
the underlying commumication system. The implications of such an architecture for overall
system safety include the effects and benefits of software diversity and the possibility
of producing eystems which are to some extent proof against their own design errors.

s Keywords. Architecture, diversity, .fault tolerance.
INTRODUCTION

Safety related applications usually demand the
provision of redundant resources within the system
and some method of reconfiguration when a failure
is detected. However, one major problem with such
an approach is that it has proved to be very difficult
to design, implement and test adequately this
reconfigurability. Much useful work has been domne
on this problem, but most approaches rely on the
assumption that the software is fully functional
when an error occurs /LaSh82/, /Lomb84/ and that all
errors are due to the hardware. Published figures
reveal that a sizeable proportion of complete system
failures are brought about by a failure to reconfigure
correctly while attempting to recover from what was
intended to be a recoverable error /Toy78/. The
assumption that the software is totally error free
seems hardly justified in most cases and the safety
implications of such failures can be extremely
serious.

This paper describes the basis of a dynamic system
architecture which obviates some of these difficulties.
The architecture takes advantage of the fact that
the processing associated with any set of inputs and
at any instant of time is of finite durationm. The
fact that the processing procedure may be repeated
a potentially unlimited number of times does not
mean that a process implementing this procedure need

~1

have a potentially unlimited life. Rather, new
processes can be initiated when required and can
terminate when they have completed a particular
processing sequence.

By arranging for sufficient parallel redundancy to
be available so that the system is not compromised
by a single process instance failure, system error
recovery becomes almost trivial. There is no need
to recover the single instance failure (because of
the available redundancy) and future processing will
be continued by normal process initiation. No
error-recovery specific procedure is necessary other
than producing an effective fail-stop processor, a
topic already addressed by a number of workers
/CrFu78/, /ScSc83/, /Kenw84/, /Schn84/.

The efficlent implementation of such a system depends
crucially on a number of issues. These include a
novel, fully distributed scheduling procedure and
the topology and functionality of the underlying
communication system. Such an architecture has
several interesting implications for overall system
safety. Of particular interest are the effects and
benefits of software diversity to overcome problems
of common-mode failure and the possibility of
producing systems which are to some extent proof
against their own design errors.

FUNCTIONAL REDUNDANCY

In & previous paper /GiQu79/, the basis of functional
redundancy was described. The provision of redundant
input deta is of course a standard requirement for
safety systems and the provision of redundant data
pfoconin.. usually by identical replication, is
also well established. But within single computing
systems, the provision of such redundancy needs
caveful design. Otherwise, reliability 'bottlenecks’
may occur, where the benefits of redundancy in one
part of the system are lost because of potential
common mode failures in another. The aim of functional
redundancy is to achieve a uniform level of coverage
throughout the system, taking into account any
inbuilt gpedundancy available due to replication of
input sensors or output actuators available. The
approach taken is to trace the data flow through the
system and to ensure that independent processing
paths are followed eso that a failure on one path
does not affect other redundant data. Not only must
there be separate physical data paths through the
system, but, in order to obviate common mode failures,
separste software must be utilised on the different
data paths.

This previous paper also observed that redundancy
in the input dats was provided so that failures in
the input sensors did not compromise the integrity
of the system. This implies that the system can
tolerate a limited smount of faulty input data end,
in particular, a mumber of transient input errors.
But there is no difference between a faulty input
and a failure within the system along the path
followed by that input, providing the failure is
isolated to just that path. Thus, with the provision
of suitable internal redundancy, it is possible for
the system to be essentially unaffected by isolated
transient failures. Indeed, if the normal output
range of a process is sugmented with a recognisable
'failed' value, then subsaq pr using that
process output can take appropriate safe action.
This can be achisved even without the augmentationm,
but it is easier to implement and demonstrate if it
is done. With proper design, system safety can be
maintained through single isolated failures.

The problem then is to design the system so that all
failures are are transient and isolated. Clearly no
system can be made proof against total failure; the
architecture proposed below will be demonstrated to
be proof against single internal failures which are
sufficiently separated in time. The precise definition
of this sufficient separation will be derived later.

The first step in rendering all failures transient
is to note that there is no requirement to dedicate
physical resources to.functional units on a long-term
or near-permanent basis. The 'standard' architecture
for repetitive functionality has the form shown in
figure 1. The WAIT interval is often omitted, with
the program cycling es often as possible. However,
the system requirement, properly assessed, will
yield the required repeat interval. This fragment
is then equivalent to that shown in figure 2.

W. J. Quirk

REPEAT FOREVER
(
WAIT REQUIRED TIME INTERVAL
READ INPUTS
DO CALCULATION
WRITE OUTPUTS
1

Fig 1. Static Scheduling Fragment.

WAIT REQUIRED TIME INTERVAL
RESCHEDULE NEW COPY OF SELF
READ INPUTS

DO CALCULATION

WRITE OUTPUTS

EXIT

Fig 2. Dynamic Scheduling Fragment.

Practically all the system components can be
implemented in this second fashion. System 'long
tern' memory can be implemented as overlapping finite
duration ‘'data server' processes. Only the systea
peripherals cannot be made dynamic, but these must
be replicated in any case to provide a suitable
level of fault tolerance and safety. Thus implementing
the system in this manner hinges on the rescheduling
procedure and the rest of this paper considers only
the messages associated with this procedure.

In order to render the former fragment fault tolerant,
some other part of the system needs to oversee its
performance and, when a failure is detected, attempt
to allocate the fragment to an alternative resource.
This ie precisely the operation in the second line
of the latter fragment. The difference is that this
operation is used only rarely in the former
architecture (and then only.at & time of stress for
the system), whilst it is regularly used in the
latter. Thus the procedure is extremely thoroughly
tested and great confidence placed in it.

One should also notice that the characteristics of
failures change subtly as systems are made more and
more reliable and fault tolerant. Because there are
less failures observed, they tend to be more complex
than the 'simple’', 'common' failures observed in
less reliable systems. The difference between
transient hardware failures and software failures
also becomes. blurred. The software is likely to
function properly for all but a very small range of
rarely-occuring special circumstances. Consequently,
a failure on one cycle is unlikely to imply a failure
in a subsequent cycle (providing that no code ®or
data has been corrupted by the failure). This is
just the same as the observed effects of a hardware
transient; after a suitable reset, the device will
resume normal operational characteristics. Thus, the
latter architecture is inherently more resilient to
these failures. It is this observation coupled with
the confidence in the scheduling procedure which
justify the assumption that failures will appear
transient and isolated in time.

A Dynamic System Architecture 9

DYNAMIC SCHEDULING & FAULT TOLERANCE

The fundamental scheduling design is shown in
figure 3. This mirrors the fragment in figure 2.
However, some extra messages have to be added. First,
the initial action of the process is to signal its
grandparent. Second, after completing its normal
processing, it waits another scheduling interval,
and listens for the signal from its grandchild. In
normal circumstances, this final signal arives as
expected and the grandparent exits. If it fails to
arrive, it could mean a number of possible errors
have occured: that the child failed before scheduling
the grandchild, that the grandchild failed before
signaling the grandparent, or that the message was
sent but not delivered. The corrective action in all
cases is for the grandparent to attempt to schedule
a grandchild directly. However, if the error was
delivery failure, this would lead to two copies of
the grandchild being activated. To prevent this, the
initial action of each process is not to signal the
grandparent first, but rather to try to signal any
copy of itself. It expects no reply from its own
generation, because there should not be such another
copy. In order to prevent two copies killing each
other, a priority scheme has to be included. This
too can be made dynamic: by adding the process
instance number to the physical processor
identification and reducing the result modulo the
total number of processors. This yields a number
which is unique for any particular process instance.
If processes only exits in response to a higher
priority message from the same generation, then only
the highest priority process will not be killed.

GRAND
FATHER FATHER SON
Reschedule
pa Check
Replies

Reéchedule

Check
b Replies

Fig 3. Principle Scheduling Transactions.

There are further failure possibilities in this
system. Having scheduled its child, the grandparent
may fail. If it merely dies quietly, there is no
effect on the system. If it erroneously tries to
schedule a grandchild when one is already sucéessfully
scheduled, then the mechanism described above will
resolve the situation. But in all message sending
situations, there is the possibility, at least in
principle, of the sender going into a tight loop
sending repeat messages. This poses two different
problems. One is to ensure that the comun'icationl
subsystem does not saturate, locking out all other
processes. The other is to ensure that the system
can effectively ignore the erroneous messages. In
the case of process initiation, it is required to
allow one process to run, rather than for an infinite
sequence of processes to be initiated and almost
immediately die. Support for this is based on the
priority structure already discussed. This determines
an unique processor to continue from any pair trying
to perform the same process. Once this one has been
established, any other can be killed by the working
one. In order to limit the initial number to two,
some support from the communications subsystem is
proposed, as described below. Indeed, if process
creations are sequenced by the communications system,
the priority system could be replaced by a simple
'first-started continues' approach. But sequencing
is difficult to enforce if the communicatione
subsystem is itself replicated.

The ability to kill a process might initially seem
to be a great problem; the posiibility of a rogue
processor killing the whole system must be made
negligible. However, the power to kill used here is
very restricted. A process is killed only by asking
to be killed, and it can check the validity of that
reply. When a process requests to be killed, it
broadcasts only its name, not its instance number.
Each process of the same name can reply with a kill
for ‘their own instance number. Thus only one
generation can be killed by any single process¢ It
is worth noting that the system will still" recover
if two processes of the same generation survive, or
if they both die. In the former case, -only one of
their offspring should survive ‘a‘ff_er the next
reschedule; in the latter the normal reschedule
procedure will restart the next generation. This is
because the architecture is, in fact, resilient to
many, but not all, twin failures too. This fact can
be used to enforce a harder regime; that a whole
generation should die if two or more identical
processes appear. By allowing a process to continue
only if at least one of its grandfather or father
reply to its 'check' broadcast, one can remove any
possibility of the system being'compromised by an
infinite reschedule loop. Such a system is still
proof against a single failure, but it becomes
vulnerable to more twin failures than would otherwise
be the case. .

