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Foreword

Multiple-Input Multiple-Output (MIMO) systems have recently been the
subject of intensive consideration in modern wireless communications as they
offer the potential of providing high capacity, thus unleashing a wide range of
applications in the wireless domain. The main feature of MIMO systems is the
use of space-time processing and Space-Time Codes (STCs). Among a variety
of STCs, orthogonal Space-Time Block Codes (STBCs) have a much simpler
decoding method, compared to other STCs.

This book provides an in depth understanding of space-time processing in
general and space-time block processing in particular including their applica-
tions in MIMO wireless communication systems. Importantly, the book pro-
vides readers, for the first time, with state of the art critical reviews and findings
in the area of space-time processing. The authors’ latest discoveries in the field
of complex orthogonal space-time processing for wireless communications rep-
resent the core contributions of the book along an overview of open research
issues.

This book is considered suitable for both general and professional audiences
in the areas of Communications, Vehicular Technology, Signal Processing, and
to some extent Information Theory. In many ways, it can be considered as a
supplementary text for the standard courses in advanced wireless communica-
tions as well as a fundamental source of knowledge for future research in the

‘area of orthogonal space-time processing.

One anticipates that this book will provide lasting values for both research
and educational purposes.

Professor Joe Chicharo, PhD, FIE (Australia), SMIEEE
Dean of Faculty of Informatics
University of Wollongong, Australia



Preface

Digital communication using Multiple-Input Multiple-Output (MIMO) sys-
tems has recently emerged as one of the most significant technical breakthroughs
in modern communication. Communication theories show that MIMO systems
can potentially provide potentially a very high capacity that, in many cases,
grows approximately linear with the number of antennas. Therefore, MIMO
transmission is an outstanding technique with a chance to resolve the bottleneck
of traffic capacity in the future wireless networks.

The main feature of MIMO systems is space-time processing. Space-Time
Codes (STCs) are the codes designed for the use in MIMO systems. Among a
variety of STCs, orthogonal Space-Time Block Codes (STBCs) possess a much
simpler decoding method over other STCs. Because of that, this book exam-
ines orthogonal STBCs in MIMO systems. Furthermore, Complex Orthogonal
STBCs (CO STBC:s) are mainly considered in this book since they can be used
for PSK/QAM modulation schemes, and therefore, are more practical than real
STBCs.

The book starts with the backgrounds on MIMO systems and their capacity,
on STBCs, and on some conventional transmission diversity techniques. After
reviewing the state of the art of the issues related to this book and indicating
the gaps in the literature, we mention the following topics:

Novel constructions methods for improved, square CO
STBCs

In this book, we first propose three new, maximum rate, order-8 CO STBCs.
These new CO STBC:s are amenable to practical implementations as they allow
for a more uniform spread of power among the transmitter antennas, while
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providing better performance than other published codes of order 8 for the
same peak power per transmitter antenna.

Constructions of square, maximum rate CO STBCs are well known, how-
ever codes constructed via the known methods include numerous zeros, which
impede their practical implementation, especially in high data rate systems.
This disadvantage is partially overcome by the three new CO STBCs of order
8 mentioned above. However, these new codes still contain zeros which are
undesirable or the design method is neither general nor easy yet.

Hence, later, we discover two construction methods of square, order-4n
CO STBCs from square, order-n codes which satisfy certain properties, by
modifying the Williamson and the Wallis-Whiteman arrays to apply to complex
matrices. Applying the proposed methods, we construct square, maximum rate,
order-8 CO STBCs with no zeros, such that the transmitted symbols equally
disperse through transmitter antennas. Those codes, referred to as the improved
square CO STBCs, have the advantages that the power is equally transmitted via
each transmitter antenna during every symbol time slot and that a lower peak
power per transmitter antenna is required to achieve the same bit error rates as
in the conventional CO STBCs with zeros.

Multi-modulation schemes to increase the data rate of CO
STBCs

Based on the new proposed CO STBCs, multi-modulation schemes (MMSs)
are proposed to increase the information transmission rate of those new codes
of order 8. Simulation results show that, for the same MMSs and the same
peak power per transmitter antenna, the three new codes provide better error
performance than the conventional CO STBCs of the same order 8.

In addition, the method to evaluate the optimal inter-symbol power allocation
in the proposed codes in single modulation as well as in different MMSs for
both Additive White Gaussian Noise (AWGN) and flat Rayleigh fading chan-
nels is derived. It turns out that, for some modulation schemes, equal power
‘transmission per symbol time slot is not only optimal from the technical point
of view, but also optimal in terms of achieving the best symbol error probability.

The MMSs which increase the information transmission rate of CO STBCs
and the method to examine the optimal power allocation for multi-modulated
CO STBCs mentioned here can be generalized for CO STBCs of other orders
without any difficulty.
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Transmitter diversity antenna selection techniques for
MIMO systems using STBCs and DSTBCs

The combination of CO STBCs and a closed loop transmission diversity
technique using a feedback loop has received a considerable attention in the
literature since it allows us to improve performance of wireless communication
channels with coherent detection. In this book, we propose an improved diver-
sity Antenna Selection Technique (AST) to improve further the performance of
such channels. Calculations and simulations show that our technique performs
well, especially, when it is combined with the Alamouti code.

While the combination between STBCs and a closed loop transmission diver-
sity technique in the case of coherent detection has been intensively considered
in the literature, it seems to be missing for the case of differential detection.
The book thus proposes two ASTs for wireless channels utilizing Differential
Space-Time Block Codes (DSTBCs), which are referred to as the AST/DSTBC
schemes. These techniques remarkably improve the performance of wireless
channels using DSTBCs (with differential detection).

Effects of imperfect channels on transmitter diversity an-
tenna selection techniques

The proposed AST/DSTBC schemes work very well in independent, flat
Rayleigh fading channels as well as in the case of perfect carrier recovery.
How do they perform in the case of correlated, flat Rayleigh fading channels or
in the case of imperfect carrier recovery?

To answer this question, first, we propose here a very general, straightforward
algorithm for the generation of an arbitrary number of Rayleigh envelopes
with any desired (equal or unequal) power, in wireless channels either with
or without Doppler frequency shift effects. The proposed algorithm can be
applied to the case of sparial correlation, such as with antenna arrays in Multiple
Input Multiple Output (MIMO) systems, or spectral correlation between the
random processes like in Orthogonal Frequency Division Multiplexing (OFDM)
systems. Itcanalso be used for generating correlated Rayleigh fading envelopes
in either discrete-time instants or a real-time scenario. Besides being more
generalized, our proposed algorithm is more precise, while overcoming all
shortcomings of the conventional methods.

Based on the proposed algorithm for generating correlated Rayleigh fad-
ing envelopes, the performance of our AST/DSTBC techniques proposed for
systems utilizing DSTBCs in spatially correlated, flat Rayleigh fading chan-
nels is analyzed. Finally, the book examines the effect of imperfect carrier
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phase/frequency recovery at the receiver on the bit error performance of our
AST/DSTBC schemes proposed for channels utilizing DSTBCs. The tolerance
of differential detection associated with the proposed ASTs to phase/frequency
errors is then analyzed. These analyses show that our ASTs not only work well
in independent, flat Rayleigh fading channels as well as in the case of perfect
carrier recovery, but also are very robust in correlated, flat Rayleigh fading
channels as well as in the case of imperfect carrier recovery.

The book is concluded with recommendations on the issues examined here
and with a number of future research directions.

LE CHUNG TRAN !

TADEUSZ A. WYSOCKI
ALFRED MERTINS

JENNIFER SEBERRY

'Le Chung Tran is also a lecturer at the Faculty of Electrical and Electronics, Hanoi University of Commu-
nications and Transport, Vietnam.
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