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Introduction

There are two objectives in this introduction. Firstly, I want to give a
brief overview of the history of analysis as it relates to the material in
this book. Secondly, I want to explain how the book is constructed,
and how it is intended to be read.

The modern theory of analysis has its roots in the work of Liebnitz
and Newton as they studied and developed the theory of differential
and integral calculus in the 17" century. Central to this theory is the
concept of a function. However, the modern definition of a function
which every undergraduate mathematician encounters early in her un-
dergraduate career is in fact the result of a long process of refinement.
In the first half of the 17t* century, functions were defined only by
algebraic operations. Thus f (s) = s* was a typical function. The im-
portance of the range, the domain and the rule defining the function
was at this stage not evident. Also, a consequence of the algebraic
nature of the definition was that knowledge of the function on a small
interval allowed one to deduce the nature of the function for arbitrary
values of the argument. To see what this means, suppose we know that
a function f mapping real numbers to real numbers is defined by an
algebraic rule. If we also know that the rule for real numbers in [0,1]
is given by f(s) = s2, then, because the rule is known to be given by
a single algebraic formula on the whole of R, this rule must continue
to hold for all real numbers. It must have universal truth. Even the
idea that a function could be represented by different rules on different
intervals of the real line was not thought of at this stage. The next
significant step was the appearance of logarithmic and trigonometric
functions. However, these functions still had a definition which had
universal truth. Through the study of infinite series, the concept of a
function began slowly to widen towards the end of the 18" and the
beginning of the 19'* centuries, and the idea of a function having sev-



x Introduction

eral radically different forms of behaviour in different regions of the
real line steadily gained acceptance.

In the 19" century, men like Cauchy, Weierstrass, Dirichlet and
Riemann began to place the subject of functions on a firm abstract
foundation. Their concept of a function and associated ideas such
as continuity and differentiablity were essentially those which we still
use today. However, their work did not meet with uniform approval
amongst mathematicians of the day. The problem was that the class
of objects which were now refered to as functions was widened tremen-
dously by these founding fathers of analysis. This process of abstrac-
tion was eventually found to have granted citizenship to some fairly
bizarre functions - ones which not only had no simple rule defining
them, but could not even be drawn graphically.

Once the concept of a function was firmly established, the ideas of
continuity and differentiability could be placed on a firm footing. This
led to another controversy. There had been a strong feeling, brought
about no doubt by considering the sorts of functions which can be
graphed, that every continuous function was differentiable everywhere,
or at least with the exception of a small number of ‘special’ points.
As the abstract theory became better understood, both Bolzano and
Weierstrass realised independently that this feeling was badly incor-
rect. (The reader who is interested in knowing just how badly wrong
this feeling is, need only read as far as chapter 5 in this book.) Not
everybody was thrilled with this state of affairs, however. Their work
caused Hermite to express himself as follows: “I turn away with fear
and horror from this lamentable plague of functions which do not have
derivatives”.

By the time the 20** century arrived, the foundations of the theory
of functions of a real variable were well-understood, and analysis was
ready for another change of pace and direction. Perhaps a major influ-
ence on this development was the pioneering work of G. Cantor at the
end of the 19** century. What Cantor may be credited with achieving
is bringing the abstract concept of a set to the forefront of mathemat-
ics. The theory of functions could then take another quantum leap
to the modern position where the domain and range were abstract
sets. The pace now quickened, largely due to the French schoo! of
mathematicians. The work of Borel and Lebesgue on techniques for
measuring sets opened the way for an abstract theory of integration
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which proved to be far superior to the original ideas of Riemann. Baire
and Borel were involved in a theory of classification for functions, and
many other able researchers contributed to making the beginning of
the 20t century a period of rapid development. Running parallel, and
often inextricably intertwined with the real theory was the theory of .
functions of a complex variable.

With the publication of a book called Théorie des opérations lin-
éaires [1] by a Polish mathematician, S. Banach, a new abstract frame-
work in which many of the previous ideas could be discussed was cre-
ated. It soon became apparent that this framework (that of normed
linear spaces — see chapter 1) offered powerful tools to the rest of anal-
ysis. In addition, there was considerable interest in the subject for its
own sake, and this interest has given rise to important modern areas
of analysis such as operator theory and the geometric theory of Ba-
nach spaces. At the same time, Banach’s work gave mathematicians
what amounts to a new language for analysis. Such was the power
of this new language, that today it is well-understood by mathemati-
cians whose involvement in abstract mathematics is quite small. For
example, this language is prevalent in the field of numerical analysis —
where techniques for using computers as aids to problem solving are
studied.

This presents an interesting pedagogical problem. Anyone wishing
to work in the analytical side of mathematics must be familiar with
this modern language. But when is the correct time to introduce such
material? A student who has only received an informal training in
the methods of calculus (so that no formal proofs have been encoun-
tered) would find the combination of the formality of analysis and the
strangeness of the abstract framework just too. daunting. However,
once a student has done the equivalent of one semester of univariate
formal calculus, encountering the concepts of sequences, limit, conti-
nuity, differentiability and integration, and most important, has had
plenty of practice with rigorous proofs using quantifiers, then the next
step can involve some gentle introduction to normed linear spaces. Of
course, a small amount of knowledge about linear structures is also
necessary, but much can be done with nothing more than an under-
standing of the concept of a linear space together with the ideas of
dimensionality and basis.

A major problem with this scheme of things is that most books in
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this field are simply too ambitious for the student who is still coming to
terms with the formal notions of analysis. The majority of authors set
out with the intention of covering a substantial portion of the theory
at a late undergraduate or beginning postgraduate level. This often
requires advanced techhical machinery, such as topological spaces, and
dictates a pace wlich is far too rapid for someone who is still coming
to terms with the way in which analysts think, and the process by
which results are established. This book attempts to provide a gentle
introduction to the theory of normed linear spaces, while at the same
time exposing the way in which the common arguments of analysis
work. How is this achieved? Firstly, the pace of exposition at the start
of the book is slow. (At least, in my opinion, it is slow. Experience
has shown me that I do not always succeed in striking the right pace
in the eyes of students!) I have tried to take considerable care in
the initial chapters to point out the basic strategies of proof, and the
common pitfalls. As the chapters progress, I presume that the reader is
gradually becoming familiar with the subject, through her reading and
through her working of the exercises. Consequently, the pace quickens,
and the reader is left more and more to her own devices. Secondly, the
choice of topics has been severely limited, so that this book is not of
daunting length, neither does it contain many of the great landmarks
in the subject. 1 considered most of these jlfst too difficult to tackle
in an introductory work. In addition, I have looked very much to the
field of function theory for most of’the examples. In doing so, a severe
blow has been dealt to a large part of the subject, which deals with ,
linear spaces where the objects are sequences or Lebesgue measurable
functions. I feel that functions which have domain and range in the
real numbers are objects which most readers will feel reasonably at
home with, and so this is the best place to go for practical outlets of
the theory. It has the added advantage that the applications in this
book continue the themes that the student will have encountered in
previous courses - continuity, ideas from calculus, polynomials, and
S0 on.

One of the consequences of my approach is that the reader really
should go on after reading this book to read other, more advanced
books. I very much hope that she will do so. One of my main objects
in writing this book has been to try to convey my enthusiasm for the
subject to the reader, and I will regard myself as having failed if this
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is the last book on analysis which the reader studies.

Now a word about the structure of the book. Each chapter con-
tains exercises liberally sprinkled thronghout. My intention is that the
reader should do most, if not all of these. None are really hard, and
many round out the treatment of the theory. Some are even essential
for certain future arguments. All theorems, lemmas, coroliaries are
numbered consecutively within the chapter they occur. The proofs
are set off in the text by the head Proof, and are terminated by a
small black box.

I have benefited greatly from the teaching I have received and from
the many discussions I have had with colleagues about the correct
way to teach analysis. It is a pleasure to acknowledge that assistance
here. I am greatly indebted to my friend and colleague, Professor
E. W. Cheney whose friendship and collaboration over many years has
served to deepen my understanding of the subject, and to stimulate my
own research interests in the area. Dr. G.J.O. Jameson has also had
considerable influence on my teaching of analysis during the 18 years
we have been colleagues, and this book owes much to my perusal of
his analysis lecture notes. Professor W. Deeb was somehow persuaded
to read the manuscript when it was almost in final form. I benefited
greatly from his gentle but persistent criticisms.

Finally, I owe a deep debt of gratitude to my wife, Anita, who
became a ‘computer widow’, while I struggled with the writing and
typesetting of this book. This book is dedicated to her.

Will Light
Lancaster, 1990.
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1

Basic ideas

We shall begin with some ideas which are fundamental to the rest of
this book. Basic to all of mathematics is the idea of a function and
the associated notation. We shall use the notation f : A — B to ‘
denote the fact that A and B are two sets and f is a function (map-
ping) between them. It is usually understood that A is the domain
of f so that f(a) is the unique element of B corresponding to a via
the mapping f. Things are a little different with regard to the set B,
however. We normally consider B to contain the range of the function
but strict containment is permissible, so that all of B need not nec-
essarily be ‘used up’ by the function. Notice that each function has
three pieces of information. Firstly, the domain A; secondly, the set
B, which contains the range of the function; and, thirdly the rule -
how to get from A to B using the mapping f. For example, the rule
f(z) = 1/z with A = (0,00) and B = R is quite satisfactory, whereas
the same rule with A = [0,00) and B = R is not. (The destination
of the point z = 0 under the rule is not defined.) Similarly, the rule
f(z) = sinz with A= B = R is satisfactory, as is the same rule with
A =R and B = [~1,1]. In the second case the set B (or the ‘target
space’) is exactly the range of the function.

Having made such a fuss over the care needed in talking about
functions made up of the three ingredients rule, domain and target
space, we often abuse the notation by refering to ‘the function f’. Here
the domain and target space are omitted, and this is frequently done
when both are clearly understood from the context. This is usually
the case when A = B = R or when A and B have been mentioned
previously and it would be belabouring the point to continually write
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f : A — B. All careful mathematicians are aware of the fact that
omitting the domain and/or the target space is fraught with danger
and therefore try to abuse the notation carefully!

Our second fundamental ingredient is that of a linear space. The
set X is a linear space if there is some method by which any two
elements of X can be ‘added together’ to give a third member of X,
and each element of X can be ‘multiplied’ by a real number to give
another element of X. For example, the Cartesian plane R? is a linear
space. The points in IR? consist of coordinate pairs (s,t) and ‘addition’
means

(S,t) + (Sl,t)) = (S +8),t +tl)

Similarly, ‘multiplication’ by the real number (scalar) o means
a(s,t) = (as, at).

Of course, the processes called addition and multiplication are not
the simple concepts used in R, although they are very similar. For
example,

(Svt) = (slatl) == (3 e slyt - tl) o (sla’tl) + (S,t),

so that the new concept of addition is commutative, as is addition in
R. Furthermore, the origin (0,0) has the property that

(0,0) + (3,) = (5,8) = (5,4) + (0,0).

Thus the point (0,0) in the linear space R? plays an analogous role
to that of 0 in IR. For this reason, it is often referred to as the zero
element in the linear space IR?. Given any point (s,1) in R?, the point
(—s,—1) has the property that

(S,t) > (—S, —t) = (070) - (-31 -t) % (S,i).

The point (—s, —1) is usually called the additive inverse of (s,1).
Consider the set X consisting of all mappings from R into R.
This is also a linear space. The elements in X consist of functions,
and addition of two functions is effected by defining their sum to be
the ‘pointwise sum’, so that if f and g are two points in X (i.e. two
functions from R to R) then the function h = f + g is defined by

h(s) = f(s) + 9(s), s€R.
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Similarly, the function y which is the result of multiplying f by the
scalar a is defined by

y(s) =af(s), s€R.

Faced with a concrete situation it is usually easy to say what is meant
by addition and by multiplication by scalars. However, the description
of these two properties in an abstract setting is rather harder. Notice
that ‘addition’ associates with every pair of elements x,y in X a third
clement z which we call = + y. Association in mathematics usually
involves mappings, and ‘addition’ is a mapping from X x X (ordered
pairs of clements in X) into X with certain properties that make the
mapping ‘look like’ the usual process of addition of real numbers. In
a similar way scalar multiplication is a mapping from R x X (ordered
pairs of elements, the first element lying in R and the second in X) into
X. It will have certain properties that make it resemble multiplication
in R. Now we are ready to say formally what constitutes a lincar

space.

Definition 1.1 A linear space is a set X together unth two mappings
$: X xX — X andp: IR x X — X such that

1. §(z,y) = ¢(y,z) forz,y € X
Q' qs(x? ¢(y72)) - ¢(¢($’ y)’z) fOI‘ ‘1'-’ y"z e X

3. there exists a unique element  in X such that ¢(z,0) = #(0,x) =
x forx in X :

4. to cach element = in X there corresponds a unique element y
such that ¢(x,y) =0

5. Plen dla,y)) = dlb(a, @), ¥(ay)) for a € B, 2,y € X
6. p(v(a,a), (B ) = (e + f.7) for 0, BE R, x €A
7. (e, $(B, ) = b(ap,z) Jor a, B € I, 7 € X

8 p(l,z)=z forz € X.

After the simplicity of the examples the formality looks quite daunting.
However, we almost never use the mappings ¢ and ¢. Instead we
always think of the mapping ¢ as ‘addition’ and write it as ¢(z,y) =
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z + y. This is fine, as long as we remember that the sign ‘4’ is now
being used for a whole host of different meanings, depending on the
context in which it is being employed. The above conditions now read

l.z+y=y+zforz,ye X
2.z+(y+z)=(z+y)+zforz,y,2€ X

3. there exists a unique element @ in X such that 4+ 80 =0+ = z,
forallz € X '

4. to each z in X there corresponds a unique element y (which we
write as —z) such that z +y =z + (—z) =40

o

.a(z+y)=aztayfora€ R, z,y€ X

i

az + fr =(a+ PB)z for a,f € R,z,y € X
7. a(fz) = (af)z for a,f € R,z € X
8. Iz =u, forxe X.

In these conditions we can see quite clearly the different meanings of
‘addition’. For example, in condition 6 the addition on the left of the
equality sign represents addition in the linear space, whereas the addi-
tion on the right represents the usual addition in R. From now on we
will always refer to ¢(z,y) as z +y and to ¥(a, z) as az. Of course, in
defining a linear space we need to decide three things; what choice we
will make for the set of objects or points, how we will form the sum
of two points and how we will take products of a point in the set and
a real number. In fact the full impact of the axioms for a linear space
as given in 1.1 is rarely realised in analysis. We usually work with
linear spaces in which there is a simple ‘natural’ definition of addition
and scalar multiplication, and so the problem of determining whether
a given set is a linear space is rarely of great importance. Such prob-
lems belong more properly to the field of algebra. The words linear
space convey the sense of the linear structure of these objects, but
the historical development sometimes leads to the alternative phrase
vector space.

Analysis is bound up with the idea of ‘closeness’ and our next
concept introduces a measure of distance in a linear space. Let us
return to our example X = IR? . We are familiar with the idea that
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Note: dist(A, B) = dist(C, D)

Figure 1.1: Distances in R?.

the distance between two points z; = (—2,1) and 73 = (1,2) is
V(1 = (=2) + [2 - 1]*) = /10. Notice in Figure 1.1 that /10 is
also the distance from the point (3,1) to the origin 6 = (0,0), and
that (3,1) = (1,2) — (=2,1). This is not an accident! It will always
happen that one of the properties we will require of our notion of dis-
tance is that the distance from a point z; to a point z2 in R? will be
the same as the distance from z, — z3 or z3 — 1 to the origin. Note
l that such a requirement rests partly on the fact that IR? is a linear
: space (otherwise we could never talk about zy—z2 = 2 +(—z3)). The
distance between points in IR? will therefore be completely determined
once we know the distance of each individual point from the origin.
There are two further properties of the distance which we will require.
Both properties describe how the notion of distance ties in with the
linear structure. For example, it would be nice if the distance of 10z
from the origin was 10 times the distance of z from the origin. Thus if
« € R then we shall demand that the distance of az from the origin
0 is |a| times the distance of = from 0. The modulus has appeared
here because we always want distance to be a non-negative real num-
ber. This describes how the concept of distance interacts with that of
multiplication by a scalar in the linear space structure. How should
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(1,2)

/.
,/ (3.1)
(-2,1) /

9 =1(0,0)

Figure 1.2: Distance remains constant under a simple linear shift.

this concept interact with that of addition of elements of the linear
space? Roughly speaking, we want our measurement of distance to
ensure that the direct distance between two points z,y € IR? never ex-
ceeds the sum of the distances between z and any intermediate point
z and z and y. Because of the linear space structure, this is the same
as requiring that the distance of z + y from @ is never bigger than
the sum of the individual distances of z and y from 6. This last fact
is illustrated in Figure 1.1. Notice that the concept of distance has
associated each point in IR? with a real number - its distance from
the origin. Once again this association is expressed mathematically
by the idea of a mapping.

Definition 1.2 Let X be a linear space. Then a norm is a mapping
p: X — IR such that

1. p(z) 20 for all z in X and p(z) = 0 if and only if x = @
2. plaz) = |alp(z) fora€ R,z € X
3. plz +y) < plx) +ply) forz,y€ X.

As with the addition and multiplication maps it is unusual to en-
counter the mapping p.- We nearly always write p(z) as ||z|| so that
the above conditions read

L. Jlzfl = 0 for all  in X and ||z = 0 if and only if z = 0




