ARG P a1y RN B L T N T

by Oav

.

h 29 ready-to-run

'GRACHICS

it

id Chance

| programs

> —{i))

= &si\\e&
Eas | U R @R TR
SE8 “° 1 Hg. <
£35S ,,,.“s.g&% s
SBS _EEORONK XN
s g NL%.“&...& 505
8% =i
BEE =X
S5 MBS X
D @ S
2%

COMPUTER
LRAPHICS

with 29 ready-to-run
programs

Dedication:

This book is dedicated to all TRS-80™ owners.

Other TAB books by the author:

No. 1275 33 Challenging Computer Games for TRS-80™/
Apple™/PET®

CUMPUTER
LRAPRICS

with 29 ready-to-run
Pragraimns by David Chance

TAB BOOKS Inc.

FIRST EDITION

THIRD PRINTING

Copyright © 1981 by TAB BOOKS Inc.

Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Chance, David.
Computer graphics—with 29 ready-to-run programs.

Includes index.

1. Computer graphics. |. Title.
T385.C45 001.64'43 80-28652
ISBN 0-8306-9636-9
ISBN 0-8306-1276-9 (pbk.)

Cover art courtesy of Computer Graphics by Melvin L. Prueitt,
Dover Publications, Inc.

Contents

Preface

Getting Started
CHR$—PRINT @ —STRING$—CHRS$, PRINT @ ANDSTRING $
(Combined)

Generating Game Patterns
Random Motion—Controlled Motion—INKEY$—PEEK—
POKE—Video Display—Sales Pitch—Graphics Programs

Adventure and Competition
(Over the) Mountain—Get There First—Chute—All Together—
Anchors Away

Risk and War
Time Bomb—Up Periscope—Find the Spot (Mine Sweep)

Words and Crosswords
Teach your Children—Education Waves—Something On My
Screen

Beginner’s and Learner’s Graphics
Whose Chart?—Architect—Fill Your Glass—Viewer—Place the
Box

Thought and Mind Provoking
Logic Deduction—Eggs off the Table—Which Key?

Seeking and Catching
Treasure Hunt—Reset—-Unbelievable (Computer Tag)—Watch
Your Screen—Maze Game

Gambling and Guessing
By the Number—Solitaire For Two—Pyramid—Ten Solitaire—
Spinning Wheel

Glossary of Computer Terms for Level Il BASIC

Appendices

A—TRS-80Level Il Summary

B—Base Conversions

C—BASIC Statements

D—ASCII Character Codes
E—Standard Logic Gates and Functions

Index

6
7

1

23

62

85

110

146

171

211

255

260
262
265
266

267

Preface

If you aren’t using graphics with your TRS-80 microcomputer you
are leaving out the most fascinating aspect of your computer.
Whether playing, experimenting or running a program, graphics
opens hidden areas of your computer.

This book contains 29 programs that are tested and ready to
run. Each program uses graphics. The first chapter helps you to get
started. Several different program examples are given that you can
experiment with. Chapter 2 shows you how to generate graphics
patterns and the random and controlled movement of objects.
Program examples illustrate INKEY$, PEEK and POKE.

If you are just learning about graphics, this book is ideally
suited for you. The beginning chapters are written in layman’s
terms to avoid confusion. If you are already using graphics on your
computer you might find the sample programs quite useful and you
might still learn something you didn’t know.

I might stress that if you are a beginner you should read the
first few chapters carefully before running the programs contained
in Chapter 3. This will give you a firm understanding about what
goes on with each program.

Each program in Chapter 3 has a flowchart, plus notes on the
changes you might make in the programs (to experiment). The
notes will step you through each program line (unless the line is
self-explanatory). Each program contains REM STATEMENTS to
help you understand the workings of the program. The print
statements are 38 characters long to suit the book’s page width.
Rewrite them to increase the readability of your program.

David Chance

Chapter 1
Getting Started

Getting started is one of the easiest things to do when working with
graphics. The most advantageous programming aids you can have
are called Video Worksheets (catalog number 26-2105). You can
buy them at any local Radio Shack store. One side of these
worksheets contains all the TAB locations, PRINT @ locations and
the X and Y locations of your video display. These worksheets are
invaluable when you want to set up a specific display containing
many different locations. On the opposite side of these worksheets
you’ll find numerous spaces for program lines, your variable list
and comments. All program lines can be kept neatly along with
your variable list in the squares provided.

After you have a general idea of the graphic display you want,
chart it down on the worksheets and at the same time fill in the
necessary lines and variables.

If you are new at creating graphics for the TRS-80 you will
soon learn that one thing you cannot create is an ordinary circle
(other than the letter O and the zero). So if you're out to create a
bunch of circles on the display, you've chosen the wrong computer.

There are, however, thousands of creations that can be made
with the TRS-80. If speed of execution isn’t a factor, you can always
rely on the SET-RESET function. This is the best route if you're
just learning about graphics. The video display has 6144 graphic
locations arranged in a 128 X 48 matrix, that can be Set and Reset
at your command. That many locations provide you with many
different creations waiting for you to draw. Just playing with the
TRS-80 will open up many new frontiers.

7

You can use the following functions to set up the display:
1. CHR$

2.PRINT@

3. STRING$

CHRS$

10
20
30
40
50

60
70

80

90
100
110

The following program lets you examine the graphics codes:

CLS

A=0:REMPRINT @ LOCATION

FOR CODE=129TO 191

PRINT @ A,CODE; CHR$(CODE)

IF A=896 THEN 70:ELSE A=A+128:REM SPACE TO
EXAMINE CODES

NEXT:GOTO 90:REM END OF RUN

PRINT @ A+20, “PRESS ENTER TO CONTINUE”;:

INPUTX
A=0:CLS:GOTO 60:REM RESET A - CONTINUE LOOP

OF CHR$

PRINT@ A+20,“PRESS ENTER WHEN FINISHED”;
INPUTX

CLS:END

Line 20 starts the PRINT @ location at 0 (zero).

Line 30 FOR NEXT loop for graphic codes 129 to 191.

Line 40 prints the code and sets the graphic area.

Line 50 checks variable A before adding a space.

Line 60 the NEXT for continuing and end of program to Line
90.

Line 70 is for user to examine codes before clearing video.

Line 80 resets A to 0 (zero) and continues LOOP.

Line 90 terminates program when ENTER is pressed.

This program will let you more closely examine the graphic

codes and lets you know just exactly where these blocks will be set
on a line (horizontal lines 0 - 15). An example: Note that graphic
code 131 produces a square block set at the top of the line, or at the
top of a graphic cell (made up of 7 bits). Code 140 locates the square
at the bottom of the line (or graphic cell).

What's the point? If you've created any form of graphic display

using the CHR$ mode, you've probably found that to get the display
you want, it can become quite tedious not knowing exactly where
the graphic block will be set on a given line. By running the above
program (and saving it on tape for future reference) you'll have a
better knowledge of these graphic codes.

8

Naturally the CHR$ function is also useful for other purposes,
but this is a graphics book and everything can’t be taught here.

PRINT @

The PRINT @ statement is a very useful function when
working with computer graphics. A total of 1024 PRINT@Iocations
are located on the video display—a more than ample amount. By
following the video-display worksheet you can place characters
exactly where you want them (unless you're a pro and know all
locations by heart). You have to be careful not to let the characters
fall to the next line when setting up a display. For example, PRINT
@ 57,“COMPUTER”, would put “COMPUT” on the top line, while
the R to COMPUTER would fall to the next line. If you are working
on a program that contains both graphics and characters (words) be
sure to add the trailing semicolon, or you’ll end up with a carriage
return blanking-out part of your display.

You can achieve some very pleasing displays when PRINT@
and CHRS$ are combined (combined as was the previous program).
When placed properly, these two functions make large letters. It’s
very simple! Examine the graphic codes, chart each one on a video
worksheet and zap(!). You have an instant bulletin board. If you
have pre-schoolers, these large letters could be their road to
learning the alphabet. The bulletin-board program could be
constructed to print out sentences using the large letters. A
FOR-NEXT loop would create a delay between words.

Your imagination is the only limit to the things you can do with
a computer (any computer). If you don’t know everything about
your computer, playing with it serves as an excellent teacher.

STRING $

The STRINGS$ statement (or function) is something else that
is very useful when creating graphics. The only drawback to using
this statement is that unless you clear enough memory before you
use it you'll end up with an OS ERROR (out of string space).

An example using the STRINGS statement:

10 CLEARG64:CLS

20 A$=STRING$(64,43)
30 PRINTAS$

40 GOTO40

Line 10 clears just enough memory (string space) for the
STRINGS$ statement in line 20. Of course if you were to see a
number larger than 64, you would have to clear more memory.

Line 20 contains the actual STRING$ statement—
STRING$(64,43). 43 is the character code representing the plus
sign and 64 is the number of plus signs that will be printed by line
30.

If you were to change the character code from 43 to the graphic
code 191 (for all bits on), the computer would print a solid bar
across the top of the video. Using the short program above and
graphic codes 129 through 191, experiment with the program.

CHRS$, PRINT AND STRINGS (COMBINED)

Combining these three statements will give you an array of all
the possible patterns on your display. For example:

10 CLEAR1000:CLS b
20 A$=STRING$(63,191)

30 B$=CHR$(149)

40 PRINT@ ¢, A$

50 PRINT@ 960, A$;

60 FORL=64TO896 STEP 64:PRINT @ L,B$;:NEXT

70 FORR=126 TO 958 STEP 64:PRINT @ R,B$;:NEXT
80 GOTO80

The above program would print a neat border around the outer
edges of your video display. Code 149, (line 30) just turns on three
bits of a line. Step 64 in lines 60 and 70 keeps the left and right lines
vertical. Experiment with the program by inserting different
values for A$ and B$, and you’ll come up with some rather unusual
displays. Be sure to add the trailing semicolon to keep from getting
acarriage return.

The program VIEWER contained in this book will further your
knowledge of the differences between, SET-RESET, CHRS,
PRINT @, STRING$ and POKE. The program merely sets a
display and shows the different operating speeds of each function.
You'd be surprised at how slow POKE is compared to using CHRS,
PRINT @ and STRING$ for the same program.

10

Chapter 2
Generating Game Patterns

You can generate game patterns in many different ways. The
choice is entirely up to you. If you're concerned about the
program’s execution speed you should probably POKE your
graphics; but, as was said in the last chapter, execution speed can
be obtained from other functions. Besides, the old adage “if you
don’t know where you are POKEingdon’t,” is very true.

Your best bet would be to start with some other function until
you become more familiar with the hazards of POKE (explained
later in this chapter). We use SET and RESET extensively
throughout the programs in this book. Why? So the reader can
become more acquainted with its function. Thousands of games can
be generated using the SET-RESET function. They won't be the
fastest, but they’ll be easier to write and handle. As stated earlier,
you can also generate game patterns using the CHR$, PRINT @
and STRING$ function. In my opinion (and only mine) top
execution speed comes from using the above functions. If you still
are hesitant to believe me, and haven’t done it yet, key in and run
the program VIEWER, then see what you think.

Generating game patterns can also be done randomly. This is
the trick to the program MOUNTAIN. Arguments placed within
the program keep the RANDOM generation within certain limits.
Always remember to place your arguments before the RANDOM
statement, placing them afterwards will only lead you to a FC
ERROR (Illegal function call). This means simply that the
statements have gone beyond the set parameters that the computer
and video display are capable of handling.

1

RANDOM MOTION

You might want to move an object randomly. For example, a

program might contain some spacecraft that you want moved about
the video screen randomly.) An example might be:

10 CLS

20 RANDOM

30 C¥="“<:<0>:>":N$=* i

40 A=410

50 PRINT@A, C$;

60 FORI=1TOS50:NEXT

70 PRINT@ A, N§;

80 M=RND(2):ONM GOTO 90,100

90 IFA>=440THEN40:ELSE A=A+RND(4):GOTO 50
100 IF A< =380THEN40:ELSE A=A—RND(4):GOTO 50

Line 10 clears the video screen.

Line 20 seeds the RANDOM generator.

Line 30 of course is the spacecraft (C$). N$ must contain the
same amount of spaces that C$ has or parts of the spacecraft will be
left at different locations on the video.

Line 40 variable A is the starting PRINT @ area.

Line 50 prints the spacecraft at A.

Line 60 is a time loop before the spacecraft is blanked-out.

Line 70 prints N$ at A to blank-out spacecraft before variable
A is changed.

Line 80 a random function either selects left or right
movement of the spacecraft.

Line 90 has the argument placed before A is increased so the
craft won't fall to the next line. If variable A is greater than or equal
to 440, the craft will return to the beginning position and A is reset
to410.

Line 100 is the exact opposite of line 90, meaning the craft will
be moved to the left.

Both lines 90 and 100 return (GOTO) line 50 to keep the craft
moving.

If you've entered and run the preceeding program you should
have noted that experimenting with the time loop, (line 60) lets you
move the spacecraft at a slower or faster rate. You can also cause
the craft to jump more or less by changing the RND functionin lines
90 and 100. By adding several more lines and arguments, you can
actually move the craft up, down left or right.

12

You are probably wondering now, what is the point of all these
games? The point is that you can learn the many different ways in
which your computer is capable of operating by just running several
different games. Some games contain most of the functions that a
computer has. And what better way to relax after a hard day than
powering up a computer and running a game? Sitting in front of the
T.V. watching reruns made two decades ago?

Back on the track You can apply the same random
motion with the SET-RESET function. Enter the following short
program and run it:

100 CLS

110 RANDOM

120 X=64:Y=47

130 IFX< =00RX> +127 THEN 120:ELSE SET(X,Y)
135 FORI=1TO10:NEXT

140 IFY<=0THENRESET(X,Y):GOTO 120

150 RESETX,Y):Y=Y-1

160 M=RND(2):ONM GOTO0 170,180

170 X=X+RND(5):GOTO0 130

180 X=X-RND(5):GOT0O130

Line 120 sets the area for X and Y to begin.

Line 130 tests X before setting X and Y (if argument is true X
and Y will be reset to the beginning position).

Line 135is a short loop to slow down the SET & RESET of the
light block area.

Line 140 tests Y, if true, RESETS X & Y and goes back to the
starting position (line 120). If RESET were left out of this line the
block areas would remain light at different points, top of video.

Line 150 RESETS X & Y also desends Y, so block will move to
top of video.

Line 160 almost exactly as line 80 in the last program, but
selects (randomly) either left or right movement of the block.

Line 170 & 180 are for right or left movement of the block
respectively and returns back to line 130, to keep the block
moving.

With minor program modifications the light block could be
moved up, down, along with the right and left movement. With the
addition of more variables you could have more than one block
moving around the video.

13

CONTROLLED MOTION

Once you have an object moving randomly on the screen, you
take the program with the spacecraft and add another dimension to
it, such as a guided missile.

10 CLS
20 RANDOM
30 CP="<:<0>:>":N$=* ”:5=989:M$=CHR$(143)
35 PRINT@ S, M$;:FORX=0TO 127:SET(X,47):NEXT
40 A=410
50 PRINT@A,CS$;
60 FORI=1TO50:NEXT
70 X$=INKEY$:IF X$=""THEN 140
90 PRINT@ A,N$;:M=RND(2):ON M GOTO 100, 110
100 IFA>=440THEN40:ELSE A=A+RND(2):GOTO 120
110 IFA<=380THEN40:ELSE A=A—RND(2)
120 PRINT@A,C$;
130 IFX$<>*“ "THENS50
140 PRINT@S,“ ”;:S=S—-64:PRINT@ S,M$;
150 IF S=(A+3) THEN PRINT @ 25, “** A HIT **”:FOR I=1
TO500:NEXT:GOTO 170: ELSE IF < > 349 THEN 90
170 PRINT@25,“ ”
180 PRINT@S,“ ”;:S=989:PRINT @ S,M$;:GOTO 50

Note that you've made only a few minor changes. At line 30
M§ s for the rocket and variable S is the rocket’s area.

Line 35 prints the rocket at S.

Line 70 is the INKEY$ function, “” meaning, press the space
bar tofire.

Line 130 checks X$ to see if rocket has been fired.

Line 140 fires the rocket (that is, if the space bar was
pressed). Prints a blank, descends S by 64, then prints the square?
rocket again. And, while the rocket is moving in an upward motion:

Line 150 tests S, to see if at a certain point S will equal A+3
(A+3 is the center of the spacecraft, where the 0 is located). If it
does, line 150 will prints “** A HIT **” @ 25, goes into a time loop,
(so message can be seen) drops down to line 170 and recycles. If
you miss the spacecraft, or S <> 349, line 150 returns to line 90.
This causes the ‘flutter’ of spacecraft. If S does equal 349, Sis reset
and returns back to its starting position (989).

With several other modifications to the above program could
provide more than one spacecraft, allow the rockets to fire in
different directions and, of course, add scoring.

14

You can also use motion control to manipulate things other
than rockets. An example might be moving words (horizontally)
across the video screen.

Enter and run the following example:

10 CLS:PRINT CHR$(23)

20 A$="THEY”

30 B$=“WENT”

40 C$=LEFT$(A$,2)+“A”+RIGHT$(BS$,1)

50 D$=LEFT$(B$,1)+“A”+RIGHT$(A$,1)CHRS$(94)

60 FOR W=64 TO 120:PRINT @ W,A$;:PRINT @W-1,
¢ i eNEXT

70 FOR W=128 TO 184:PRINT @ W,B$;:PRINT @
W-1,“ ";:NEXT

80 FOR W=192 TO 248:PRINT @ W,C$;:PRINT @
W-1,“ ";:NEXT

90 FOR W=256 TO 312:PRINT @ W,D$;:PRINT @
W-1,“ ”;:NEXT

100 GOTO 100

Line 10 clears the video screen and changes to the 32
character-per-line format.

Lines 20 through 50 contain the four words that are used.

Lines 60 through 90 sweep each word across the video screen
from left to right. The statement PRINT @ W—1, “ ”; is used to
blank-out letters to the left of the words. If that statement were to
be left out, it would defeat the purpose of the program.

By adding a few more lines, you could have the words bounce
off the right side of the video screen and return to the left side
(inserting STEP-1 statements and change numerical contents of
the FOR NEXT loops). You would also have to add a PRINT @
statement, W+1,“ ”; to blank-out letters on the right side of the
words.

INKEY$
Just about the most common way to control objects on your
video screen is to use the INKEYS$ function. The INKEY$ function
allows you to use just about any key desired to control an object.
You must be sure to insert the INKEY$ statement within a
specified line, however. For example:
10 X$=INKEY$:REM SETTING X$ TO THE INKEY$
FUNCTION
20 PRINT @ 64,X$
30 GOTO20

15

Obvieusly inserting the above lines in a program won't work!
You could punch keys until your fingers fell off, and nothing would
be printed at 64. The program runs so fast that all it would be doing
is going from 20 to 30 and back again. What line 30 should have read
was:

30GOTO10

This way you could press all the keys you wanted and each key
pressed would be printed at 64. Anytime you are using the INKEY$
function you must have, X$=INKEY$ (X$ is only an example)
located where the computer will recognize what X$ is for.
Otherwise, you'll end up having problems with your program.

If you plan on making a program that will use the INKEY$
function and would print the letters at a specified area in order to
create a word, you might try the following example:

10 CLEARS500:CLS
20 A=64:WW=0
30 X$=INKEY$:IF X$=""THEN 30
35 IFX$=" " THEN 80:ELSEIF X$="0" THEN 120
40 W$=W$+X$
50 PRINT A,X$;
60 A=A+1:WW=WW+1
70 GOTO30
80 A=A-1:WW=WW-1
90 W3$=MID$(W$,1, WW)
100 PRINT@A,"”;
110 GOTO30
120 CLS:PRINT@ 128,W$
130 END

This program example will receive whatever characters you
press on the keyboard (excluding @, which ends the program). The
up arrow backspaces a character to let you erase and change it. You
can also insert spaces between words by pressing the space bar.

Line 10 clears 500 bits of memory for string space.

Line 20 variable A is for character placement, variable WW is
used for backspacing only.

Line 30 starts the INKEY$ function.

Line 35 contains two arguments. The first one (up arrow) is
for backspacing. When the up arrow is pressed control falls to line
80 where variable A is decreased by one (one for each time the up
arrow is pressed) to blank-out the last character. Variable WW is
decreased by one so that the length of W$ is decreased by one, this

16

