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Preface

The research laid down in these notes began several years ago
with some questions about a particular bifurcation of periodic solutions
in the restricted problem of three bodies at the equilibrium Ly - This
particular bifurcation takes place when, for the linearized system, the
equilibrium Ly, changes from stable to unstable. This kind of bifur-

cation is called a Hamiltonian Hopf bifurcation.

During the research it became apparent that new methods had to be
developed and that existing methods had to be reformulated in order to
deal with the specific nature of the problem. The development of these
methods together with their application to the Hamiltonian Hopf bifur-
cation is the main topic of these notes. As a result a complete des-
cription is obtained of the bifurcation of periodic solutions for the

generic case of the Hamiltonian Hopf bifurcation.

This research was carried out at the Mathematical Institute of
the State University of Utrecht. I am very grateful to Prof. Hans
Duistermaat and Dr. Richard Cushman for their guidance and advice
during the years I worked on this subject. I also thank Richard
Cushman for his careful reading of the earlier drafts of the manu-
script. Thanks are also due to Prof. D. Siersma of the University of
Utrecht for the discussions we had on chapters 3 and 4 , and to
Prof. F. Takens of the University of Groningen for his remarks con-
cerning the final manuscript. Finally, I would like to thank Drs. H. van
der Meer for his assistence in plotting fig. 4.1 - 4. 14, and Jacqueline
Vermeij and Jeannette Guilliamse for their excellent typing of the manu-
script.

Jan-Cees van der Meer

June 1985
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Introduction

In this monograph the main topic is the study of periodic solutions

of a family of Hamiltonian systems of two degrees of freedom near an
equilibrium as the family passes through resonance. We concentrate on
the Hamiltonian Hopf bifurcation, that is, the passage through
nonsemisimple 1 : -1 resonance. The nonsemisimple 1 : -1 resonance
distinguishes itself from the other resonances in two ways: first, at
?he resonance the linearized system is nonsemisimple having two equal
pairs of purely imaginary eigenvalues; second, when passing through
resonance, the equilibrium point changes from elliptic to hyperbolic
type. Although we have concentrated on a specific example, many parts
of the theory developed here have much wider applications, especially
to other two degree of freedom resonances.

The approach we take can be divided into four main parts:

(1) formal normal form theory; (2) equivariant theory of stability of
maps applied to energy-momentum maps to derive standard systems;

(3) geometric treatment of the standard system; and (4) Moser-Weinstein
reduction to extend the results to nonintegrable systems.

The general formal normal form theory for Hamiltonian systems is
treated first (chapter 2). Here we focus on the normalization of the
Hamiltonian function. We do not restrict ourselves to systems of two
degrees of freedom. The theory is illustrated by the classical examples
of Hamiltonian systems with purely imaginary eigenvalues.

If we consider the Hamiltonian H = Hy + Hy + ... of a Hamiltonian
system of two degrees of freedom then we may normalize H with respect
to H, up to arbitrary order. Truncation then gives an integrable system
provided that the semisimple part S of the homogeneous quadratic term

H2 is nonzero. If we consider the one parameter group S generated by



the flow of the Hamiltonian vector field Xg corresponding to the integral
S then the truncated normalized Hamiltonian H is S-invariant. For the
system corresponding to H we consider the S-invariant energy-momentum
map H x S. To this energy-momentum map we apply the equivariant theory
of stability of maps. For the case of the nonsemisimple 1 : -1 resonance
we show that this energy-momentum mapping is finitely determined. The
integrable system corresponding to the determining jet is called a
_standard system for the resonance (chapter 3).

In applying the theory of stability of maps, we drop the condition
that the transformations used be symplectic. However much of the
qualitative behaviour of the standard system can be translated back to
the original system, especially the behaviour of periodic solutions.
Using the theory of unfoldings we are able to study the behaviour of
families of periodic solutions during the passage through resonance.

The unfolded standard system for the nonsemisimple 1 : -1 resonance is
studied in detail (chapter 4).

Finally we use some ideas of Weinstein and Moser to show how the
periodic solutions of an arbitrary family of nonintegrable systems
passing through resonance correspond to the periodic solutions of a
family of integrable systems to which we may apply the preceding theory.
This reduction from a nonintegrable to an integrable system in the search
for periodic solutions is called the Moser-Weinstein reduction (chapter 5).
The final result is a complete description of the behaviour of periodic
solutions of short period in the generic case of the Hamiltonian
Hopf bifurcation. Such a bifurcation appears in the restricted problem
of three bodies at an equilateral equilibrium when the mass parameter
passes through the critical value of Routh. It is this problem in the
restricted problem of three bodies which inspired this study . Although

combining all known results gave a fairly good description of the



behaviour of periodic solutions (partially based on numerical results),
a complete treatment and proof was nowhere to be found.

Because of the special properties of the nonsemisimple 1 : -1
resonance a new approach had to be followed. Many of the methods which
had been succesfully used for the other resonances did not apply in
this case. For the methods developed the nonsemisimple
1 : -1 resonance is the simplest example in the hierarchy of resonances,
especially if one considers the computation of co-dimension and the
geometric treatment of the standard system. The application of the
normal form theory is a bit more complicated but the resulting normal
form takes a simpler form than in the other resonances.

The chapters are organized as follows. In the first chapter prelim-
inaries from the theory of Hamiltonian systems are treated. In the
second chapter one finds the theory of Hamiltonian normal forms. In the
third chapter the equivariant theory of stability of maps is applied
to energy-momentum maps invariant with respect to a symplectic
Sl—action. The fourth chapter deals with the geometry of the standard
integrable system for the Hamiltonian Hopf bifurcation. Chapters 2,3
and 4 can be read independently. In chapter five the Moser-Weinstein
reduction is applied to the Hamiltonian Hopf bifurcation. Together with
the results of chapters 2,3 and 4 this leads to the main theorem (ch. 5,
sect. 3). In chapter six we show how the theory applies to the restricted
problem of three bodies. We conclude with a discussion of the known

results concerning the nonsemisimple 1 : -1 resonance.



Chapter I

Preliminaries

0. Introduction

In this first chapter we will give a review of some facts from
Hamiltonian mechanics which are fundamental to what follows. Emphasis
is laid upon the relation between the symplectic geometric and the
;&;e algebraic features induced by the presence of the symplectic form.
Also linear Hamiltonian systems are treated because they are basic for
many features of and techniques used for nonlinear systems.

Most definitions and theorems are stated without proof. For the
proofs and a more detailed treatment of the theory we refer to the text-

books of Arnold [1978] and Abraham and Marsden [19781].

1. Hamiltonian systems

Consider the following system of ordinary first order differential

equations on G
993 _ 3H(q,p)
dt api
(1.1)
S S T: (1) N .
It 39, : RN

where H(g,p) is some real valued function on RZn , at least once
differentiable. We call (1.1) a Hamiltonian system of differential
equations. The function H in (1.1) is called a Hamiltonian function.

The right hand side of (1.1) can be written as
(1.2) XH(q,p) = J.dH(q,p)

with



_ (0 I
(1.3) J = (-1 On)
n

where In is the n x n identity matrix. We call XH the Hamiltonian
vector field associated to the Hamiltonian H.

The above is the classical definition of Hamiltonian systems
on RZn . This can also be obtained from the following more general
differential geometric approach defining a Hamiltonian system on a
manifold M.

Let w be a two-form on M. We say that w is nondegenerate if w is
a nondegenerate bilinear form on the tangent space of M at m for each
m € M. If there is a nondegenerate two form on M then M has even

dimension. Furthermore we say that a two-form w is elosed if dw = 0

where d is the exterior derivative.

1.4. DEFINITION. A symplectic form w on a manifold M is 'a nondegenerate
closed two-form w on M. A symplectic manifold (M,w) is a manifold M

together with a symplectic form w on M.

1.5. DEFINITION. Let (M,w) be a symplectic manifold and H : M » R a

Ck—function,1<> 1. The vector field X,, determined by w(XH,Y) = dH.Y

H
is called the Hamiltonian vector field with Hamiltontian function H.
We call (M,w,H) a Hamiltonian system. We will suppose H to be c” in

the following.

The following theorem shows that locally definition 1.5. is

equivalent to the classical one.

1.6. THEOREM (Darboux). Let (M,w) be a symplectic manifold then there

is a chart (U,9) at m € M such that ¢(m) = 0 and with

n
E dxi A dy. .

@©(u) = (Xg5--05% 5¥ 5---,y, ) Wwe have wlU ) 5

i



The charts (U,9) are called symplectic charts the coordinates

X;,y,; are called symplectic or canonical coordinates. Notice that if

. . _ . 8H b
X;,y; are canonical coordinates then XH(Xi’yi) = (By SRR

i i

) = J.dH

with J given by (1.3).

We now define the notion of a flow of a Hamiltonian vector field
together with some related notions. The flow in fact gives us the
simultaneous motion in time of all points of M along the trajectories

-.0of the vector field.

1.7. DEFINITION. Let y(t) be a curve in R2n We say that vy is an
integral curve for XH if %% = XH(y), that is, if Hamilton's equations

hold. Let (M,w,H) be a Hamiltonian system. The map ¢ : R XIRZD > BEXZRQn

such that @ t » @(t,m) is an integral curve at m for each m € M is
called the flow of XH. The curve t » @(t,m) is called the maximal
integral curve of XH at m or the orbit of XH through m. The picture

of M decomposed into orbits is known as the phase portrait of XH'

Notice that the set {wt[t € R} is a one-parameter group of

diffeomorphisms of M, if every maximal integral curve is defined forall R.

1.8. DEFINITION. A Cw—map y: (Myw) » (M,w) is symplectic or

canonical 1f Y*w e

Here Y*w is the pull-back of w under y defined by
w*w(m)(el,ez,...,e2n) = w(W(m))@w(m)el,...,dw(m)eQH). For F € Cm(M,R)

Y*F = Foy. We have w*XH = X if ¢ is symplectic.

v*H - XHoy?
It is clear that @ t € R, defined by the flow ¢ of the

Hamiltonian vectorfield X, is a symplectic diffeomorphism. Note that

H
H(y(t)) is constant in t along integral curves y(t) of XH' This
corresponds to conservation of energy.

The following definitions show how the presence of a symplectic



form on M induces a Lie algebra structure on Cm(M,IU in a natural way.

1.9. DEFINITION. Let (M,w) be a symplectic manifold and let F,GE€ Cw(M,IU

The Poisson bracket of F and G is
{G,F} = w(XF,XG)
In canonical coordinates
n
{G,F} = I (—_———_—_)
Notice that we have

{G,F} = dF.XG

It follows directly that F is constant along orbits of XG (or G
constant along orbits of XF) if and only if {F,G} = 0.{F,F} = 0

corresponds to conservation of energy for the system (M,w,F).

1.10. DEFINITION. F € Cm(M,IU is an integral for the system (M,w,H) if

(H,F} = 0.

The notion of Poisson bracket allows us to consider the real vector

space c”(M,R) as a Lie algebra.

1.11. DEFINITION. A Lie algebra is a vector space V with a bilinear
operation [,] satisfying:

[X,X] = 0 for all X € V and

[x,Cy,z11 + £y,fz,Xx11 + [Z,[X,Y1]1 = 0 (the "Jacobi identity")

for all X,Y,Z € V.

It is now easily checked that Cm(M,IU considered as a real
vector space together with the Poisson bracket is a Lie algebra. Notice

that the fact that w is a closed two-form is essential in order to



establish the Jacobi identity. )

If ¢ is symplectic then y*{F,G} = {yY*F,y*G} for all F,G € Cm(M,R),
that is, Y* is a Lie algebra isomomorphism. In fact the converse also
holds.

On the space of Hamiltonian vector fields one has the usual Lie

bracket of vector fields making this space into a Lie algebra. We have

(1.12) [XF’XG] = X{F,G}

We call [XF’XG] the Lie bracket of XF and XG' The Hamiltonian vector
fields with Lie bracket form a Lie subalgebra of the Lie algebra of all
vector fields. Notice that this Lie subalgebra is homomorphic to the Lie
algebra Cw(M,IU with Poisson bracket.

Returning to the Lie algebra Cw(M,IU we may define for each
F € CT(M,R) the map ad(F) : CT(M,R) + C (M,R) by ad(F)(G) = {F,G}.
The map ad : F ~ ad(F) is called the adjoint representation of
Cm(M,IU. Because of the Jacobi identity ad(F){G,H} = {ad(F)(G), H}+
+ {G,ad(F)(H)} for each G,H € Cm(M,BU, ad(F) is an inner derivation of

c”(M,R) for each F € C (M,R) .

1.13. REMARK. In the special case when M is a vector space we speak of
a symplectic vector space. As before we may introduce the notions of
Hamiltonian function, Hamiltonian vector field and Poisson bracket.
Here we have global coordinates so these notions can be defined in

terms of coordinates.

1.14. REMARK. Notice that our definition of Poisson bracket (definition
1.9.) differs from the one in Abraham and Marsden [1978] by a minus
sign. This is done in order to obtain formula (1.12.) which gives rise
to the Lie algebra homomorphism between Hamiltonian functions and

Hamiltonian vector fields. Our definition agrees with Arnold [1978]



if one takes into account that his standard symplectic form differs

from ours by a minus sign.
According to Dugas [1950] our conventions agree with those of
Poisson. Studying other literature it becomes clear that historically

both conventions for Poisson bracket have been used.

2. Symmetry, integrability and reduction

In this section we will restrict ourselves to }grlwith coordinates
(x,y) = (xl""’xn’yl”"’yn) and standard symplectic form
n
w = I dXiA dyi. Then (]R2n ,w) is a symplectic vector space as well
i=1

as a symplectic manifold and Cw(Rzn,R) with Poisson bracket as given by
definition 1.9. is a Lie algebra.

In the following proposition some statements about Lie series are
collected. The proofs are straight forward and left to the reader as an

(o]
exercise. We define the Lie series exp ad(H) = I i% ad” (H) .

n=0
1.15. PROPOSITION. (i) ad(H)(x,y) = XH(x,y) where ad(H)(x,y) is
defined as (ad(H)xl,...,ad(H)yn).
(ii) exp(t ad(H))(x,y) is the flow of Xy
(iii) (Foeexp(ad(H)))(x,y) = explad(H))(F(x,y))
(iv) exp(ad(H)) and exp(ad(F)) commute if and only if {H,F} is

constant.

In the last statement of the above proposition one might replace
the condition {H,F} is constant by [XH’XF] = 0 where [,] is the Lie
bracket given by (1.12). Proposition 1.15.(iv) is then equivalent
to the statement that two Hamiltonian vector fields commute in the
Lie algebra of vector fields if and only if their flows commute.

Now recall that the space of all maps ad(F), F € Cm(Rzn,BU

is a Lie algebra with bracket [ad(F),ad(G)] = ad({F,G}). Therefore
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we have a group A generated by the exp(ad(F)), F € Cw(R2n,Hﬁ. Each
one-parameter group exp(tad(F)), t € R forms a one-parameter subgroup

of A. On the symplectic space R2n each one-parameter group of diffeomor-
phisms is the flow of a Hamiltonian vector field. Thus we have found

all one-parameter subgroups of A because each generator of A is a
symplectic diffeomorphism which is the time one flow of a Hamiltonian
vector field by prop. 1.15.(ii).

2

On CRQn,w) let ¢ : G x R2n +» R"be a symplectic action of the

Lie group G on Rzn, that is, for each ¢ € G the map ¢® 3 RQH > RZn
x b ®(px) is symplectic. In a natural way the action ¢ induces an action

v:6 x C(R™,R) » C(R’™,R) : (@,H) b Hoo of G on C*(R’™,R). In

the following we will write ¢.H for ¥(w,H).

1.16. DEFINITION. A Lie group G acting symplectically on RQH is a

symmetry group for the system (RQn,w,H) if @.H = H for all ¢ € G.
Proposition 1.15. gives

1.17. PROPOSITION. If F is an integral for the system (RQn,w,H)then
the one-parameter group exp(t ad(F)), t € R, given by the flow of F,

is a symmetry group for (RQn,m,H).

The converse of proposition 1.17. also holds in the sense that
each symmetry group of a Hamiltonian system gives rise to an integral.

To make this precise we first introduce the notion of momentum mapping.

1.18. DEFINITION. On (RQn,w) let ¢ be a symplectic action of the Lie
group G with Lie algebra 4. We say that a mapping J : R?n > 8% is a

momentum mapping for the action ¢ if for every & € 8 we have

_d
Xj(g) e d(exp tE,x)lt:O

where the right hand side is called the <Znfinitesimal generator of the
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action corresponding to &. 3(5) : R’™ >R is defined by :T(E)(x) = J(x).8.

1.19. PROPOSITION. Let ¢ be a symplectic action on (Rzn,w)of the Lie
group G having momentum mapping J. If G is a symmetry group for (RQn,w,H)

then {J(E),H} = 0.

If one considers a one-parameter symmetry group exp(t ad(F)), t € R
for (R?n,w,H)then one obtains a momentum mapping J such that
3(5) 3 RZn + R 3 x » F(x). Consequently F is an integral for (Rzn,w,H).
Let G be a Lie group and 8 its Lie algebra. If g € G then
I(g) : h » ghg_1 is a isomorphism of G onto itself. Put Ad(g) = dI(g)e
then Ad(g) is an automorphism of & . We have Ad(exp X) = exp ad(X) for

1y

X € a. Ad*(g) is the corresponding automorphism of 8 *. Also Ad*(g
is an automorphism of @*, its action is called the co-adjoint action

of G.

1.20. DEFINITION. We say that a momentum mapping J is Ad*-equivariant

if J(0 0x)) = ad*(g 1)(Jx)) for every g € G.

It is clear that the momentum mapping for a one-parameter group
exp(t ad(F), t € R, F € cm(m?“,IR) is trivially Ad* -equivariant.

Under certain conditions the presence of a symmetry group for
a Hamiltonian system allows us to reduce our system to a system of
lower dimension. With some abuse of language one might say that the
reduced system is obtained by factoring out the symmetry group. We will
state the classical reduction theorem as it can be found in Abraham
and Marsden [1978] and Arnold [1978]1. Our own construction of reduced

systems in chapter Y4 will be somewhat different.

1.21. THEOREM. Let GX denote the isotropy subgroup of G under the

coadjoint action Ad*, that is, G, = {g € G|Ad*(g_1)X=X}. Furthermore

X



