AN
Architecture

for
Combinator Graph
Reduction

=

Philip John Koopman, Jr.

An
Architecture
for
Combinator Graph
Reduction

Philip John Koopman, Jr.

Harris Semiconductor
Melbourne, Florida

(&

ACADEMIC PRESS, INC.
Harcourt Brace Jovanovich, Publishers

Boston San Diego New York
London Sydney Tokyo Toronto

This book is printed on acid-free paper.

Copyright © 1990 by Academic Press, Inc.

All rights reserved.

No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or

any information storage and retrieval system, without
permission in writing from the publisher.

ACADEMIC PRESS, INC.
1250 Sixth Avenue, San Diego, CA 92101

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data

Koopman, Phil, date.

An architecture for combinator graph reduction / Philip John

Koopman, Jr.
p. cm.

Includes bibliographical references and index.

ISBN 0-12-419240-8 (alk. paper)

1. Computer architecture. 2. Functional programming (Computer
science) 3. Graph grammars. I. Title.
QAT6.9.A33K66 1990
004.2’2’015115—dc20 90-38168

CIP

Printed in the United States of America
90 91 92 93 987654321

An
Architecture
for
Combinator Graph
Reduction

To my parents

Preface

This book is based on my Ph.D. thesis for the Electrical and Computer
Engineering Department at Carnegie Mellon University. It is the result
of a computer engineer’s journey into the realm of Computer Science
theory and programming language implementation. The point of view
taken is that of an engineer, and focuses on how to solve a problem (in
this case, fast combinator reduction) efficiently. The book is split into two
major areas. The first area is the development of the TIGRE graph
reducer, along with performance measurements on a variety of machines.
The second area is an architectural analysis of TIGRE’s behavior.

This research would not have been possible without the support of
two faculty members to cover the two areas of the research. Dan
Siewiorek has helped me mature as an architect, provided guidance for
the engineering half of the thesis, and was supportive when I decided to
pursue an unusual (for an engineer) research direction. Peter Lee in-
troduced me to combinator reduction, and provided encouragement,
software support, and expert editing assistance. The other members of
my thesis committee, Rob Rutenbar and Tom Hand, also helped guide the
course of the research. John Dorband at NASA/Goddard gave me the
funding support and freedom I needed to perform the research (which was
funded by NASA/Goddard under contract NAG-5-1046).

During the quest for my degree, many people have helped in ways
large and small. Some of the main contributors are: my wife, Mary, for
her support during the stressful times, and tolerance of late nights/early
mornings; Glen Haydon, who inspired my interest in threaded architec-
tural techniques and provided helpful insight into the Ph.D. process; and
Dom Carlino, who has provided sage advice and encouragement.

Contents

Listof Tables o v v i it i et e e e e xi
Listofllustrations s : s s snswso s snom s soaw @b é xiii
Proface o c oo 2 s siccmen smmmon « scmwme & b 65 &6 5§ s XV
I.Introduction ¢ ¢t ottt vt oo oo oueonnon 1
1.1. OVERVIEW OF THE PROBLEM AREA 1
1.2. ORGANIZATION OF THISBOOK 3
2.Background 0 ittt it e e e e e e e e 5
2.1. PROBLEM DEFINITION 5
2.1.1. Lazy Functional Programming 5
2.1.2. Closure Reduction and Graph Reduction 6
2.1.3. Performance Inefficiencies 8

2.2. PREVIOUSRESEARCH 9
220 . Miranda. s ¢ ¢ s s @i e mE me s s n e E G R 9
2.2.2. Hyperlazy Evaluation 10
2.2.3. The G-Machine 10
224 TIM e 11
2.25. NORMA 12
2.2.6. The Combinatorgraph Reducer 12
2.2.7. Analysisand Summary 13

2.3. APPROACH OF THISRESEARCH 14

3. Development of the TIGRE Method 15

3.1. THE CONVENTIONAL GRAPH REDUCTION METHOD . 15
3.2. FAST INTERPRETIVE EXECUTION OF GRAPHS 17

3.3. DIRECT EXECUTION OF GRAPHS 19

4. Implementation of the TIGRE Machine 25
4.1. THE TIGRE ABSTRACT MACHINE 25
4.1.1. Hardware Definition 25

viil Contents

4.1.2. TIGRE Assembly Language 26

413 ATIGRECompiler . : : . s o o o0 ssmn 55 0w 30
4.2. MAPPING OF TIGRE ONTO VARIOUS EXECUTION

MODELS ... i..cosicssninsssasnps 31

4.2.1. Mapping of TIGRE Onto the C Execution Model 31

4.2.2. Mapping of TIGRE Assembly Language Onto a VAX . . 33
4.2.3. Mapping of TIGRE Assembly Language Onto a

MIPSR2000 ::cuwomscremomaesbud e s 35
4.2.4. Translation to Other Architectures 36
4.3. TIGRE ASSEMBLER DEFINITIONS OF
COMBINATORS 37
4.3.1. Non-Strict Combinators 37
4.3.1.1. 1-Projection Combinators 37
4.3.1.2. Simple Graph Rewriting Combinators 38
4.3.2. StrictCombinators0c... 38
4.3.2.1. Totally Strict Combinators 39
4.3.2.2. Partially Strict Combinators 40
4.3.3. List Manipulation Combinators 41
4.3.4. Supercombinators 43
4.4. SOFTWARE SUPPORT 45
4.4.1. Garbage Collection 45
4.4.2. Other Software Support 47
5. TIGREPerformance ueoueeuueueoeno. 49
5.1. TIGRE PERFORMANCE ON VARIOUS PLATFORMS . . . 49
5.1.1. TIGRE Performance for the Turner Set 51
5.1.2. TIGRE Performance for Supercombinator Compilation 53
5.2. COMPARISONS WITH OTHER METHODS 54
21 Mifatida . s ss v o5 s s 5 mma5 50 cieomes moos 54
5.2.2. Hyperlazy Evaluation 55
523. TheG-Machine 55
524 . TIM 56
525. NORMA 56
5.3. TIGRE VERSUS OTHER LANGUAGES 57
5.3.1. Non-Lazy Language: T Version3.0 57
5.3.2. Imperative Language: MIPS R2000 C Compiler 58
5.4. ANALYSIS OF PERFORMANCE 59
6. Architectural Metrics 63
6.1l. CACHEBEHAVIOR. . « . ¢ s s 5665 60 cmas oman 63
6.1.1. Exhaustive Search of the Cache Design Space 63

6.1.2. Parametric Analysis 69

Contents ix
6.1.2.1. Write Allogation . « « s : s ¢ v s o5 ¢ ¢ oo« o « o o 70
6.1.22 CacheSize : : «cs o5 : 6 ames s 8 v swm s s 72
6.123 BloekSize ::isscssssisame s s nmomn s v 73
6.1.24. Associativity . « « v s o s s s sm s s s s w @@ s 8 v 75
6.1.2.5. Replacement Policy 76
6.1.2.6. Write-Through Policy 76
6.1.3. A Desirable Cache Strategy 77
6.2. PERFORMANCE OF REAL HARDWARE 78
6.2.1. Simulation Results for a DECstation 3100 78
6.2.2. Comparison with Actual Measurements 82
6.3. DYNAMIC PROGRAM BEHAVIOR 84
6.3.1. HeapMemory Use 84
6.3.2. Stack Memory Use 86
7. The Potential of Special-Purpose Hardware 89
7.1. DECSTATION 3100 ASABASELINE 89
7.2. IMPROVEMENTS IN CACHE MANAGEMENT 90
7.2.1. Copy-BackCache 90
7.2.2. Increased Block Size 90
7.2.3. Prefetchon Read Misses 91
7.3. IMPROVEMENTS IN CPU ARCHITECTURE 92
7.3.1. Stack Unwinding Support 92
7.3.2. Stack Access Support 93
7.3.3. Doubleword Store 94
7.4. PERFORMANCE IMPROVEMENT POSSIBILITIES 94
8.Conclusionsttt ittt vttt e et 97
8.1. CONTRIBUTIONS OF THIS RESEARCH 97
8.2. AREAS FOR FURTHER RESEARCH 98
Appendix A. A Tutorial on Combinator Graph Reduction .101
A.1l. FUNCTIONALPROGRAMSo vii i 101
A.2. MAPPING FUNCTIONAL PROGRAMS TO LAMBDA
CALCULUS 102
A.3. MAPPING LAMBDA CALCULUS TO SK-
COMBINATORS 103
A.4. MAPPING SK-COMBINATOR EXPRESSIONS ONTO
AGRAPH 105
A.5. THE TURNER SET OF COMBINATORS 117
A.6. SUPERCOMBINATORS 120
A.7. INHERENT PARALLELISM IN COMBINATOR
GRAPHS 121

b'q Contents

Appendix B. Selected TIGRE Program Listings 123
B.1. REDUCEH, 123
B2. KERNEL.C 126
B3. TIGRE.S e e e e e e 129
BA, MIPS'S : cwupscssomm: s 880 caasansss e s 136
BSOS HEAPH :wswsssnsmmanwnmumas s osnmosadnms 144
Bi6. HEAPC . c i i i v siom oo o mmmimis oo oimoio s s oo 145

References 149

List of Tables

Table 5-1. TIGRE performance on a variety of platforms 50
Table 5-2. Benchmark listings 52
Table 5-3. TIGRE speedups using supercombinator compilation . . 53
Table 5-4. Performance of TIGRE versus Miranda 54
Table 5-5. Performance of TIGRE versus Hyperlazy evaluation . . . 55
Table 5-6. Performance of TIGRE versusTIM 56
Table 5-7. Performance of TIGRE versus NORMA 56
Table 5-8. TIGRE performance comparedtoT3.0 57
Table 5-9. TIGRE performance comparedtoC 58
Table 5-10. C program listings for comparison with TIGRE 60
Table 6-1. Cache performance simulation results for TIGRE on a
MIPSR2000' : . osww s snwswcssanamasiss 65
Table 6-2. Baseline for parametric analysis 69
Table 6-3. TIGRE performance with varying cache write allocation
strategy oL 70
Table 6-4. TIGRE performance with varying cache associativity . . 76
Table 6-5. TIGRE performance with varying cache replacement
POLGIEE « : : cvuwmess namaaess sammwsds o 76
Table 6-6. TIGRE performance with varying cache write-through
strategy 77
Table 6-7. Baseline for DECstation 3100 analysis 79
Table 6-8. Performance with varying cache write allocation
Strategy . . « c wame s s s v e s 5 8 5 e m e s b . 79
Table 6-9. Cache performance with varying cache associativity . . . 80
Table 6-10. Cache performance with varying cache write-through
strategy L. L 82
Table 6-11. TIGRE useof heapmemory 84
Table 6-12. TIGRE use of stack memory forfib 86
Table 7-1. Summary of TIGRE DECstation 3100 performance
characteristics 90
Table 7-2. Summary of possible performance improvements 95

xi

xii List of Tables

Table A-1. Non-strict members of the Turner combinator set117
Table A-2. Turner Set optimizations 119

Figure 2-1.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 3-5.
Figure 3-6.

Figure 3-7.

Figure 3-8.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.

Figure 4-5.

Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.

List of Ilustrations

Evolution of lazy functional program implementation

techniques 13
Basic structureofanode 15
Example for expression ((+ 11)22) 16
Example using indirection nodes for constants 17
Example using LIT nodes instead of indirection nodes

forconstants 18
Example with tag fieldsremoved 19
An example TIGRE program graph, emphasizing the

JeftSpifie v : s s wowmes s acees s samas s 3 20
A TIGRE program graph with only subroutine call

pointers 21
VAX assembly language implementation of a TIGRE

EXPresSiON i e e e e 22
A block diagram of the TIGRE abstract machine 26
The S’ combinator : . cssw s s a8 s s amms s 29
Mapping of the TIGRE abstract machineontoC 31
Mapping of the TIGRE abstract machine onto a

VAX 8800 34
Mapping of the TIGRE abstract machine onto a

MIPSR2000 .. ::ooncsussacsonsssss 35
The IF combinator 41
The P combinator 42
The U combinator 43
The $FIB supercombinator 44
TIGRE performance with varying cache size 72
TIGRE performance with varying cache block size . . . 74
Cache performance with varying cache size 80
Performance with varying cache block size 81

List of Illustrations

xiv

Figure A-1. The function and argument structureof anode 106
Figure A-2. A function argument pair 106
Figure A-3. Asharedsubtree 107
Figure A-4. Graphtoadd 11and22 107
Figure A-5. Operation of the I combinator 107
Figure A-6. Operation of the K combinator 108
Figure A-7. Operation of the S combinator 109
Figure A-8. An additionexample 110
Figure A-9. Doubling function 110
Figure A-10. Doubling function applied to argument 111
Figure A-11. Reductionstepl 112
Figure A-12. Reductionstep2 112
Figure A-13. Reductionstep3 113
Figure A-14. Reductionstep4 113
Figure A-15. Reductionstep5 114
Figure A-16. Reductionstep6 114
Figure A-17. Reductionstep7 115
Figure A-18. Reductionstep8 115
Figure A-19. Reductionstep9 115
Figure A-20. Reductionstep10 116
Figure A-21. Reductionstep 11 116
Figure A-22. Operation of the B combinator 118
Figure A-23. Operation of the C combinator 119

Chapter 1

Introduction

This chapter contains both an overview of the problem area to be discussed
and an overview of the structure of the rest of the book.

1.1. OVERVIEW OF THE PROBLEM AREA

Functional programming provides a new way of writing programs and a
new way of thinking about problem solving (Backus 1978). A specific
advantage of functional programs is the fact that they are easy to reason
about, since they can be viewed as mathematical specifications of algo-
rithms, and are therefore amenable to automatic verification techniques.
Also, there is a belief in some circles that functional programs are easier
to write than other programs. This is because functional programming
languages provide powerful higher-order composition mechanisms which
are not found in conventional imperative languages such as C. Further-
more, the combination of these mentioned qualities can lead to reliable
software systems (Hughes 1984). Although the foundations of functional
programming have been known for some time (Curry & Feys 1968, Landin
1966, Reynolds 1972), most of what we know about the field has been
discovered in the last ten years. Therefore, the potential benefits of using
functional programming techniques are still largely unexplored.

Lazy evaluation (Henderson & Morris 1976, Freedman & Wise 1976)
of functional programs allows the use of powerful programming
structures such as implicit coroutining and infinitely long lists. Un-
fortunately, the power and flexibility of lazy evaluation has, in the past,
been associated with extreme inefficiency when executing programs. It
is common for programs to be 100 times slower in a lazy functional
language than in an imperative language such as C.” Because programs
written in these languages execute so slowly, it is difficult to build a large
software base to gain experience in using the languages. And, without a
large software and user base, it will be difficult to gain insights on the

Actual comparisons will be given in a later chapter.

1

2 Chapter 1. Introduction

appropriateness of lazy functional programming languages for solving
real problems.

One important evaluation strategy for lazy functional programming
languages is graph reduction. Graph reduction involves converting the
program to a lambda calculus expression (Barendregt 1981), and then to
a graph data structure. One method for implementing the graph data
structureis to translate the program to combinators (Curry & Feys 1968).
A key feature of this method is that all variables are abstracted from the
program. The program is represented as a computation graph, with
instances of variables replaced by pointers to subgraphs which compute
values. Graphs are evaluated by repeatedly applying graph trans-
formations until the graph is irreducible. The irreducible final graph is
the result of the computation. In this scheme, the rewriting of the graph
data structure, also called combinator graph reduction, is the method used
to execute the program.

A great allure of combinator graph reduction is that it may provide
an automatic approach to parallel computation, since the available
parallelism of a program compiled to a graph is directly represented by
the graph structure (Peyton Jones 1987). Such parallelism tends to be
fine-grained, where each quantum of work available is small in size.
Overhead in managing resources and task scheduling can quickly domi-
nate the performance of a fine-grained parallelism system, so it is import-
ant to find a scheme in which overhead is kept low to achieve reasonable
speedups.

Traditionally, it has been assumed that advanced programming
languages (and in particular functional programming languages) require
radically different, non-vonNeumann architectures for efficient execu-
tion. This book explores mapping functional programming languages
onto conventional architectures using a combination of techniques from
the fields of computer architecture and implementation of advanced
programming languages.

The tools of the computer architect shed new light on the behavior
of this special class of programs. The results shown here suggest that the
advanced programming languages being explored by computer scientists
do not adhere to the normal expectations of computer architects, and may
eventually force a reevaluation of architectural tradeoffs in system design.
An important point of the findings presented here is that the combination
of architectural features required for efficiency may be relatively in-
expensive, yet omitted from even recent machines because of relative
unimportance for conventional programming language execution.

1.2. ORGANIZATION OF THIS BOOK 3

1.2. ORGANIZATION OF THIS BOOK

The book examines existing methods of evaluating lazy functional pro-
grams using combinator reduction techniques, implementation and char-
acterization of a means for accomplishing graph reduction on
uniprocessors, and analysis of the potential for special-purpose hardware
implementations.

Chapter 2 provides a background on functional programming
languages and existing implementation technology. The reader who is
not familiar with the field may wish to read Appendix A, which is a tutorial
on combinator graph reduction. Chapter 2 also contains a summary of
important previous work on the combinator reduction approach to evalu-
ating lazy functional programming languages.

Chapter 3 describes the TIGRE methodology for implementing
combinator graph reduction. The description is in the form of a progres-
sion of techniques which are added to a graph reduction mechanism based
on previously used methods. The general flow of the incremental im-
provements starts with conventional graph reduction methods, moves on
to a fast interpretation scheme for combinator graphs, refines the method
to a direct execution scheme for combinator graphs, and then discusses
supercombinator compilation methods for improved performance.

Chapter 4 describes the TIGRE abstract machine, which is used to
implement the graph reduction methodology described in Chapter 3.
TIGRE may be described in terms of an abstract architecture and abstract
assembly languages. These abstract definitions have been mapped effi-
ciently onto real languages and architectures, including machine-indepen-
dent C code and assembly language implementations for the VAX family
and the MIPS R2000 processor.

Chapter 5 gives the results of performance measurements of TIGRE
on a variety of platforms. These results are compared with available
results for other combinator reduction strategies and against the perform-
ance of imperative languages.

Chapter 6 discusses architectural metrics for TIGRE executing on
the MIPS R2000 processor. The architectural metrics include a simula-
tion of cache behavior, combinator execution frequency, and various
dynamic metrics such as heap allocation statistics.

Chapter 7 explores the potential for special-purpose hardware to
yield further speed improvements. In order to maintain some basis in
reality, modifications to the MIPS R2000 architecture as implemented in
the DECstation 3100 platform are proposed, along with predicted speed
improvements.

