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Preface

This book is based on my Ph.D. thesis for the Electrical and Computer
Engineering Department at Carnegie Mellon University. It is the result
of a computer engineer’s journey into the realm of Computer Science
theory and programming language implementation. The point of view
taken is that of an engineer, and focuses on how to solve a problem (in
this case, fast combinator reduction) efficiently. The book is split into two
major areas. The first area is the development of the TIGRE graph
reducer, along with performance measurements on a variety of machines.
The second area is an architectural analysis of TIGRE’s behavior.

This research would not have been possible without the support of
two faculty members to cover the two areas of the research. Dan
Siewiorek has helped me mature as an architect, provided guidance for
the engineering half of the thesis, and was supportive when I decided to
pursue an unusual (for an engineer) research direction. Peter Lee in-
troduced me to combinator reduction, and provided encouragement,
software support, and expert editing assistance. The other members of
my thesis committee, Rob Rutenbar and Tom Hand, also helped guide the
course of the research. John Dorband at NASA/Goddard gave me the
funding support and freedom I needed to perform the research (which was
funded by NASA/Goddard under contract NAG-5-1046).

During the quest for my degree, many people have helped in ways
large and small. Some of the main contributors are: my wife, Mary, for
her support during the stressful times, and tolerance of late nights/early
mornings; Glen Haydon, who inspired my interest in threaded architec-
tural techniques and provided helpful insight into the Ph.D. process; and
Dom Carlino, who has provided sage advice and encouragement.



Contents

Listof Tables . . . . . . . o v v i it i et e e e e xi
Listofllustrations s : s s snswso s snom s soaw @b é xiii
Proface o c oo 2 s siccmen smmmon « scmwme & b 65 &6 5§ s XV
I.Introduction . . . . . .. ¢ ¢t ottt vt oo oo oueonnon 1
1.1. OVERVIEW OF THE PROBLEM AREA . ... ... ... .. 1
1.2. ORGANIZATION OF THISBOOK .. ... .......... 3
2.Background . . . . . . . 0 ittt it e e e e e e e e 5
2.1. PROBLEM DEFINITION . ... ... ... .......... 5
2.1.1. Lazy Functional Programming . . .. ... ... ... .. 5
2.1.2. Closure Reduction and Graph Reduction . . . ... .. .. 6
2.1.3. Performance Inefficiencies . .. ... ... ... ..... 8

2.2. PREVIOUSRESEARCH ... .................. 9
220 . Miranda. s ¢ ¢ s s @i e mE me s s n e E G R 9
2.2.2. Hyperlazy Evaluation . .. ... ............. 10
2.2.3. The G-Machine . . .. ... ... ............. 10
224 TIM . .. . . e 11
2.25. NORMA . . . . . . . 12
2.2.6. The Combinatorgraph Reducer . . ... ... ... ... 12
2.2.7. Analysisand Summary . . . ... .. ... ... ... .. 13

2.3. APPROACH OF THISRESEARCH .. ............ 14

3. Development of the TIGRE Method ... ......... 15

3.1. THE CONVENTIONAL GRAPH REDUCTION METHOD . 15
3.2. FAST INTERPRETIVE EXECUTION OF GRAPHS . ... 17

3.3. DIRECT EXECUTION OF GRAPHS .. ........... 19

4. Implementation of the TIGRE Machine ....... ... 25
4.1. THE TIGRE ABSTRACT MACHINE .. ........... 25
4.1.1. Hardware Definition . . . ... ... ... ........ 25



viil Contents

4.1.2. TIGRE Assembly Language . . ... ........... 26

413 ATIGRECompiler . : : . s o o o0 ssmn 55 0w 30
4.2. MAPPING OF TIGRE ONTO VARIOUS EXECUTION

MODELS ... i..cosicssninsssasnps 31

4.2.1. Mapping of TIGRE Onto the C Execution Model . . .. 31

4.2.2. Mapping of TIGRE Assembly Language Onto a VAX . . 33
4.2.3. Mapping of TIGRE Assembly Language Onto a

MIPSR2000 ::cuwomscremomaesbud e s 35
4.2.4. Translation to Other Architectures . . . ... ... ... 36
4.3. TIGRE ASSEMBLER DEFINITIONS OF
COMBINATORS . ... ... ... ......... 37
4.3.1. Non-Strict Combinators . . . . ... ... ........ 37
4.3.1.1. 1-Projection Combinators . . . . .. ... ... ... 37
4.3.1.2. Simple Graph Rewriting Combinators . . . . . . . . 38
4.3.2. StrictCombinators . . ... ............0c... 38
4.3.2.1. Totally Strict Combinators . . ... ...... ... 39
4.3.2.2. Partially Strict Combinators . . . . ... ... ... 40
4.3.3. List Manipulation Combinators . . . . . ... ... ... 41
4.3.4. Supercombinators . . . ... ... ... ... ... ... 43
4.4. SOFTWARE SUPPORT . ... ... ... .......... 45
4.4.1. Garbage Collection . . . .. ... ............. 45
4.4.2. Other Software Support . . .. ... ........... 47
5. TIGREPerformance . ... .. ... ueoueeuueueoeno. 49
5.1. TIGRE PERFORMANCE ON VARIOUS PLATFORMS . . . 49
5.1.1. TIGRE Performance for the Turner Set . . . . ... .. 51
5.1.2. TIGRE Performance for Supercombinator Compilation 53
5.2. COMPARISONS WITH OTHER METHODS . . . ... ... 54
21 Mifatida . s ss v o5 s s 5 mma5 50 cieomes moos 54
5.2.2. Hyperlazy Evaluation . .. ... ............. 55
523. TheG-Machine . ... ................... 55
524 . TIM . ... . . . . 56
525. NORMA . . . . . . . . . 56
5.3. TIGRE VERSUS OTHER LANGUAGES . ... .. .. ... 57
5.3.1. Non-Lazy Language: T Version3.0 ... ... ... ... 57
5.3.2. Imperative Language: MIPS R2000 C Compiler . . . . . 58
5.4. ANALYSIS OF PERFORMANCE . ... ........... 59
6. Architectural Metrics . . . . . ... ... ... ....... 63
6.1l. CACHEBEHAVIOR. . « . ¢ s s 5665 60 cmas oman 63
6.1.1. Exhaustive Search of the Cache Design Space . . . . . . 63

6.1.2. Parametric Analysis . . . ... ... ........... 69



Contents ix
6.1.2.1. Write Allogation . « « s : s ¢ v s o5 ¢ ¢ oo« o « o o 70
6.1.22 CacheSize : : «cs o5 : 6 ames s 8 v swm s s 72
6.123 BloekSize ::isscssssisame s s nmomn s v 73
6.1.24. Associativity . « « v s o s s s sm s s s s w @@ s 8 v 75
6.1.2.5. Replacement Policy . . .. ... ........... 76
6.1.2.6. Write-Through Policy . . ... ... ......... 76
6.1.3. A Desirable Cache Strategy . . . . ... ... ...... 77
6.2. PERFORMANCE OF REAL HARDWARE . ... ... ... 78
6.2.1. Simulation Results for a DECstation 3100 . . . . . . .. 78
6.2.2. Comparison with Actual Measurements . . . . ... .. 82
6.3. DYNAMIC PROGRAM BEHAVIOR . . . . ... ....... 84
6.3.1. HeapMemory Use . . . .. . ... ... ... ...... 84
6.3.2. Stack Memory Use . . .. .. .. .. .. ......... 86
7. The Potential of Special-Purpose Hardware . ... ... 89
7.1. DECSTATION 3100 ASABASELINE . ... ........ 89
7.2. IMPROVEMENTS IN CACHE MANAGEMENT ... ... 90
7.2.1. Copy-BackCache . ... .. ................ 90
7.2.2. Increased Block Size . . . .. ... ............ 90
7.2.3. Prefetchon Read Misses . . . . ... ... ........ 91
7.3. IMPROVEMENTS IN CPU ARCHITECTURE . ... ... 92
7.3.1. Stack Unwinding Support . . . . . ... ... ...... 92
7.3.2. Stack Access Support . . . . ... ... 93
7.3.3. Doubleword Store . . . . . ... ... ........... 94
7.4. PERFORMANCE IMPROVEMENT POSSIBILITIES . . .. 94
8.Conclusions . . . . .. .ttt ittt vttt e et 97
8.1. CONTRIBUTIONS OF THIS RESEARCH .. ... ... .. 97
8.2. AREAS FOR FURTHER RESEARCH . ... ........ 98
Appendix A. A Tutorial on Combinator Graph Reduction .101
A.1l. FUNCTIONALPROGRAMS . . . . . . . ..o vii i 101
A.2. MAPPING FUNCTIONAL PROGRAMS TO LAMBDA
CALCULUS . ... ... ... .. 102
A.3. MAPPING LAMBDA CALCULUS TO SK-
COMBINATORS . .. ... ............. 103
A.4. MAPPING SK-COMBINATOR EXPRESSIONS ONTO
AGRAPH . ..... ... ... . .. ... ..... 105
A.5. THE TURNER SET OF COMBINATORS .. ... ... .. 117
A.6. SUPERCOMBINATORS . . ... ............... 120
A.7. INHERENT PARALLELISM IN COMBINATOR
GRAPHS . ... .... ... .. ......... 121



b'q Contents

Appendix B. Selected TIGRE Program Listings . ... ... 123
B.1. REDUCEH ....... ... .. ... ..., 123
B2. KERNEL.C ... ... ... ... ... .. 126
B3. TIGRE.S . . . . . .. . e e e e e e 129
BA, MIPS'S : cwupscssomm: s 880 caasansss e s 136
BSOS HEAPH :wswsssnsmmanwnmumas s osnmosadnms 144
Bi6. HEAPC . c i i i v siom oo o mmmimis oo oimoio s s oo 145

References . . . . . .. . .. . .. ... ... 149



List of Tables

Table 5-1. TIGRE performance on a variety of platforms . . .. .. 50
Table 5-2. Benchmark listings . . . .. ... ... .......... 52
Table 5-3. TIGRE speedups using supercombinator compilation . . 53
Table 5-4. Performance of TIGRE versus Miranda . . . . ... ... 54
Table 5-5. Performance of TIGRE versus Hyperlazy evaluation . . . 55
Table 5-6. Performance of TIGRE versusTIM . . .. ... ... .. 56
Table 5-7. Performance of TIGRE versus NORMA . . ... ... .. 56
Table 5-8. TIGRE performance comparedtoT3.0 . . ... ... .. 57
Table 5-9. TIGRE performance comparedtoC . . . ... ... ... 58
Table 5-10. C program listings for comparison with TIGRE . . . . . 60
Table 6-1. Cache performance simulation results for TIGRE on a
MIPSR2000' : . osww s snwswcssanamasiss 65
Table 6-2. Baseline for parametric analysis . . . . .. ... ... .. 69
Table 6-3. TIGRE performance with varying cache write allocation
strategy . . . . .. .. oL 70
Table 6-4. TIGRE performance with varying cache associativity . . 76
Table 6-5. TIGRE performance with varying cache replacement
POLGIEE « : : cvuwmess namaaess sammwsds o 76
Table 6-6. TIGRE performance with varying cache write-through
strategy . . ... ... 77
Table 6-7. Baseline for DECstation 3100 analysis . . . . .. ... .. 79
Table 6-8. Performance with varying cache write allocation
Strategy . . « c wame s s s v e s 5 8 5 e m e s b . 79
Table 6-9. Cache performance with varying cache associativity . . . 80
Table 6-10. Cache performance with varying cache write-through
strategy . . . ... L. L 82
Table 6-11. TIGRE useof heapmemory . . .. ... ......... 84
Table 6-12. TIGRE use of stack memory forfib . ... ... ... .. 86
Table 7-1. Summary of TIGRE DECstation 3100 performance
characteristics . . . ... ............... 90
Table 7-2. Summary of possible performance improvements . . . . . 95

xi



xii List of Tables

Table A-1. Non-strict members of the Turner combinator set . . . .117
Table A-2. Turner Set optimizations . . ... ............. 119



Figure 2-1.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 3-5.
Figure 3-6.

Figure 3-7.

Figure 3-8.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.

Figure 4-5.

Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.

List of Ilustrations

Evolution of lazy functional program implementation

techniques . . . ... ... ... ........... 13
Basic structureofanode . . . ... ... ... ... ... 15
Example for expression ((+ 11)22) . ... ........ 16
Example using indirection nodes for constants . . . . . . 17
Example using LIT nodes instead of indirection nodes

forconstants . . ... ... ... ... ... ... 18
Example with tag fieldsremoved . ... ... ...... 19
An example TIGRE program graph, emphasizing the

JeftSpifie v : s s wowmes s acees s samas s 3 20
A TIGRE program graph with only subroutine call

pointers . . . . ... ... ... 21
VAX assembly language implementation of a TIGRE

EXPresSiON . . . . . .. i e e e e 22
A block diagram of the TIGRE abstract machine . ... 26
The S’ combinator : . cssw s s a8 s s amms s 29
Mapping of the TIGRE abstract machineontoC . . . . . 31
Mapping of the TIGRE abstract machine onto a

VAX 8800 . ... ... ... . ... 34
Mapping of the TIGRE abstract machine onto a

MIPSR2000 .. ::ooncsussacsonsssss 35
The IF combinator . . . . ................. 41
The P combinator . . .. .. ............... 42
The U combinator . . ... ................ 43
The $FIB supercombinator . . .. ... ......... 44
TIGRE performance with varying cache size . . . . . . . 72
TIGRE performance with varying cache block size . . . 74
Cache performance with varying cache size . . ... .. 80
Performance with varying cache block size . . . . . . . . 81



List of Illustrations

xiv

Figure A-1. The function and argument structureof anode . . . . . 106
Figure A-2. A function argument pair . . . . . ... ... ...... 106
Figure A-3. Asharedsubtree . ... ... ............... 107
Figure A-4. Graphtoadd 11and22 . ... ... ... ........ 107
Figure A-5. Operation of the I combinator . . . . . ... ... .... 107
Figure A-6. Operation of the K combinator . . ... ... ... ... 108
Figure A-7. Operation of the S combinator . . . . .. ... ... .. 109
Figure A-8. An additionexample . . . .. ... ... .. ....... 110
Figure A-9. Doubling function . . ... ... ... ... ....... 110
Figure A-10. Doubling function applied to argument . . . . . .. .. 111
Figure A-11. Reductionstepl . ... ... ... ... ........ 112
Figure A-12. Reductionstep2 . . ... ... ... ... ....... 112
Figure A-13. Reductionstep3 . . ... ... ... ... ....... 113
Figure A-14. Reductionstep4 . . .. .. ... ... ... ...... 113
Figure A-15. Reductionstep5 . . . .. ... ... ... ....... 114
Figure A-16. Reductionstep6 . . . ... ... ... ......... 114
Figure A-17. Reductionstep7 . . . ... ... ... ......... 115
Figure A-18. Reductionstep8 . . ... ... ............. 115
Figure A-19. Reductionstep9 . . ... ... ... ... ....... 115
Figure A-20. Reductionstep10 . . . . . .. ... ... ... ..... 116
Figure A-21. Reductionstep 11 . . . . . . ... ... ... ...... 116
Figure A-22. Operation of the B combinator . . . . . ... ... ... 118
Figure A-23. Operation of the C combinator . . . . . . ... ... .. 119



Chapter 1

Introduction

This chapter contains both an overview of the problem area to be discussed
and an overview of the structure of the rest of the book.

1.1. OVERVIEW OF THE PROBLEM AREA

Functional programming provides a new way of writing programs and a
new way of thinking about problem solving (Backus 1978). A specific
advantage of functional programs is the fact that they are easy to reason
about, since they can be viewed as mathematical specifications of algo-
rithms, and are therefore amenable to automatic verification techniques.
Also, there is a belief in some circles that functional programs are easier
to write than other programs. This is because functional programming
languages provide powerful higher-order composition mechanisms which
are not found in conventional imperative languages such as C. Further-
more, the combination of these mentioned qualities can lead to reliable
software systems (Hughes 1984). Although the foundations of functional
programming have been known for some time (Curry & Feys 1968, Landin
1966, Reynolds 1972), most of what we know about the field has been
discovered in the last ten years. Therefore, the potential benefits of using
functional programming techniques are still largely unexplored.

Lazy evaluation (Henderson & Morris 1976, Freedman & Wise 1976)
of functional programs allows the use of powerful programming
structures such as implicit coroutining and infinitely long lists. Un-
fortunately, the power and flexibility of lazy evaluation has, in the past,
been associated with extreme inefficiency when executing programs. It
is common for programs to be 100 times slower in a lazy functional
language than in an imperative language such as C.” Because programs
written in these languages execute so slowly, it is difficult to build a large
software base to gain experience in using the languages. And, without a
large software and user base, it will be difficult to gain insights on the

Actual comparisons will be given in a later chapter.
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2 Chapter 1. Introduction

appropriateness of lazy functional programming languages for solving
real problems.

One important evaluation strategy for lazy functional programming
languages is graph reduction. Graph reduction involves converting the
program to a lambda calculus expression (Barendregt 1981), and then to
a graph data structure. One method for implementing the graph data
structureis to translate the program to combinators (Curry & Feys 1968).
A key feature of this method is that all variables are abstracted from the
program. The program is represented as a computation graph, with
instances of variables replaced by pointers to subgraphs which compute
values. Graphs are evaluated by repeatedly applying graph trans-
formations until the graph is irreducible. The irreducible final graph is
the result of the computation. In this scheme, the rewriting of the graph
data structure, also called combinator graph reduction, is the method used
to execute the program.

A great allure of combinator graph reduction is that it may provide
an automatic approach to parallel computation, since the available
parallelism of a program compiled to a graph is directly represented by
the graph structure (Peyton Jones 1987). Such parallelism tends to be
fine-grained, where each quantum of work available is small in size.
Overhead in managing resources and task scheduling can quickly domi-
nate the performance of a fine-grained parallelism system, so it is import-
ant to find a scheme in which overhead is kept low to achieve reasonable
speedups.

Traditionally, it has been assumed that advanced programming
languages (and in particular functional programming languages) require
radically different, non-vonNeumann architectures for efficient execu-
tion. This book explores mapping functional programming languages
onto conventional architectures using a combination of techniques from
the fields of computer architecture and implementation of advanced
programming languages.

The tools of the computer architect shed new light on the behavior
of this special class of programs. The results shown here suggest that the
advanced programming languages being explored by computer scientists
do not adhere to the normal expectations of computer architects, and may
eventually force a reevaluation of architectural tradeoffs in system design.
An important point of the findings presented here is that the combination
of architectural features required for efficiency may be relatively in-
expensive, yet omitted from even recent machines because of relative
unimportance for conventional programming language execution.
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1.2. ORGANIZATION OF THIS BOOK

The book examines existing methods of evaluating lazy functional pro-
grams using combinator reduction techniques, implementation and char-
acterization of a means for accomplishing graph reduction on
uniprocessors, and analysis of the potential for special-purpose hardware
implementations.

Chapter 2 provides a background on functional programming
languages and existing implementation technology. The reader who is
not familiar with the field may wish to read Appendix A, which is a tutorial
on combinator graph reduction. Chapter 2 also contains a summary of
important previous work on the combinator reduction approach to evalu-
ating lazy functional programming languages.

Chapter 3 describes the TIGRE methodology for implementing
combinator graph reduction. The description is in the form of a progres-
sion of techniques which are added to a graph reduction mechanism based
on previously used methods. The general flow of the incremental im-
provements starts with conventional graph reduction methods, moves on
to a fast interpretation scheme for combinator graphs, refines the method
to a direct execution scheme for combinator graphs, and then discusses
supercombinator compilation methods for improved performance.

Chapter 4 describes the TIGRE abstract machine, which is used to
implement the graph reduction methodology described in Chapter 3.
TIGRE may be described in terms of an abstract architecture and abstract
assembly languages. These abstract definitions have been mapped effi-
ciently onto real languages and architectures, including machine-indepen-
dent C code and assembly language implementations for the VAX family
and the MIPS R2000 processor.

Chapter 5 gives the results of performance measurements of TIGRE
on a variety of platforms. These results are compared with available
results for other combinator reduction strategies and against the perform-
ance of imperative languages.

Chapter 6 discusses architectural metrics for TIGRE executing on
the MIPS R2000 processor. The architectural metrics include a simula-
tion of cache behavior, combinator execution frequency, and various
dynamic metrics such as heap allocation statistics.

Chapter 7 explores the potential for special-purpose hardware to
yield further speed improvements. In order to maintain some basis in
reality, modifications to the MIPS R2000 architecture as implemented in
the DECstation 3100 platform are proposed, along with predicted speed
improvements.



