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Preface

This book is intended for students taking any or all of the three half
units in Digital Techniques, revised versions of which appeared in
1981. A practical approach is adopted throughout; the student
encouraged to handle and experiment with the various logic ICs
discussed in the text, and practical exercises are provided in
appropriate cases. Exercises of the ‘connect point A to point B’
type have been avoided. Instead the student is encouraged to refer
to databooks, draw up wiring and circuit diagrams, and to present
results in the form of graphs, tables and written conclusions. It is
estimated that a student taking all three half units would spend
about a third of his time on practical work.

Over one hundred and fifty exercises are provided. Many of
these are routine tests of knowledge and comprehension, but a few
seek to extend the student by asking him to find new applications,
or to anticipate future work. Practical applications are emphasised
even in academic exercises. Up to date techniques are represented,
especially in chapter ten, where less space is devoted to magnetic
core stores than would seem justified by the TEC unit, and more
space is given to semiconductor memories and programmable logic.
The chapter sequence broadly follows the TEC scheme, but chapter
ten is out of sequence, as it was felt that it would be better for the
student to gain some experience of flip-flops and registers before
looking at memory systems. Chapter nine on logic families could be
read at any time after chapters one to three, or could be referred to
in the course of work on other chapters.

I would like to thank my colleagues at Kingston who kindly read
and commented on parts of the manuscript. Any errors or
omissions are of course entirely my own responsibility. My thanks
are also due to Eamonn Higgins for preparing some of thks
drawings, and for his advice on drawing. Finally I would liks
thank Amy for the thousands of cups of coffee which were ne
in the writing of the manuscript.
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General objectives

Specific objectives

The binary number system

Binary arithmetic

TEC U81/750

To understand the processes involved in the conversion to and from
binary notation and methods of adding, subtracting, multiplying
and dividing binary numbers.

After studying this chapter the student should be able to:

1.1 Convert compound denary numbers to binary and vice versa.

1.2 Use sign and magnitude notation.

1.3 Use the 1’s complement and the 2’s complement of a binary
number.

1.4 Add two compound binary numbers.

1.5 Subtract one binary number from another.

1.6 Multiply one binary number by another.

1.7 Divide one binary number by another.

1.8 Demonstrate that the basic arithmetical operations may be
carried out by repeated addition or subtraction.

The study of digital techniques begins with the binary number
system which plays an essential part in the operation of all modern
electronic machines. Although the binary system is not used for
everyday arithmetic, it is important to master the principles in this
chapter to understand the problems that arise in the design of
digital circuits, and to appreciate the techniques used to solve these
problems.

The denary system which man has developed for normal use is a
positional system based on the number ten. The position of a digit
indicates a power of ten, and the digits 0 to 9 indicate how many
times that power is to be counted. Starting from the least
significant digit the powers of ten are, 10°=1, 10'=10,
102=100...etc. The number 4321 is evaluated as
4x103+3%x102+2x10'+1x 10°=4000+300+20+ 1.

While the denary (or decimal) system seems ‘natural’ to us from
long familiarity, there is nothing inevitable about the choice of ten
as a base. On the contrary, any number could be chosen, and
mathematicians argue that the number twelve, for example, which
has more factors than ten, would make a better base. Mathematics
apart, the denary system has a serious handicap as a machine
system; a machine working in denary would have to be able to take
up any one of ten different states in order to represent each of the
digits 0 to 9. Such a machine is possible in theory but would have so
many practical limitations that it will not be considered further.

The binary system, based on the number two, needs only two
distinct symbols, 1 and 0, therefore a two-state device is capable of
distinguishing between them. This is a big advantage as two-state
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Binary to denary conversion

devices are readily available in electronics. To save writing the long-
winded term ‘binary digit’, we use the word ‘bit’ to mean 1 or 0.
Since a bit can take only the values 1 or 0, the maximum number
that can be indicated in the units column is 1; therefore when a
count of two is reached we have to move one place left and write
10. The sequence 00, 01, 10, 11, indicates a count of zero, one, two,
three. The first two columns are now full so the only way we can
indicate a count of four is to move left again and write 100.

The position of a bit in a binary number is proportional to a
power of two. Starting from the least significant digit, the powers
of two are, 20=1, 21=2, 22=4, 23=8...etc. The binary number
1010 is evaluated as 1x23+0x2%2+1x2!+0x20=8+2=denary
10. The denary value which corresponds to a given bit position is
called the ‘weight’ of that bit. All the powers of two which could be
accommodated in an eight bit number are set out in table 1.1,
together with their denary weights.

Table 1.1
Power of two 7 6 5 4 3 2 1 0
Weight 128 64 32 16 8 4 2 1

Table 1.2 lists all the numbers that can be written in three bits.
Notice that for numbers greater than one, more bits will be needed
than denary digits. This is part of the price we pay for the relative
simplicity of the binary system in terms of electronic circuitry.

Table 1.2

Binary Denary

000 0

001 20=1

010 21=2

011 21420=3

100 22=4

101 2420=5

110 2421=¢
111 22421420=7

Using three bits we can write eight (i.e. two to the power of three)
numbers. In general, using N bits we can write 2V~ numbers, i.e. all
the numbers from 0 to 2N —1.

Exercise 1.1 Write down all the binary numbers that can be
accommodated in four bits. Show the corresponding denary
numbers as sums of powers of two as in table 1.2.

To convert a binary number to denary, add up all the powers of
two which correspond to a 1 bit in the binary number. With
practice this can be done mentally, but a systematic method is
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METHOD 1

METHOD 2

Binary arithmetic 3

always advisable for large numbers. One such method is shown in
table 1.3 for the conversion of binary 110101 to denary.

Table 1.3

Bit Power of two Times Result

5 32=25 1 32

4 16=24 1 16

3 g8=23 0 0

2 4=22 1 4

1 2=2! 0 0
1=20 1 1

Add results: 32+ 16+0+4+0+1=53.

Exercise 1.2 Convert the following binary numbers to denary, (a)
1101, (b) 1111, (c) 101110, (d) 111111.

Two methods will be given. A special circuit could be designed (a
‘hardware solution’), or a computer program written (a ‘software
solution’), to implement either method. The student is free to pick
the method which suits him best.

First find the highest power of two which is less than the denary
number (table 1.1 will be useful). Take the number 44 for example.
From table 1.1, 25=32, and 2%= 64, so the highest power of two is
the fifth power. Remembering that the bits are numbered from 0
upward, this tells us that the binary number has six bits, i.e. it is a
number of the form lxxxxx, where x indicates a bit still to be
found. Now subtract 32 from 44 and test whether the next highest
power of two can be taken from the remainder; if the answer is
‘yes’ then subtract it and put a 1 in the binary number; if ‘no’ then
do not subtract anything and put a 0 in the binary number.
Continue in this way down to 20. Table 1.4 illustrates the method
for the number 44.

Table 1.4
Remainder Power of two Subtract Binary
44 25=32 Yes 1
12 24=16 No 0
12 23= 8 Yes 1
4 22= 4 Yes 1
0 2= 2 No 0
0 20=1 No 0

Read the binary number from the top: denary 44 =binary 101100.

This method consists of repeated division of the denary number by
two. The remainder (0 or 1) after each division is noted, and when
read off in reverse order, the list of remainders gives the binary
number.
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Binary fractions

Example 1.1 Convert denary 44 to binary.
Answer 44+2=22+0

22+2=11+0
11+-2= 5+1
5+2= 2+1
2+2= 140
1+2= 0+1

The remainders in the right hand column are read from the bottom
to give the binary number 101100 as before. With practice the
division can be done mentally and only the remainders written
down, but a systematic method such as that shown in example 1.1 is
better for a beginner.

Exercise 1.3 Convert the following to binary, (a) 29, (b) 77, (c)
121, (d) 233.

Fractions need present no problem if we remember that a fraction
can be written as a negative power of the base. Thus in denary,

0.1=1/10=10"!
0.01=1/100=10"2...etc.

In binary we use negative powers of two, thus,

0.1=r=2"1
0.0l=%=2"2
0.001 = 4 =273, .etc.

It would be illogical to refer to the point in a binary fraction as a
‘decimal point’ because the word decimal implies the base ten. We
will call it a binary point. Table 1.5 shows some binary fractions
with corresponding powers of two and denary equivalents.

Table 1.5

Binary fraction 0.1 0.01 0.001 0.0001
Power of two -1 -2 -3 -4
Denary 0.5 0.25 0.125 0.0625

Notice that a bit placed a given number of places after the binary
point represents a much larger number than a denary digit the same
number of places after the decimal point. This is because a given
negative power of two represents a much larger number than the
same negative power of ten. Two important consequences of this
affect the accuracy to which numbers can be stored in a computer.

(1) Many binary places are needed to obtain high accuracy.
(2) Some denary fractions cannot be represented exactly in a
finite number of bits.

Exercise 1.4 What is the largest denary (a) integer, and (b)
fraction which can be represented in binary in eight bits?
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Conversion of compound
denary numbers to binary
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To convert a compound binary number to denary, simply add up
all the powers of two as for integers, but remember that bits after
the binary point represent negative powers of two.

Example 1.2 Convert to denary, (a) 0.11, (b) 101.01, (c) 11.101.

Answers (a) 0.11 =2-142-2
=¥+ Y =% or 0.75
(b) 101.01 =22+4+204+2-2
=4+1+Y%=5% or 5.25
(c) 11.101=21+2042-142-3
=2+1+%+ % =3% or 3.625

Exercise 1.5 Convert the following to denary, (a) 10.11, (b)
11.1111, (c) 110.0111, (d) 1001.1001.

To convert compound denary numbers to binary we can use either
method 1 or a modified form of method 2 as given for integers. In
both cases it is best to treat the integral and fractional parts
separately.

Example 1.3 Convert 7.8125 to binary.

Answer The integer 7 converts to binary 111. We use method 1 to
convert the fraction as follows:

Remainder Power of two Subtract Binary
0.8125 2-1=0.5 yes 1
0.3125 2-2=0.25 yes 1
0.0625 273=0.125 no 0
0.0625 2-4=0.0625 yes 1

0.0 (when we get zero remainder the fraction is exact)

Therefore 7.8125=111.1101 in binary.

If the denary fraction is not equivalent to an exact binary
fraction then the process of subtracting ever decreasing powers of
two will go on indefinitely. We have to decide how many binary
places we need, work the answer out to one extra place, and round
up or down according to whether the extra digit is 1 or 0.

Using method 2, conversion of a fraction is accomplished by
successive multiplication by two.

Example 1.4 Convert 0.875 to binary.

Answer The ‘carry’ (1 or 0) after each multiplication is written
apart from the rest of the work. Only the fraction is multiplied at
each stage. The binary fraction is read off from the top of the carry
column.
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Representation of negative
numbers

Sign and magnitude

Fraction Carry
0.875%x2=1.750 1
0.750x2=1.5 1
0.5 x2=1.0 1

0 (Again zero remainder indicates an exact fraction.)

Therefore 0.875 =binary 0.111.

Example 1.5 Convert 9.5627 to binary.

Answer The integer 9 converts to 1001.

Fraction Carry

0.5627x2=1.1254
0.1254x2=0.2508
0.2508 x 2=0.5016
0.5016 x 2=1.0032
0.0032x2=...etc.

—_—0 O —

By inspection we can see that 0.0032 will have to be multiplied by
two many times before there is another carry, so we end the
calculation at this point, but note that the fraction is not exact in
binary.

Therefore 9.5627 = binary 1001.1001.

A computer must handle both positive and negative quantities, i.e.
it must be able to represent the sign of the number as well as the
number itself. There are three ways to do this,

(1) Sign and magnitude.
(2) 1’s complement.
(3) 2’s complement.

In this notation the first bit is taken to indicate the sign. By
convention 0 is taken to indicate a positive, and 1 to indicate a
negative number. Thus 0101 is +5, and 1011 is—3. All the
numbers which can be represented in three bits in sign and
magnitude are set out in table 1.6.

Table 1.6
Negative numbers Positive numbers
Binary Denary Binary Denary
100 -0 000 0
101 -1 001 1
110 -2 010 2
111 -3 011 3




1’s complement

Binary addition

Binary arithmetic 7

One of the disadvantages of sign and magnitude notation is that
there are two ways of writing zero; 100 = — 0 is, of course, identical
to 000 = 0. Secondly, instead of the expected 23 = 8 numbers, we can
only represent seven different numbers in three bits. Even more
serious from a mathematical viewpoint is the fact that if a negative
number is added to its positive counterpart the result is not zero.
Sign and magnitude is also more complex to implement in
hardware than other notations, but it has some advantages in
circuits for multiplication and division.

Exercise 1.6

(a) Write down all the numbers which can be represented in sign
and magnitude using four bits.

(b) Convert the following sign and magnitude numbers to
denary, (i) 10011, (ii) 11111, (iii) 01111, (iv) 10000.

(c) How many different numbers can be represented in sign and
magnitude using five bits?

The complement of 0 is 1, and the complement of 1 is 0. To convert
a positive binary number to its 1’s complement, or negative form,
simply complement each bit. Table 1.7 shows all the numbers
which can be represented in 1’s complement using three bits.

Table 1.7

Binary Denary

100 -3
101 —2
110 -1
111 -0
0
1
2
3

000
001
010
011

Notice that again there are two ways of writing zero. However,
1’s complement numbers when added to their inverses do at least
give a result of zero (or 111= —0). Before we examine the
2’s complement we need to do some binary addition.

Exercise 1.7 Write down all the numbers which can be
represented in 1’s complement notation using four bits.

We state four basic rules,

(1) 0+0=0
(2 0+1=1
(3) 1+0=1

(4 1+1=0, and carry 1.
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Example 1.6

1001
+ 0101

= 1110

Example 1.7

1011
+ 0111
=10010

In example 1.7 there were three 1’s to be added in the second
column due to the carry from column one. When three or more
binary numbers are to be added it can be a problem to decide which
column should receive the carry. There is a fairly simple solution to
this problem. First count the number of ones which occur in the
column to be added; then express this number in binary. The least
significant bit of this number is the sum bit, to be entered in the
column being added; the other bits indicate which column(s) are to
receive a carry. This procedure works for any number of bits, but
in practice machines add numbers in pairs so there are never more
than three bits to be added, two bits from the numbers to be added
and one carry bit. Written as two-bit binary numbers the possible
sums are 00, 01, 10 and 11, and in each of these the most significant
bit is the carry and the least significant bit is the sum.

Example 1.8

111011
+ 001111

=1001010
In table 1.8 the ‘partial sums’, i.e. the results of adding each

individual column are written as two-bit numbers to indicate the
sum and carry.

Table 1.8

Column Partial sum Carry Sum
0 10 1 0

1 11 1 1

2 10 1 0

3 11 1 1

4 10 1 0

5 10 1 0

6 01 0 1

Exercise 1.8 Convert to binary and add (a) 14+9, (b) 7+9, (¢)
15+15, (d) 31+19.
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A disadvantage of both the previous forms of negative numbers is
that they do not provide a true additive inverse of a positive
number. Let x be any positive number. We define the additive
inverse of x to be a number y, such that x+y=0. In denary
arithmetic the additive inverse of x is of course —x, since
x+(—x)=0. We need a method of representing — x in a machine in
such a way that this property holds for all numbers, x.

We will first define the 2’s complement of a binary number and
then show that it is the additive inverse. The rule is simple; take the
1’s complement and add 1.

Example 1.9 Find the 2’s complement of 0111.

Answer 1’s complement of 0111=1000. Add 1 to get 1001.
Check answer, 1001
+0111
=0000
(the carry from bit four is ignored).

It is important to decide at the start how many bits are to be used
and to keep this fixed. In practice the number of bits is fixed by the
particular machine in use. All the numbers which can be written in
four bits using 2’s complement are shown in table 1.9.

Table 1.9

Negative Positive
Denary Binary Denary Binary
-8 1000
-7 1001 +7 0111
-6 1010 +6 0110
-5 1011 +5 0101
-4 1100 +4 0100
-3 1101 +3 0011
-2 1110 +2 0010
-1 1111 +1 0001

0 0000

Note (i) there is no additive inverse for — 8.
(ii) we can write 24=16 different
numbers in four bits.

Exercise 1.9 Write down the 2’s complement form of all the
numbers that can be written in five bits. Which of these does not
have an additive inverse?

Addition of positive numbers is the same in all three notations, and
follows the rules already outlined. A point to note is that any carry
or ‘overflow’ from the most significant bit indicates an error,
which is one of the reasons why we earlier insisted on writing, for
example, 00011 and not simply 11 when using five bits.



