Carlos Martin-Vide
Giancarlo Mauri
Gheorghe Paun
Grzegorz Rozenberg
Arto Salomaa (Eds.)

Membrane
Computing

International Workshop, WMC 2003
Tarragona, Spain, July 2003
Revised Papers

o
oM
(@)
N
e
O
=
e

(’;i%’ Springer

Carlos Martin-Vide Giancarlo Mauri
Gheorghe Pdun Grzegorz Rozenberg
Arto Salomaa (Eds.)

Membrane
Computing

International Workshop, WMC 2003
Tarragona, Spain, July 17-22, 2003
Revised Papers

Springer

Volume Editors

Carlos Martin-Vide

Rovira i Virgili University

PI. Imperial Tarraco 1, 43005 Tarragona, Spain
E-mail: cmv @astor.urv.es

Giancarlo Mauri

Universita degli Studi di Milano-Bicocca

Dipartimento di Informatica, Sistemistica e Comunicazione
Via Bicocca degli Arcimboldi 8, 20136 Milano, Italy
E-mail: mauri @disco.unimib.it

Gheorghe Piun

Institute of Mathematics of the Romanian Academy

P.O. Box 1-764, 70700 Bucuresti, Romania

and

Rovira i Virgili University, Pl. Imperial Tarraco 1, 43005 Tarragona, Spain
E-mail: gp@astor.urv.es

Grzegorz Rozenberg

Leiden University, Leiden Center of Advanced Computer Science (LIACS)
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

E-mail: rozenber @liacs.nl

Arto Salomaa

Turku Centre for Computer Science, TUCS
Leminkiisenkatu 14, 20520 Turku, Finland
E-mail: asalomaa@cs.utu.fi

Cataloging-in-Publication Data applied for
A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): F.1, F.4, 16, 1.3

ISSN 0302-9743
ISBN 3-540-20895-X Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permiSsion for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Protago-TeX-Production GmbH
Printed on acid-free paper SPIN: 10981757 06/3142 543210

Lecture Notes in Computer Science 2933
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo

Preface

This volume is based on papers presented at the Workshop on Membrane
Computing, WMC 2003, which took place in Tarragona, Spain, in the pe-
riod July 17-July 22, 2003. This was the Fourth Annyal Membrane Computing
Workshop, and the first one held outside Romania. The first three meetings were
organized in Curtea de Arges, Romania — they took place in August 2000 (with
the proceedings published in Lecture Notes in Computer Science, Vol. 2235),
in August 2001 (with a selection of papers published as a special issue of Fun-
damenta Informaticae, Vol. 49, Nos. 1-3, 2002), and in August 2002 (with the
proceedings published in Lecture Notes in Computer Science, Vol. 2597).

The 2003 workshop was the second workshop of the Molecular Computing
Network (MolCoNet) funded by the EU Commission in the Fifth Framework
Program Information Society Technologies (project number IST—2001-32008).
The preproceedings of WMC 2003 were published as Technical Report 28/03 of
the Research Group on Mathematical Linguistics from Rovira i Virgili University,
Tarragona, and they were available during the workshop.

The current volume contains only a selection of the papers from the pre-
proceedings. Moreover, the selected papers have been significantly modified/
improved according to the really vivid discussions that took place during the
workshop — all the selected papers were additionally refereed. The papers in
the volume cover all the main directions of research in membrane computing,
ranging from topics in mathematics and theoretical computer science, to (po-
tential) applications in biology, sorting, ranking, linguistics, and computer gra-
phics. Several implementations/simulations on computers, computer networks,
or electronic reconfigurable hardware are also presented. Thus, the volume is
a faithful illustration of the current state of research in membrane computing
(a good source of information about membrane computing is the Web page
http://psystems.disco.unimib.it).

The workshop was organized by the Research Group on Mathematical Lingui-
stics from Rovira i Virgili University, Tarragona, Spain, under the auspices of the
European Molecular Computing Consortium (EMCC). The program committee
consisted of Carlos Martin-Vide (Tarragona, Spain), Giancarlo Mauri (Milan,
Italy), Gheorghe Piun (Bucharest, Romania, and Tarragona, Spain), Grzegorz
Rozenberg (Leiden, The Netherlands, and Boulder, Colorado, USA), and Arto
Salomaa (Turku, Finland).

The editors are indebted to the contributors and to Springer-Verlag for the
efficient cooperation in the timely production of this volume.

VI Preface

The workshop received financial support from a number of sources: MolCoNet
Project IST-2001-32008 funded by the European Union, Project TIC2002-04220-
C03-02 funded by the Spanish Ministry of Science and Technology, and the
Research Group on Mathematical Linguistics of Rovira i Virgili University.

November 2003 Carlos Martin-Vide
Giancarlo Mauri

Gheorghe Paun

Grzegorz Rozenberg

Arto Salomaa

Table of Contents

Proton Pumping P Systems oot 1
Artiom Alhazov, Matteo Cavaliere

A Binary Data Structure for Membrane Processors:

Connectivity Arrays..........covuenenon.. O 19
Fernando Arroyo, Juan Castellanos, Carmen Luengo,
Luis F. Mingo

Parsing with Active P Automata. e 31
Gemma Bel-Enguiz, Radu_Gramatovici

Universality of Minimal Symport/Antiport: Five Membranes Suffice 43
Francesco Bernardini, Andrei Pdun

Collapsing Hierarchies of Parallel Rewriting P Systems without

Target Conflictsvvviitin it e e e 55
Daniela Besozzi, Giancarlo Mauri, Gyorgy Vaszil,
Claudio Zandron

Evolution and Observation: A New Way to Look
at Membrane Systemsouuriiit i e 70
Matteo Cavaliere, Peter Leupold

Tiling Rectangular Pictures with P Systems 88
Rodica Ceterchi, Radu Gramatovici, Natasa Jonoska

Simulating Boolean Circuits with P Systems. 104
Rodica Ceterchi, Dragos Sburlan

P Systems Running on a Cluster of Computers 123
Gabriel Ciobanu, Wenyuan Guo

Implementing in Prolog an Effective Cellular Solution to the

Knapsack Problem i 140
Andrés Corddn-Franco, Miguel A. Gutiérrez-Naranjo,
Mario J. Pérez-Jiménez, Agustin Riscos-Nurez,
Fernando Sancho-Caparrini

On the Dynamics of PB Systems: A Petri Net View 153
Silvano Dal Zilio, Enrico Formenti

P Systems Generating Hexagonal Picture Languages 168
K.S. Dersanambika, Kamala Krithivasan, K.G. Subramanian

VIII Table of Contents

A Membrane System for the Leukocyte Selective Recruitment
Giuditta Franco, Vincenzo Manca

P Systems with Cutting/Recombination Rules Assigned
to Membranes

Franziska Freund, Rudolf Freund, Marion Oswald,
Maurice Margenstern, Yurii Rogozhin, Sergey Verlan

w-P Automata with Communication Rules
Rudolf Freund, Marion Oswald, Ludwig Staiger

The Number of Membranes Matterst enunn.n.
Oscar H. Ibarra

An Agent-Based Behavioural Model of Monomorium

Pharaonis Coloniesoviiuiiiiiiiii
Duncan Jackson, Marian Gheorghe, Mike Holcombe,
Francesco Bernardini

Maurice Margenstern

A Linear-Time Solution to the Knapsack Problem Using P Systems
with Active Membranes.oviiritiiniiin i,
Mario J. Pérez-Jiménez, Agustin Riscos-Nuriez

A Reconfigurable Hardware Membrane System
Biljana Petreska, Christof Teuscher

P Systems and Petri Netsot
Zhengwei Qi, Jinyuan You, Hongyan Mao

Simulation of Mobile Ambients by P Systems. Part 1
Vladimir Rogozhin, Elena Boian

Computing Partial Recursive Fufictions by Traugsition P Systems........
Alvaro Romero-Jiménez, Mario J. Pérez-Jiménez

P Systems with External Input and Learhing Strategies................
José M. Sempere

A Distributed Simulation of Transition P Systems
Apostolos Syropoulos, Eleftherios G. Mamatas, Peter C. Allilomes,
Konstantinos T. Setiriades

About Splicing P Systems with Immediate Communication
and Non-extended Splicing P Systems
Sergey Verlan

Author Index

Proton Pumping P Systems

Artiom Alhazov!'2* and Matteo Cavaliere!**

! Research Group on Mathematical Linguistics
Rovira i Virgili University
Pl. Imperial Tarraco 1, 43005 Tarragon, Spain
{artiome.alhazov, matteo.cavaliere}Qestudiants.urv.es
2 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Str. Academiei 5, Chigindu, MD 2028, Moldova
artiom@math.md

”

Abstract. We propose here a (biologically inspired) model of P sys-
tem called proton pumping P systemn that is a special case of evolution—
communication P system. In cell biology there are transport mechanisms,
involving protons. We generalize this idea by considering a few differ-
ent types of protons. A proton pumping P system is, essentially, an
evolution—communication P system where a special subset of symbol-
objects (called protons) is used. In such a system we have simple evolu-
tion rules (classical evolution rules without target indications), symport
and antiport rules that exchange some objects (among them, possibly,
other protons) for a proton; taking inspiration from biology, this partic-
ular type of antiports is often called proton pumping rules.

We show that, as expected, the new model is universal, using non-
cooperative rules, symport and antiport rules of weight one, and enough
types of protons available for the computation. If we decrease the number
of types of protons to one or two, then the model is at least as powerful
as ETOL system, provided that (total) weak or strong priority of antiport
rules over symport and evolution rules are used.

Finally, we consider some descriptional complezity measures (again, in-
spired from biology) for the newly introduced model.

1 Introduction

In this paper we investigate proton pumping P systems. They are evolution—
communication P systems, [3], with some restrictions inspired by the biology (in
what follows we refer to [5] for the elements of membrane computing, to [1] and
[6] for the elements related to cellular biology).

* This author’s work was supported by the research grant 2001CAJAL-BURV4 from
Rovira i Virgili University.

** This author’s work was supported by the Spanish Ministry of Culture, Education
and Sport under the Programa Nacional de Formacién de Profesorado Universitario
(FPU)

C. Martin-Vide et al. (Eds.): WMC 2003, LNCS 2933, pp. 1-18, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 A. Alhazov and M. Cavaliere

We recall that in the evolution—communication model the computation con-
sists of two actions: the evolution of the symbol-objects (application of simple
rewriting rules) and the communication between the regions (application of sym-
port/antiport rules).

It has been shown in [2] that evolution-communication P systems are uni-
versal, using two membranes, non-cooperative evolution rules and symport and
antiport rules of weight one.

The proton pumping model is obtained adding a biological restriction to
the evolution-communication model and in particular over the antiport rules.
Considering that, in many bacteria, the only antiports available are those that
can exchange a proton with some chemical objects, a natural step is to add
such restrictions to the model. Therefore, a proton pumping P system is an
evolution—communication P system with a set of special objects called protons
that are never created and never destroyed and where only antiports that can
exchange some symbol-objects (also protons among them) for a single proton
are admitted (inspired by biology, we call such antiport rules proton pumping
rules).

The similarity between the catalyst objects and the protons should be noticed.
In both cases such special objects are never created and never destroyed; while
catalysts are used to help some evolution rule to be applied, the protons are used
to help some communication rules to be applied.

We show that the proton pumping model is universal, providing that it can
use sufficient types of different protons during the computation. The proof is
made, again, using the simulation of programmed grammars with appearance
checking as in [2].

Moreover we show that, when one can use only one or two types of different
protons (and this is the case in biology) then the proton pumping model is at
least as powerful as ETOL system, but using (total) weak or strong priority of
antiport rules over symport and evolution rules.

Finally, inspired from the fact that in biology the possible different types of
antiports and symports used are limited (actually there is a constant number of
them), we have studied some descriptional complezity measures of the systems
considered. ’ -

2 Definitions

We start by recalling from (3] the definition of an EC P system. It is given by
the alphabet, the membrane structure, the multisets of symbol-objects in each
region, the evolution rufes and symport/antiport rules as formalized below.

Definition 1. An evolution—communication P system (in short, an EC P sys-
tem), of degree m > 1, is defined as

II = (O,N’w07w1aw2""»wm,Rlv'")R7n1R17"'7Rm7i0)7

where:

Proton Pumping P Systems 3

|

O is the alphabet of objects;

— W s a membrane structure with m membranes injectively labeled
with 1,2,-+-,m;

— w; are strings which represent multisets over O associated with
regions 1,2,-+-,m of u (wg represents the environment);

— R;, 1 <i < m, are finite sets of simple evolution rules over O; R; is asso-
ciated with the region i of u; a simple evolution ryle is of the form u — v,
where w and v are strings over the alphabet O,

— R;, 1 < i < m, are finite sets of symport/antiport rules over O; R; is
associated with the membrane i of p;

— i, € {0,1,2,---,m} is the output region; if i, = 0, then it is the environment,

otherwise i, is a label of some membrane of .

The basic model assumes that all rules are applied in a nondeterministic,
maximally parallel way and that there is no-priority among the evolution and
communication rules. The evolutive approach and the communicative approach
were also proposed, as having (strong) priority of evolution rules and of commu-
nicative rules, respectively.

The following notation is used

NECP,,(i,j,a),a € {ncoo, coo} U {caty | k > 0}
(PsECP,(i,j,a),a € {ncoo, coo} U {cati | k > 0})

to denote the family of sets of natural numbers (the family of sets of vectors of
natural numbers) generated by EC P systems with at most m membranes (as
usually, m = * if such a number is unbounded), using symport rules of weight
at most 1, antiport rules of weight at most j, and evolution rules that can be
cooperative (coo), non-cooperative (ncoo), or catalytic (caty), using at most k
catalysts.

Now we are ready to give the definition of a proton pumping P system.

Definition 2. A proton pumping P system of degree m > 1 is defined as
= (O,P,[,L,’UI(),’UI],"',’UJm,R],"',Rfm,Rll,"',R;n, ,1,7"'7R:-:ni0)1 (1)

where (O’yﬂwval:" '1wm)R1," 'aRva’l UR{{ = Rl)' a 7R;n, UR;;L = Rn’hio)
is an evolution-communication P system, P C O is the set of protons, R} are
the sets of symport rules and R} are the sets of antiport rules (proton pumping
rules) of the form (x,out; p,in) or (p,out;z,in) where z € O" and p € P.
Every evolution rule is of the form u — v, where u € (O — P)*,v € (O — P)*.

The computation of a proton pumping P system evolves like in the case of an
evolution-communication P system. The m-tuple of multisets of objects present
at any moment in the regions of IT represents the configuration of the system at
that moment (the m-tuple (wy, -, w,,) is the initial configuration). A transi-
tion between configurations is governed by the mixed application of the evolution
rules and of the symport/antiport rules. All objects which can be the “subject”

4 A. Alhazov and M. Cavaliere

of the rules from the sets Ri,R;-,R;', 1<i<m1 < j < m, have to evolve
by such rules. As usual, the rules from R; are applied to objects in region 4
and the rules from R, and R} govern the communication of objects through
membrane i. There is no difference between evolution rules and communica-
tion rules (symports and proton pumping rules): they are chosen and applied in
the non-deterministic maximally parallel manner. The system continues parallel
steps until there remain no applicable rules (evolution rules or symport/antiport
rules) in any region of II. Then the system halts, and we consider the multi-
plicities of objects contained in the output region i,, at the moment when the
system halts, as the result of the computation of II. The set of all vectors of
natural numbers computed in this way is denoted by Ps(II). Later we consider
other ways to define a computation where we introduce some kind of priority
among the rules involved.
We use the following notations

PsProPk (i,5,a),a € {ncoo, coo} U {caty, | k > 0},

to denote the family of sets of vectors of natural numbers) generated by a proton
pumping P systems with at most m membranes (as usually, m = * if such a
number is unbounded), & different types of protons (i.e., k is the cardinality of
the set P), using symport rules of weight at most 4, antiport rules of weight
at most j, and evolution rules that can be cooperative (coo), non-cooperative
(ncoo), or catalytic (caty), using at most k catalysts.

3 Variants: Weak/Strong Priority of (Proton) Pumping

After we have introduced the basic model of proton pumping P systems, we
define here two basic variants, derived, to some extent, from biology, and give
the notions of weak and strong priority as presented in [5].

The first variant is with weak priority of proton pumping, where a weak
priority of proton pumping rules over other kinds of rules is assumed. In this
case, weak priority means that in the process of assigning rules to objects, first
the proton pumping rules are assjgned in a nondeterministic, maximally parallel
manner, and then the-other rules are assigned to the remaining objects, again
nondeterministically and in the maximally parallel way.

This is different from the strong priorities, as usually considered in P systems,
because the rules with a lower priority, can be also applied in the same step as
the proton pumping rules, if there are enough objects for them.

This differs also from the usually considered P systems with priorities, be-
cause here the priorities are tofal: they are specified as priorities of (all) proton
pumping rules over (allY rewriting and symport rules, rather than between indi-
vidual rules.

The second variant proposed is with strong priority of pumping. In this case
the total strong priority is introduced in the following sense: (all) antiport rules
associated to a membrane have strong priorities over (all) rewriting rules, asso-
ciated to both regions adjacent to the membrane, and over (all) symport rules,
moving objects from either region adjacent to the membrane.

Proton Pumping P Systems 5

In other words this means that if a pumping rule is applied in some membrane
then it blocks all the other evolution and symport rules that could take objects
from the two regions where the proton pumping rule chooses its objects.

In case of the weak priority and strong priority variants we use the notation:

PsProPk (i, j,a, wpp), a € {ncoo, coo} U {caty | k > 0},
[PsProPk (i, j,a, spp), a € {ncoo, coo} U {cati | k > 0}]

to denote the family of sets of vectors of natuyral numbers generated by proton
pumping P systems with at most m membranes (m = * if such a number is
unbounded), at most k different types of protons, symport rules of weight at
most %, antiport rules of weight at most j, and evolution rules that can be
cooperative (coo), non-cooperative (ncoo), or catalytic (caty) with at most k
catalysts and weak [strong] pumping priority.

In what follows we only take in considerations proton pumping P systems
with non-cooperative evolution rules, in the basic model and in the weak and
strong priority variants. Moreover, it is known that, in reality, the possible num-
ber of different types of different antiport, symport and evolution rules used by
some biological cell is limited by a constant (a fixed number of transport mecha-
nisms is, for example, available in many bacteria); for this reason we think that it
is useful to observe some of the biological descriptional complexity parameters of
the systems considered. In particular, we will be interested in the total number
of antiport, symport and evolution rules used by a proton pumping system. A
detailed survey of these types of results obtained in this paper can be found in
the Appendix.

Now we need to recall some preliminaries concepts and some notations. First,
we introduce a useful normal form for ETOL systems.

Lemma 1. For each L € ETOL there is an extended tabled Lindenmayer system
G = (V,T,H,wo) with 2 tables (H = {h1,h2}) generating L, such that the
terminals are only trivially rewritten: for each a € T if (a — a) € hy U hg, then
a=a.

Proof. Let L € ETOL. Then, there exists an ETOL system Gy such that
L(Gy) = L. For Gy, an equivalent ETOL system G; can be constructed, where
all terminals are only trivially rewritten. For G1, an equivalent ETOL system G,
containing only two tables, can be constructed. Moreover, the transformation
can be performed only on the nonterminals, leaving terminals as they are. O

We also give a slightly modified definition of programmed grammars with
appearance checking, similar to the one used in [4]:

Definition 3. A programmed grammar (with appearance checking) is a system
G = (N,T, S, P), where N is a finite set of nonterminal symbols, T is a finite
set of terminal symbols (NNT =0), S € N is the start symbol and P is a finite
set of tuples of the form (v : a — B,0(r),©(r)), where v is a label of a rewriting
rule a — £,

Lab(P) = {r | (r: a— B,0(r), p(r))}

6 A. Alhazov and M. Cavaliere

is the set of labels of rules in P, and o, : Lab(P) — 2L9%(P) o(r), o(r) are
called the success field and the failure field of r, respectively.

Definition 4. The language generated by a programmed grammar.

Let (r: a — B,0(r),p(r)) € P. We say that w' is derived from w in one step by
applying or skipping the rule with label r (w =, w') if either w = zay, W' = zfy
orw=w', @ ¢ Sub(w). In the derivation, pairs of label and word are considered:
(r,w) = (r',w') if w =, w' and either a € Sub(w) andr’ € o(r), or a ¢ Sub(w)
and v’ € @(r). In other words, if o is present in the sentential form, then the
rule is used and the next rule to be applied is chosen from those with label in
o(r), otherwise, the sentential form remains unchanged and we choose the next
rule from the rules labeled by some element of o(r). Let =* be a reflexive and
transitive closure of =. The language generated by a programmed grammar G is
LG)={zeT*|(r,S) =* (r,v),w = z}.

Remark 1. In this definition it is natural to have w’ =,+ z rather than (r',vw’) =
(r”,z) because we need not to have the next rule after we have obtained the
terminal string. If w’ = udv, u,v € T*, A€ N, (r' : A = y,0(r'),p(r")) €
P, and (r,S) =* (r',w’), then we say that z = uyv belongs to the language
L(G), even if o(r') = 0. This definition is family-equivalent to the one with
(r',w') = (r",z) because for any such grammar we could add a dummy rule
(r: S —S,0,0) to P, and add r to the success and failure fields of all terminal
rules without changing the language. We take advantage of this fact in the
universality proof.

If o(r) = 0 for each r € Lab(P), then the grammar is said to be without
appearance checking. If o(r) = ¢(r) for each r € Lab(P), then the grammar is
said to be with unconditional transfer: in such grammars the next rule is chosen
irrespective of whether the current rule can be effectively used or not).

Note 1. From now on by programmed grammars we will assume programmed
grammars with appearance checking with context-free rules.

Remark 2. In the universality proof the programmed grammars with appearance
checking will be simulated, considering pairs

<S = ’LUl,pO), Y (wm7pmil'>, (wm+1 = I7pm) for
(p1,S =w1) = .= (Pm)Wm), Wm =p,, W41 =T .

Here, the rule is chosefi during the step when it is applied/skipped, rather than
one step before. pg is a new symbol - a starting point of the control sequence.

During the proof of all the theorems presented in this paper, we will indicate
with the label (nz) the rule (evolution or antiport/symport rule) present in
equation n and corresponding to the alphabetical place z (for example: (12b)
means “the second rule in equation (12)”).

Proton Pumping P Systems 7

4 Universality of Proton Pumping P Systems

In this section we give a universality theorem for proton pumping P systems.
We prove that such systems are universal when they can use sufficient types
of protons during the computation. The proof is based on the simulation of
programmed grammars with appearance checking. We recall the following lemma
(Theorem 1.2.5, [4]):

e

Lemma 2. The programmed grammars with appearance checking generate ez-
actly the family of recursively enumerable languages.

Finally we recall that the notation Perm(z) indicates the set of all strings that
can be obtained as a permutation‘of the string z.

Theorem 1. PsProP;(1,1,ncoo) = PsRE.

Proof. Let L € RE. Then there exists a programmed grammar with appearance
checking G = (N, T, P,S) generating L, where Lab(P) = {i | 1 <1 < m} and
N = {X; | 1 <i < n}. We will need the following notations: N’ = N U {h},
N'={X | X € X'}. We now define the morphism v : (N'UT)* — (N'UT)*
by v(z) =%,z € N’, and v(z) =z, z € T. Let us construct the P system
I = (O, P, i, &, w1, wa, w3, Ry, Ry, R3, R, Ry, Ry, 0, Ry, Ry, 0),
P ={pi,q | i € Lab(P)} U{r; | X; € N}U{po,c, F'},
N'={X|X eN'},
C={b,d? |ie Lab(P),1<;j<5}uU{l,g,H},
M={t;| -2<j<5}U{#K,s}
A= {ej,e; | X; € N}U{f; |1<35 <5},
O=PUTUN' UN'UNUCUAUM,
m= [1[2[3]3}2]1’
wy = Fsrire -1y,
wy = pocK,
w3 = Shp1ipz - Pmq192* * Gm,
Ri = {X = v@)d | (i: (X = 2,0(0),¢()) € P}
U (R = Rbe;fs | (i (X = 2,0(0), (1)) € P}
U{X > #|X € NYU{f; > fi-1|2<5 <5}
U {6 = #,d® — # | i € Lab(P)} U {# — #}, @)
Ro={X - Xts | X e N'}U{t; > tj_1|-1<j <5}
U {6 = b1g,d® — dPlg | i € Lab(P)}
U {p% - b7V 49 5 39V | i e Lab(P),2 < j < 4}
U{e; = €| X; € N}, 3)

8 A. Alhazov and M. Cavaliere

R3={X—>X|XeN}u{g— HK - K}, (
Ry = {(a,out) |a € T}, (5)
R, = {(X,out),(X,in) | X € N'}U{(ej,in) | X; € N}, (6)
Ry = {(X,in) | X € N'}U{(g,in)}, (7)
Ry = {(pj,out; d” in), (pj, out; ;" in) | i € o(4)}

U {(g;,out; d§5’,m), (g5, out; bl(»5),in) i€ ()}

U {(po,out;dl(.s),in), (po, out; b§5’,m) | i € Lab(P)}

U {(l, out; p;,in) | j € Lab(P) U {0}}

U {(l, out; gj,in) | j € Lab(P)}

U {(€}, out;rj,in), (rj,0ut; f1,in) | X; € N}

U {(c, out; s,in), (s, out; F,in)}, (8)
Ry = {(X,out;c,in) | X € N'},

U {(pi, out; dEl),in), (s, out; bgl),in) | i € Lab(P)}

U {(H, out; p;,in) | i € Lab(P) U {0}}

U {(H, out;qi,in) | i € Lab(P)}

U {(Xj,out;rj,n), (r;,out; K,in) | X; € N}

U {(c, out;t_z,in), (X, out; F,in), (F,out; K,in)}. (9)

The system IT simulates the programmed grammar G (see also [2]) using the
following idea. The protons (p;, ¢;) serve the role of remembering the label of the
rule that has been previously applied (p;) or skipped (g;), appearance checking
(r;), po is the starting point of the control sequence, c is used to sequentialize
the application of the rules, and F' checks that all nonterminals were rewritten
at the end.

We also use objects associated with each terminal (T"), associated with each
non-terminal (N’), including also the rule application failure symbol (k), their
“first” versions (N7), their intermediate versions (N"), control sequence symbols
(b9 if the rule with label j was skipped and d{”’ if the rule with label j was
applied), appearance checking symbols (ej, €}). Objects f; are used to return
the appearance checking protons, [, g, H are.ysed to return the control sequence
proton, t; are delaying c for synchronization, K helps F' and r; to block the
computation, s is used to end the simulation of derivation, switching to checking
that no more nonterminals are in region 3, and # is the trap symbol.

In region 1 (the outer one) we“simulate the application of the context-free
rules of G, using simple evelution rules (2a), while the rules (8a-8f) enforce the
“control sequence”, i.e., transitions from an application of (or from the failure to
apply) a rule of G to the next one. During the simulation, the nonterminals to be
rewritten are brought into region 1 by rules (9a, 3a, 6a) and the result is returned
by rules (6b, 7a), except the terminal symbols, ejected into the environment
by (5). Rules (4a) remove the bars. The failure to apply a rule is simulated
by (2b). The appearance checking is enforced by the rules (6¢c, 3g, 8i, 9f). If

