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Preface

This volume contains the 14 contributed papers and the contribution of the
distinguished invited speaker Béla Bollobés presented at the 3rd Workshop on
Algorithms and Models for the Web-Graph (WAW 2004), held in Rome, Italy,
October 16, 2004, in conjunction with the 45th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2004).

The World Wide Web has become part of our everyday life and information
retrieval and data mining on the Web is now of enormous practical interest. Some
of the algorithms supporting these activities are based substantially on viewing
the Web as a graph, induced in various ways by links among pages, links among
hosts, or other similar networks.

The aim of the 2004 Workshop on Algorithms and Models for the Web-Graph
was to further the understanding of these Web-induced graphs, and stimulate
the development of high-performance algorithms and applications that use the
graph structure of the Web. The workshop was meant both to foster an exchange
of ideas among the diverse set of researchers already involved in this topic, and
to act as an introduction for the larger community to the state of the art in this
area.

This was the third edition of a very successful workshop on this topic,
WAW 2002 was held in Vancouver, Canada, in conjunction with the 43rd An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2002, and
WAW 2003 was held in Budapest, Hungary, in conjunction with the 12th Inter-
national World Wide Web Conference, WWW 2003. This was the first edition
of the workshop with formal proceedings.

The organizing committee of the workshop consisted of:

Andrei Broder IBM Research

Guido Caldarelli INFM, Italy

Ravi Kumar IBM Research

Stefano Leonardi University of Rome “La Sapienza”
Prabhakar Raghavan Verity Inc.

Papers were solicited in all areas of the study of Web graphs, including but
not limited to:

— Mathematical models, topology generators, and dynamic properties;

— Algorithms for analyzmg Web graphs and for computing graph propertles
at the Web scale;

— Application of Web graph algorithms to data mining and information re-
trieval;

— Clustering and visualization;

— Representation and compression;

— Graph-oriented statistical sampling of the Web;

— Empirical exploration techniques and practical systems issues.



VI Preface

The extended abstracts were read by at least three referees each, and evalu-
ated on their quality, originality, and relevance to the symposium. The program
committee selected 14 papers out of 31 submissions. The program committee
consisted of:

Dimitris Achlioptas Microsoft Research

Lada Adamic HP Labs

Jennifer Chayes Microsoft Research

Fan Chung Graham UC San Diego

Taher Haveliwala Stanford University and Google
Elias Koutsoupias Univ. of Athens

Ronny Lempel IBM Research

Stefano Leonardi (Chair) Univ. of Rome “La Sapienza”
Mark Manasse Microsoft Research

Kevin McCurley IBM Research

Dragomir Radev Univ. of Michigan

Sridhar Rajagopalan IBM Research

Oliver Riordan Cambridge University

D. Sivakumar IBM Research

Panayotis Tsaparas Univ. of Helsinki

Eli Upfal Brown University

Alessandro Vespignani Univ. of Paris Sud

WAW 2004, and in particular the invited lecture of Béla Bollobds, was gen-
erously supported by IBM. A special thanks is due to Andrei Broder for his
effort in disseminating the Call for Papers, to Ravi Kumar for handling the Web
site of the — Workshop, and to Debora Donato for her assistance in assembling
these proceedings. We hope that this volume offers the reader a representative
selection of some of the best current research in this area.

August 2004 Stefano Leonardi
Program Chair
WAW 2004
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The Phase Transition and Connectedness in
Uniformly Grown Random Graphs

Béla Bollobas!2* and Oliver Riordan?3

! Department of Mathematical Sciences, University of Memphis,
Memphis TN 38152, USA
2 Trinity College, Cambridge CB2 1TQ, UK
3 Royal Society Research Fellow, Department of Pure Mathematics and
Mathematical Statistics, University of Cambridge, UK

Abstract. We consider several families of random graphs that grow in
time by the addition of vertices and edges in some ‘uniform’ manner.
These families are natural starting points for modelling real-world net-
works that grow in time. Recently, it has been shown (heuristically and
rigorously) that such models undergo an ‘infinite-order phase transition’:
as the density parameter increases above a certain critical value, a ‘gi-
ant component’ emerges, but the speed of this emergence is extremely
slow. In this paper we shall present some of these results and investi-
gate the connection between the existence of a giant component and the
connectedness of the final infinite graph.

1 Introduction

Recently, there has been a lot of interest in modelling networks in the real world
by random graphs. Unlike classical random graphs, many (perhaps most) large
networks in the real world evolve in time; in fact they tend to grow in time
by the addition of new nodes and new connections. Real-world networks differ
from classical random graphs in other important ways (for example, they are
often ‘scale-free’, in the sense of having a power-law degree distribution), and,
of course, one cannot expect to model any particular network very accurately,
as the real mechanisms involved are not amenable to mathematical analysis.
Nevertheless, it is important to model these networks as well as one can, and
one general approach is to develop mathematical models for important general
features. These models should be simple enough that their properties can be
analyzed rigorously. Of course, such models will not be accurate for any given
network, but they will give insight into the behaviour of many networks.

One important property of real-world networks is their robustness, or re-
silience to random failures. There are many ways in which one might measure
robustness; perhaps the most common is to consider deleting edges or vertices

* Research supported by NSF grant ITR 0225610 and DARPA grant F33615-01-C-
1900.

S. Leonardi (Ed.): WAW 2004, LNCS 3243, pp. 1-18, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 B. Bollobés and O. Riordan

from the network at random, and ask whether the network fractures into ‘small’
pieces, or whether a ‘giant component’ remains, i.e., a component containing a
constant fraction of the initial graph. We shall describe a precise form of this
question below.

2 Models

The baseline that any new random graph model should initially be compared
with is, and will remain, the classical ‘uniform’ random graph models of Erdés
and Rényi, and Gilbert. Erdés and Rényi founded the theory of random graphs
in the late 1950s and early 1960s, setting out to investigate the properties of
a ‘typical’ graph with n vertices and M edges. Their random graph model,
G(n, M), introduced in [13], is defined as follows: given n > 2 and 0 < M <
N = (g), let G(n, M) be a graph on n labelled vertices (for example, on the
set [n] = {1,2,...,n}) with M edges, chosen uniformly at random from all ( AA//[)
such graphs.

Around the same time that Erd8s and Rényi introduced G(n, M), Gilbert [15]
introduced a closely related model, G(n,p). Again, G(n, p) is a random graph
on n labelled vertices, for example on the set [n]. The parameter p is between 0
and 1, and G(n, p) is defined by joining each pair {1, 5} C [n] with an edge with
probability p, independently of every other pair. For a wide range of the pa-
rameters, for many questions, there is essentially no difference between G (n, M)
and G(n,p), where p = M/N. Nowadays, G(n,p) is much more studied, as the
independence between edges makes it much easier to work with.

Although the definition of G(n, p) has a more probabilistic flavour than that
of G(n, M), it was Erdés and Rényi rather than Gilbert who pioneered the use of
probabilistic methods to study random graphs, and it is perhaps not surprising
that G(n,p) is often known as ‘the Erdés-Rényi random graph’. When studying
G(n,p), or G(n, M), one is almost always interested in properties that hold for
‘all typical’ graphs in the model. We say that an event holds with high probability
or whp, if it holds with probability tending to 1 as n, the number of vertices,
tends to infinity.

Perhaps the single most important result of Erdés and Rényi about random
graphs concerns the emergence of the giant component. Although they stated
this result for G(n, M), we shall state it for G(n,p); this is a context in which
the models are essentially interchangeable.

For z > 0 a constant let

© k-1
t(z) = % Z kT (re"z)k. (1)
k=1

Erdés and Rényi [14] proved the following result.

Theorem 1. Let x > 0 be a constant. If z < 1 then whp every component of
G(n,z/n) has order O(logn). If z > 1 then whp G(n,z/n) has a component
with (1 —t(z) +o(1))n = O(n) vertices, and all other components have O(logn)
vertices.
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In other words, there is a ‘phase transition’ at z = 1. This is closely related to
the robustness question described vaguely in the introduction, and to the perco-
lation phase transition in random subgraphs of a fixed graph. In this paper, we
shall often consider a random initial graph, and delete edges (or vertices) inde-
pendently, retaining each with some probability p, to obtain a random subgraph.
The question is, given the (random) initial graph on n vertices, for which values
of p does the random subgraph contain a giant component, i.e., a component
with ©(n) vertices? In the context of G(n,p), and in several of the examples
we consider, there is no need for this two step construction: if edges of G(n,p1)
are retained independently with probability ps, the result is exactly G(n, p1ps).
In these cases, the robustness question can be rephrased as follows: ‘for which
values of the edge density parameter is there (whp) a giant component?’ In the
case of G(n, p), the natural normalization is to write p = z/n and keep z fixed as
n varies. Thus we see that the classical result of Erdés and Rényi stated above,
is exactly a (the first) robustness result of this form.

When the giant component exists, one is often interested in its size, especially
near the phase transition. In principle, for G(n, p), the formula (1) above answers
this question. More usefully, at = 1 the right-derivative of ¢(x) is —2, so when
z = 1+ ¢, the limiting fraction (as n — oo with & > 0 fixed) of vertices in the
giant component is 2¢ 4 o(e).

2.1 The CHKNS Model

Many growing real-world networks have a number of direct connections that
grows roughly linearly with the number of nodes. From now on we shall use graph
theoretic terminology, so vertices and edges will correspond to nodes and direct
connections between pairs of nodes. (Here we consider undirected connections
only.) A very natural model for a growing graph which has on average a constant
number of edges per vertex (i.e., in the limit, a constant average degree) was
introduced by Callaway, Hopcroft, Kleinberg, Newman and Strogatz [9] in 2001.
The model is defined as follows: at each time step, a new vertex is added. Then,
with probability §, two vertices are chosen uniformly at random and joined by an
undirected edge. In [9] loops and multiple edges are allowed, although these turn
out to be essentially irrelevant. We shall write G(C'f )(5) for the n-vertex CHKNS
graph constructed with parameter §. Most of the time, we shall suppress the
dependence on n, writing G¢(6), to avoid cluttering the notation.

The question considered by Callaway et al in [9] is the following: as the
parameter ¢ is varied, when does G¢(8) contain a giant component, i.e., a com-
ponent containing order n vertices? In other words, what is the equivalent of
Theorem 1 for G¢(6)7? In [9], a heuristic argument is given that there is a phase
transition at 6 = 6. = 1/8, i.e., that for § < 1/8 there is no giant component,
while for 6 > 1/8 there is. Callaway et al also suggest that this phase transition
has a particularly interesting form: for § = 1/8+¢, they give numerical evidence
(based on integrating an equation, not simply simulating the graph) to sug-
gest that the average fraction of the vertices that lie in the giant component is a
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function fc(e) which has all derivatives zero at € = 0. Such a phase transition
is called an infinite-order transition.

In essence, the question of finding the critical probability for the existence
of a giant component in G¢(§) had been answered more than a decade before
Callaway et al posed the question. As we shall see in section 2.3, a question that
turns out to be essentially equivalent was posed by Dubins in 1984, answered
partially by Kalikow and Weiss [17] in 1988, and settled by Shepp [20] in 1989.

Dorogovtsev, Mendes and Samukhin [10] analyzed the CHKNS model in a
way that, while fairly mathematical, is still far from rigorous. Their methods
supported the conjecture of [9], suggesting that indeed the transition is at 0=
1/8, and that the phase transition has infinite order.

Before turning to comparison with other models, note that there is a natu-
ral slight simplification of the CHKNS model, suggested independently in [11]
and [3]. At each stage, instead of adding a single edge between a random pair of
vertices with probability 6, for each of the (Z) pairs of vertices, add an edge be-
tween them with probability §/ (';), independently of all other pairs. In this way,
the number of edges added in one step has essentially a Poisson distribution with
mean 6. In the long term, this will make very little difference to the behaviour of
the model. The key advantage is that, in the graph generated on n vertices, dif-
ferent edges are now present independently: more precisely, for {i, 5} # {¢', 7'},
whether there is an edge (or edges) between i and J is independent of whether
there is an edge (or edges) between i’ and j'. Note also that the expected number
of edges between ¢ and j, 1 <i < j <n, is exactly

B ()

k=j

2.2 The Uniformly Grown Random Graph

Although it is not our main focus here, perhaps the most studied growing-graph
model is the growth with preferential attachment ‘model’ of Barabasi and Albert,
introduced in [1]. The reason for the quotation marks is that the description given
by Barabési and Albert is incomplete, and also inconsistent, so their ‘model’ is
not a model in a mathematical sense. Roughly speaking, the Barab4si-Albert, or
BA, model is defined as follows: an integer parameter m is fixed, and the graph
grows by adding one vertex at a time, with each new vertex sending m edges
to old vertices, chosen with probabilities proportional to their degrees. (This is
known as the ‘preferential attachment rule’). To prove rigorous results, one must
first know exactly what model one is talking about, and this is the reason for
the introduction of the linearized chord diagram or LCD model in (6]. (See [6]
for a description of the problems with the BA model, and [4] for a detailed
discussion.) The LCD model is a precisely defined model (one of many) fitting
the rough description of Barabési and Albert. It also has an important extra
property: although defined as a growing graph process, with rules for how each
new vertex attaches to the old graph, it has an equivalent static description,
giving the whole n-vertex graph in one go. This makes it much easier to analyze.
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The main motivation of Barabasi and Albert in [1] was to provide a model ex-
plaining the power-law distribution of degrees seen in many real-world networks.
They show heuristically that their model does indeed have a power-law degree
distribution; this is proved rigorously for the LCD model in [8]. Barabdsi and
Albert note that their new model differs in two fundamental ways from classical
uniform models — growth in time, and the preferential attachment rule. They
ask whether both these differences are necessary to obtain power-law degree
distribution, leading naturally to the study of the following model.

Given an integer m, start with m vertices and no edges. At each time step,
add a new vertex to the graph, and join it to a set of m earlier vertices, chosen
uniformly at random from among all possible such sets. We shall call this the
growing m-out model, and write Gﬁlf), or simply G,,, for the n-vertex graph
obtained after n — m steps. Note that this is perhaps the most natural model
for a growing graph with (asymptotically) constant average degree.

Barabasi and Albert [1] considered G,, briefly, noting that it does not have
a power-law degree sequence. Turning to other properties of the BA or LCD
models, the question of robustness was considered rigorously in [5] (working
with the precisely defined LCD model). It turns out that the LCD model is in
some sense ‘infinitely robust’ in that there is no phase transition: for any p > 0,
if edges (or vertices) of the m > 2 LCD graph are retained independently with
probability p, there is a giant component, although it may be very small. (Its
size is linear in n, but the constant is extremely small when p is small.) Again,
it is natural to ask if this striking difference from classical random graphs is due
to growth or preferential attachment or both, providing another reason to study
the phase transition in growing models, and in particular in G,,. The answer
given in [5] is that growth alone is not enough. Much more precise results are
given in (7] and [19]; we return to this later.

Just as for the CHKNS model G¢(6), there is a natural modification to the
growing m-out model G,, that makes it easier to study. Instead of adding exactly
m edges from the new vertex, when adding the jth vertex, join it independently
to each of the j — 1 earlier vertices, joining it to each with probability m/(j —
1). Writing p instead of m, as there is now no reason for the parameter to
be an integer, one obtains a graph on n vertices in which edges are present
independently, and for 1 < i < j < n the probability that ij is an edge is

We call this graph the wuniformly grown random graph and denote it by
Ggl )(,u), or simply Gy (u). Note that the model makes perfect sense for p > 1,
but we should write min{x/(j — 1),1} in place of (3). It will turn out that the
interesting values of u are less than 1; also, the results we shall consider do not
depend on the presence or absence of the first few edges. Thus we shall not
bother with this detail. As we shall see later, and as one can guess by com-
paring (2) and (3), G¢(6) and Gy (u) will turn out to be closely related when
o~ 28.
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The modification described above is rather larger than that suggested for the
CHKNS model: it destroys the property that the graph is m-out, i.e., that each
vertex sends exactly m edges to earlier vertices. As in the CHKNS model edges
are always added between random vertices (rather than the new vertex and a
random old vertex), there is no corresponding property in the CHKNS model,
and the change to independence is a very small change indeed.

2.3 Dubins’ Model

In 1984, Dubins proposed a model for an infinite inhomogeneous random graph
Gp(A) (see [17,20]). This is the graph on the vertex set N = {152;:3; .2} in
which each edge ij is present independently, and the probability of the edge i7,
1<i<y,is 5
Rl (4)
J
where A > 0 is a real parameter. As before, if A > 2 we should write min{\/j,1}
above, but the interest is in smaller values of \, so we shall not bother. It will
come as no surprise that there is a strong connection between Gp()\) and the
finite graphs Gy (u) and G¢(8), when A ~ p ~ 26. Dubins asked the following
question: when A = 1, is the graph Gp()) almost surely connected?

At first sight, this question may seem rather strange. For one thing, infinite
random graphs are frequently not very interesting. For example, if we take a
fixed probability p, 0 < p < 1, and join each pair i, j € N independently with
probability p, then with probability 1 we get the infinite random graph R. As R
is not in fact a random object, and does not depend on p, probabilistic questions
about it do not make sense. In fact, R has (in some sense) no structure: for every
pair of finite disjoint sets U and W of vertices of R, there are infinitely many
other vertices v each of which is joined to every vertex in U and to no vertex
in W. Thus, R is trivially connected, having diameter 2. The infinite random
graph proposed by Dubins is a very different matter: its structure depends very
much on A, and there are many non-trivial questions one can ask about it, in
particular, whether it is connected.

Kalikow and Weiss [17] showed in 1988 that for A > 1 the graph Gp(A)
is connected (here and from now on, with probability 1 is to be understood),
using a very weak form of the classical result of Erdés and Rényi [14] given as
Theorem 1 above. They also showed that for A < 1/4, G p(A) is disconnected.
They conclude that ‘While we are fairly certain that % can be replaced by 1,
what happens at the critical value A\ = 1 remains for us a mystery.” It is clear
that there is some critical value \. (a priori, this could be zero or infinity) such
that for A > A, Gp()) is connected, while for A\ < Ae, Gp(A) is disconnected.
Dubins believed that this critical value is equal to 1.

In 1989, Shepp [20] showed that for A > 1/4 the graph Gp(A) is connected
(with probability 1), establishing that in fact A\, = 1 /4. He also showed that at
A =1/4, Gp()) is disconnected. A corresponding result for a generalization of
the model was proved by Durrett and Kesten [12] in 1990.
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3 Connections

It is clear that two of the models considered above are very closely related. In
defining the uniformly grown random graph, it makes very little difference if we
take 7 instead of j — 1 in (3) (this can actually be formalized, see [3]). After
making this change, the only difference between the uniformly grown random
graph Gy (p), p = A, and Dubins’ graph Gp(A) is that the former is finite and the

latter is infinite. In fact, Gp()) can be viewed as the limit of Gy (\) = Ggl)()\)
as n, the number of vertices, tends to infinity.

In many contexts the —1/n correction term in (2) also makes little difference.
Comparing (2) and (3), one might expect G¢(6) and Gy (p) to behave similarly
when p is (approximately) equal to 26. Again, this can be formalized; it was
shown by Bollobds, Janson and Riordan [3] that the thresholds for emergence of
the giant component in G¢ and Gy differ by a factor of exactly two, and that
the phase transition is infinite-order in one if and only if it is in the other.

The models we consider are related, but what about the questions? For G (6)
or Gy (u), we are interested in the question of when (i.e., for which values of the
edge-density parameter) there is a giant component. Dubins asked when Gp())
is connected. Translating to a finite context, the question of whether Gp()\) is
connected is the same as the following: is it true that any two vertices 7, j will
eventually become connected (meaning, joined by a path) if we run the process
Gy(A) for long enough? In other words, as n increases, does any fixed pair i,
j, of vertices eventually become connected? The giant component question can
be rephrased as the following: in the n-vertex graph Gy (), is the number of
connected pairs of order n?? These two questions are related, but the connection
is not obviously a very strong one. Indeed, a priori, it is possible that they could
have different answers either way round: it might be that any two vertices become
connected eventually, but not for a very long time, so the number of connected
pairs in the n-vertex graph grows, but very slowly. On the other hand, order
n? pairs could be connected, but there could be a few pairs that never become
connected. It is easy to construct models in which either of these possibilities
occurs.

It turns out, however, that in the context of uniformly grown graphs the
two questions discussed above are very closely related. Indeed, the methods of
Kalikow and Weiss [17] and Shepp [20] show that for A < 1/4, whp there is no
giant component in Gy(\), while for A > 1/4, whp there is. The latter result is
proved explicitly by Shepp, and then used to immediately deduce connectedness,
in the same way that Kalikow and Weiss [17] used the classical Erdés-Rényi giant
component result. Thus the question of where the phase transition (defined by
the emergence of a giant component) happens in the uniformly grown random
graph Gy () had already been answered in 1989 — the transition is at A, = 1/4.
Recently, Durrett [11] pointed out that the methods of Durrett and Kesten [12]
give a corresponding answer for the CHKNS model G¢(6). Alternatively, as
pointed out in (3], one can compare the models G¢(6) and Gy(\), A ~ 26,
directly: it is easy to show that the critical value 6. at which phase transition in



