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PREFACE

In January 1987 I gave the Milton Brockett Porter Lectures at Rice
University. This provided me with the opportunity of presenting, at some
length, the results on magnetic monopoles which Nigel Hitchin and I have
been investigating over the past few years. This book, written jointly, is an
expanded version of the lectures and it contains a full and detailed treat-
ment of the essentially new results. Although dependent on earlier work
by many authors we have endeavoured to make it more self-contained
by adding some introductory and background material.

Michael Atiyah
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INTRODUCTION

The purpose of this book is to apply geometrical methods to investigate
solutions of the non-linear system of hyperbolic equations which describe
the time evolution of non-abelian magnetic monopoles. The problem we
study is, in various respects, a somewhat simplified model but it retains
sufficient features to be physically interesting. It gives information about
the low-energy scattering of monopoles and it exhibits some new and
significant phenomena.

From a purely mathematical point of view our investigation should be
seen as a contribution to the area of “soliton” theory. In general a soliton
is a solution of some non-linear differential equation which behaves in
certain respects like a particle: it should be approximately localized in
space and should be “conserved” in collisions.

There is now a very extensive theory of solitons for one-dimensional
space, of which the prototype and best known example is the KdV equa-
tion [14]. These solitons have very remarkable properties and their evolu-
tion equations form an infinite-dimensional integrable Hamiltonian
system. Some of the key features of the theory are:

(1) there are explicit formulae describing the interaction of k solitons (for
any integer k),

(2) these formulae involve the theory of Riemann surfaces (or algebraic
curves),

(3) the inverse scattering method (associated to linear operators) is used to
construct the solutions,

(4) the scattering of solitons after a collision is essentially trivial (i.e.
velocities are unaffected).

Although the theory of the KdV equation is “exact” it should be re-
called that the KdV equation arises naturally as an approximation for
shallow waves in a channel. Thus the soliton features listed in (1) through
(4) are only an approximate description of the real physical situation.

The equations we shall be studying, governing the evolution of mono-
poles, will share some of the essential features (1), (2), (3) of the KdV
theory. On the other hand the scattering of monopoles after a collision
will be non-trivial in the sense that the velocities alter (i.e. there is “mo-
mentum transfer”). The monopole equations moreover take place in fully
3-dimensional space, and are correspondingly more complicated. The
analogy with KdV will be examined in detail in chapter 15.
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Our results will not give exact solutions but only an approximation
for small relative velocities. However, as we have pointed out, the KdV
theory is itself only an approximation to a more realistic model. From a
physical point of view there is no essential difference between an approxi-
mate solution to an exact equation and an exact solution to an approxi-
mate equation.

The concept of a magnetic monopole, as an isolated point-source of
magnetic charge, was introduced some 50 years ago by Dirac in a very
influential paper [ 13]. In Maxwell’s equations, electricity and magnetism
appear on an equal footing but whereas electric charges occur naturally,
magnetic charges or monopoles do not appear to do so. Nevertheless by
postulating their existence Dirac.was able to produce the only convincing
argument leading to the quantization of electric charge, namely the fact
that electric charges always appear in integer multiples of a fixed charge
(that of the electron). With the advent of non-abelian gauge theories, in
which the U(1) of Maxwell theory is enlarged to a non-abelian group such
as SU(2), it was soon realized by ‘t Hooft and Polyakov that one could
have smooth field configurations which behaved at large distances like a
Dirac monopole. The essential point is that the non-linear equations,
which generalize the linear Maxwell theory, admit “soliton” solutions in
which the singular point-particle of Dirac is replaced by a smooth field
approximately localized at the position of the “particle.”

The ’t Hooft-Polyakov monopole is only known numerically but there
is a simplified model introduced by Prasad and Sommerfield (in which the
coefficient 4 of the Higgs potential (1 — |¢|*)? is put equal to 0) which has
an explicit monopole solution. These are known as BPS (or self-dual)
monopoles and are the ones we shall be concerned with.

The BPS-monopoles are solutions of the Bogomolny equations which
will be introduced in chapter 1. They describe static monopoles in R?
and they have been extensively studied in recent years by many authors.
They have remarkable properties which are best understood as a special
case of the self-duality equations in 4-space (for solutions independent
of one of the variables). In particular the Penrose twistor theory applies
to these equations and this is the basis for all the methods of solution.
It provides the link with complex-variable theory and ultimately explains
the relevance of Riemann surfaces for the construction of monopoles.
This material is explained and summarized in chapter 2 with further back-
ground given as an appendix in chapter 16.

As we explain in chapter 16 there are several approaches to the study
of monopoles, each with its own advantages. We will use all these at var-
ious places in our treatment. Although it would be logically simpler to
stick to one point of view there are at present some technical problems
which remain to be resolved. To avoid these we have adopted a hybrid
approach, essentially taking the line of least resistance.
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The Bogomolny equations have solutions for all integer values k of the
magnetic charge. These k-monopoles when “well-separated” are approxi-
mately a superposition of k simple monopoles located at different points.
The fact that such a configuration is static depends on the fact that the
magnetic repulsion between the monopoles is balanced by an attractive
force due to the Higgs field. The parameter space of all k-monopoles
is a 4k-dimensional manifold M, which is described in detail in chapter 2.
For k = 1, we have M, = R3 x S! indicating that a 1-monopole is deter-
mined by a point in R? (its “position™) and a phase angle. For k > 1 there
is a region (near oo) in M, which is approximately an (unordered) product
of k copies of M, and this represents well-separated monopoles. However,
this description breaks down in the interior of M,, and this has profound
implications for the interactions of monopoles which is the main thrust
of this book.

Manton [35] has argued that the geodesic flow on M,, with respect
to its natural metric (induced from L2-functions on R3), is the low-energy
approximation to the true evolution of dynamic monopoles. His argument
(reviewed in chapter 1) is based on the analogy of a particle in R” moving
in a potential field V. The equilibrium positions are given by the sub-
space M < R”" giving minima of V. For motion with energy near this mini-
mum the trajectory of a particle whose initial velocity is tangential to M
is close to the corresponding geodesic on M (with some small oscillations
in the transverse directions).

The dynamics of monopoles can be put into this framework with R”
replaced by an infinite-dimensional manifold, and M = M,. The impor-
tant point is that the Bogomolny equations give the absolute minimum
of the potential energy. Because we are now in an infinite-dimensional
situation Manton’s argument, although physically plausible, requires de-
tailed analytic justification. We shall not undertake this analysis, but we
note that a similar situation has been studied in detail by Ebin [17].

To carry out Manton’s programme we therefore have to investigate
the Riemannian metric on M,. In particular, we have to show that it is
finite and complete. Lack of finiteness would mean the metric was infinite
(or not defined) in certain directions, so that monopole motion was con-
strained, while incompleteness would mean that monopoles (and so
magnetic charges) could disappear in finite time. Finiteness and complete-
ness are deduced in chapter 3 from basic analytical results of Taubes.
These results also yield the asymptotic behaviour of M, when a k-mono-
pole separates into pieces.

The direct definition of the metric on M, involves computing the L3-
norms of the zero-modes (solutions of the linearized equations), and this
is too complicated a procedure to be useful. Fortunately, however, there
are some general symmetry principles which govern the metric on M, and
these can be effectively exploited. The basic result is that each M, is a
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hyperkéhler manifold, which means that its holonomy group lies in the
symplectic group Sp(k) = SO(4k). Formally this can be seen as an infinite-
dimensional case of the hyperkdhler quotient construction of [26], but it
needs to be supplemented here with the analytical results of Taubes. This
is explained in chapter 4.

Hyperkédhler manifolds fit well into the Penrose twistor theory as gen-
eralized by Salamon [40, 41]. This implies that to a hyperkahler manifold
M one can associate a complex manifold Z (its twistor space) together
with certain extra data. This data is essentially holomorphic (except for an
involutary conjugation): it is analogous to having an algebraic variety
defined over the real numbers. Moreover Z, together with its extra data,
is equivalent to M with its hyperkédhler metric. Thus to find the hyper-
kahler metric on the monopole parameter space M, we have, in principle,
only to find the corresponding twistor space Z, (with its extra data). This
programme is carried out in chapter 5.

In chapter 6 we reinterpret this twistor space in terms of suitable sym-
metric products. This ties up the “particle” picture of monopoles with the
twistor description in an attractive and suggestive manner, which appears
to be quite general, i.e. relevant to gauge groups other than SU(2).

The translation group of R? acts naturally (and freely) on M, and so
does an overall phase factor S*. Dividing by these we introduce in chap-
ter 2 the reduced or relative monopole space M} of dimension 4k — 4.
In chapter 4 we show that the k-fold cover M, of M, decomposes iso-
metrically as a product

M, ~R?® x St x M?

where M? is the k-fold (universal) cover of M?. Moreover M? is irreducible
as a Riemannian manifold, and is itself hyperkdhler. Geodesic motion
on M, therefore decomposes (locally) into geodesic motion on MY and
geodesic motion (for the flat metric) on R® x S'. The point in R3 corre-
sponding to a k-monopole can be viewed as the centre of mass and its
motion gives the linear momentum of the system (which is conserved).
Motion in the S*-factor gives rise to electric charge [35]. Note that for us
this quantity (unlike magnetic charge) is not an integer, but on the con-
trary is taken to be very small. The residual motion in MY is the interesting
part and represents motion relative to the centre of mass. The irreduc-
ibility of the metric on M} means that we cannot decompose the dynamics
any further.

This is as far as we take the case of general k and the remaining chapters
concentrate entirely on the case k = 2, and the study of the 4-dimensional
manifold M$. For this we shall replace the general theory of chapter 5 by
a more concrete and direct approach.
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For k = 2 the spectral curve of a k-monopole is an elliptic curve and
Hurtubise [27] has used this to give an explicit description of M9. He
also shows that a generic 2-monopole has 3 principal axes. These results
are reviewed in chapter 7 and are compared with the Donaldson param-
etrization of My by rational functions described in chapter 2. Then in
chapter 8 we compute the three “spectral radii” associated to the three
principal axes of a 2-monopole and use these to find the conformal struc-
ture of MJ.

In chapter 9 we start from another point of view. In dimension 4, since
Sp(1) = SU(2), a hyperkéhler manifold is equivalently an anti-self-dual
Einstein manifold (with zero scalar curvature). Now M9 has a natural
SO(3)-action, induced by rotations about the centre of mass in R3. Hence
the metric on M9 is an SO(3)-invariant anti-self-dual Einstein metric. The
SO(3)-invariance reduces these conditions to a system of ordinary differ-
ential equations described by Gibbons and Pope [20]. In chapter 9 we
make a qualitative study of the equations and in particular of the induced
equations for the conformal structure. We show that there is an essentially
unique solution representing a complete manifold and this must therefore
be M$. In particular the results of chapter 8 give the conformal structure.

Although the formula of chapter 8 is explicit it involves elliptic integrals
and so is not very tractable analytically. Numerical computation indicates
the shape of the solution but in chapter 10 we derive a number of useful
inequalities on the solution directly from the differential equation. Then
in chapter 11 we complete the story by going from the conformal structure
formula of chapter 8 to an explicit form for the metric on MJ.

In chapter 12 we use this explicit formula for the metric to make asymp-
totic expansions for the behaviour near the “collision states” and when
the two monopoles are far apart. We also investigate the geometry of the
totally geodesic surfaces in M9 representing 2-monopoles with one prin-
cipal axis fixed. The most interesting one has the shape of a funnel. The
geodesic motion on these surfaces is then studied in chapter 13. In par-
ticular geodesics on the funnel fall into two types, those which fall through
the hole and those which return.

Finally in chapter 14 we interpret the geodesic motion of chapter 13 in
terms of the scattering of monopoles. We first show that a direct collision
of monopoles (without electric charge) produces a 90-degree scattering in
a plane determined by the initial relative phase. We then consider dis-
placing the initial velocities of the monopoles in one of the two principal
planes (through the Higgs axis). We describe the outcome as a function of
the displacement (or impact) parameter p. In one of the principal planes
the scattering angle is monotonic in x and decreases from 90 degrees to 0.
For the other principal plane the situation is more complex and it corre-
sponds to the funnel of chapter 13. In particular, for small g, the emerging



8 INTRODUCTION

monopoles acquire (equal and opposite) electric charges, so that they be-
come dyons. Thus electric charge (for each monopole separately) is not
conserved. This corresponds to the fact that M9 has an asymptotic U(1)-
symmetry which is not present in the interior.

There are many open problems left in this area. In the first place al-
though we have given an explicit description of the metric on M9 we have
only described some very special geodesics, namely those fixed by an in-
volution on R3. In general it would be interesting to know if there are
any closed or “trapped” geodesics.

It would also be interesting to investigate the geodesics on M for k > 2.
This would describe k-monopole scattering. We could also replace the
group SU(2) by other Lie groups, say SU(n). The corresponding mono-
pole spaces are still hyperkdhler and our methods still apply but some
interesting new features seem likely to emerge particularly in the degen-
erate case when the Higgs field ¢ acquires equal eigenvalues at infinity.

Manton and Gibbons [19] have used the results on M9 to analyse the
classical scattering in greater detail. They have also gone on to consider
the quantum scattering. In particular they have observed that the exchange
of electric charge noted above has a natural interpretation arising from
the emission and absorption by the dyons of massive charged mesons.

Finally there is of course the analytical problem of justifying Manton’s
claim that the low energy dynamics of monopoles is approximately given
by geodesic flow on M,. One would also like to know the length of time
for which this approximation is valid as a function of the velocity. More-
over it would be desirable to prove that this approximation continues to
hold (for significant time-intervals) for the 't Hooft-Polyakov monopoles,
provided the parameter 4 is close to 0.

We are indebted to many people for help and advice. Nick Manton
proposed the problem, Cliff Taubes and Simon Donaldson assisted with
the analysis and Garry Gibbons helped with the Einstein equations. In
dealing with the ordinary differential equations of chapter 9 we benefited
from discussion with John Ockendon, while David Atiyah dealt with the
computer calculations.

The main results have previously been briefly summarized in [3] and
[4]. For general background on the analysis of monopoles, [30] is the
standard reference, while more recent work on explicit solutions via twistor
methods can be found in [22], [47], [9], [36].



CHAPTER 1

The Monopole Equations

We give here an outline of the physical background out of which the
monopoles we analyse, described by solutions of the Bogomolny equa-
tions, arise. The reader is directed to [30], [12], and [11] for further in-
formation on the links between the mathematical and physical theory.

We are concerned here with a gauge theory, the prototype of which is
electromagnetic theory. In differential geometric terms the electric field E
in Maxwell theory is considered as a 1-form on R® and the magnetic
field B as a 2-form. The Maxwell field tensor F = B + c dt A E is then,
as a consequence of the Maxwell equations, a closed 2-form in Minkowski
space R* and can therefore be expressed as F = dA for a 2-form A, the
electromagnetic potential. To A is associated a vector particle—the photon.

There is an ambiguity A — A + d4 in the choice of A. From the point
of view of gauge theory this has an interpretation as the ambiguity yy — ey
in the choice of phase of a wave function. Geometrically this requires us
to consider 4 as a connection form on a (trivial) principal bundle with
structure group U(1) and F as its curvature. The circle group U(1) measures
the difference in phase. Even at this stage there is a noticeable difference
in the role of the electric and magnetic fields, for at a fixed time t =¢,,
the magnetic field B is the curvature of a connection on R3, whereas E
has no such geometrical interpretation.

The equation of motion of the field 4 is determined by an action density
which is required to be gauge-invariant. For electromagnetism the density
is given by (F, F), using the Minkowski space inner product. This gives
rise to the source-free Maxwell equations

dF =0=d«F.

Pure Yang-Mills theory is a gauge theory directly modelled on electro-
magnetism, but using a non-abelian Lie group G instead of the abelian
group U(1). The vector potential A, whose geometrical interpretation is
that of a connection on a principal G-bundle, has the physical interpreta-
tion of giving rise to a vector particle for each generator of the Lie algebra
of G. The action density (F, F), analogous to that of electromagnetism,
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satisfies the gauge-invariance condition and gives rise to the Yang-Mills
equations

D,F=0=D,xF

where D, = d + A is the covariant exterior derivative, depending on the
connection A.

One of the restrictions of Yang-Mills theory, which was recognized
early on, is the fact that like a photon the Yang-Mills particle is constrained
to have zero mass. To incorporate mass, for physical reasons one requires
a term like m*Q(A) in the action, where Q is quadratic in the vector po-
tential. It is impossible, however to construct such terms in a gauge-
invariant manner. One way around this problem is to incorporate a new
field—the Higgs field ¢—into the gauge theory.

Mathematically speaking, ¢ is a section of a vector bundle associated
to the principal G-bundle, on which A4 is defined, by a representation.
Physically, ¢ is a scalar field transforming under some representation of
G, often the adjoint representation. The action density is taken to be of
the form

a=(F,F)+ (D$,Dp) + V(o)

where V is a gauge-invariant potential function and D¢ the covariant
derivative of ¢. An action of the above form is called a Yang-Mills-Higgs
action.

The way in which the mass of 4 enters may be seen for example by
considering the Higgs field to be in a ground state—that is at a minimum
of the potential function V. Since V is gauge-invariant, the minimum is
not attained at a unique field ¢, but in general at an orbit of ¢ under the
group of gauge transformations. Any ¢ in a ground state can then be
gauge transformed to a constant Higgs field ¢,. In this gauge, since ¢,
is constant,

Doy =do, + Apy = Ady.
Thus
(Dd’o, D¢0) = (A(Ibo, A¢0)

giving the required quadratic term in A. The actual value of the mass is
determined by the constant ¢,. When ¢ transforms under the adjoint
representation, the most common form for the potential is the quartic ex-
pression V = A(1 — |¢|*)%. This corresponds to the action density

(1.1) a = (F, F)+ (D¢, D¢) + A1 — |¢p|*)*



