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Preface

This second edition of The Architecture of High Performance Computers
has been produced as a two volume set. Volume I is a revised, updated
and slightly expanded version of the first edition, dealing mainly with tech-
niques used in uniprocessor architectures to attain high performance. Many
of these techniques involve some form of parallelism, but this parallelism
is largely hidden from the user. Machines which are explicitly parallel in
nature are dealt with in Volume II, which concentrates on the architecture
of systems in which a number of processors operate in concert to achieve
high performance. The high performance structures described in Volume I
are naturally applicable to the design of the elements within parallel proces-
sors, and therefore Volume II also represents a historical progression from
Volume 1.

Computer architecture is an extensive subject, with a large body of
mostly descriptive literature, and any treatment of the subject is necessarily
incomplete. There are many high performance architectures, both on the
market and within research environments, far too many to cover in a student
text. We have therefore attempted to extract the fundamental principles
of high performance architectures and set them in perspective with case
studies. Where possible we have used commercially available machines as
our examples. The two volumes of this book are designed to accompany
undergraduate courses in computer architecture, and constitute a core of
material presented in third and fourth year courses in the Computer Science
Department at Edinburgh University.

Many people gave advice and assistance in the preparation of the first
edition, particularly former colleagues at the University of Manchester, and
much of this has carried over into the second edition. Computer mainte-
nance engineers at various sites willingly answered obscure questions about
the machines in their charge, and staff at Cray Research and Control Data
Corporation, particularly Chuck Purcell, vetted parts of the manuscript
and provided much useful information. In preparing this first volume of
the second edition the authors are indebted to William White of Cray Re-
search for his comments on the content of the manuscript. Preparation of
the manuscript involved many hours at computer terminals and the authors
would like to thank Alison Fleming for her assistance and expert advice on
the use of IATRX.

Roland Ibbett
Nigel Topham
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1 Introduction

Computer architecture has been defined in a number of ways by different
authors. Amdahl, Blaauw and Brooks [ABB64], for example, the designers
of the IBM/360 architecture, used the term to “describe the attributes of
a system as seen by the programmer, i.e. the conceptual structure and
functional behaviour, as distinct from the organisation of the data flow and
controls, the logical design and the physical implementation.” Stone [Sto75],
on the other hand, states that “the study of computer architecture is the
study of the organisation and interconnection of components of computer
systems.” The material presented here is better described by this wider
definition, but is particularly concerned with ways in which the hardware of
a computer can be organised so as to maximise performance, as measured
by, for example, average instruction execution time. Thus the architect
of a high performance system seeks techniques whereby judicious use of
increased cost and complexity in the hardware will give a significant increase
in overall system performance.

1.1 Historical developments

Designers of the earliest computers, such as the Manchester University/
Ferranti Mark 1 (first produced commercially in 1951 [Lav75]), were con-
strained by the available technology (valves and Williams Tube storage, for
example, with their inherent problems of heat dissipation and component
reliability) to build (logically) small and relatively simple systems. Even so,
the introduction of B-lines and fast hardware multiplication in the Mark 1
were significant steps in the direction of cost-effective hardware enhance-
ment of the basic design. At Manchester this trend was developed further
in the Mercury computer, with the introduction of hardware to carry out
floating-point addition and multiplication. This increased logical complex-
ity was made possible by the use of semiconductor diodes and the availability
of smaller and more reliable valves than those used in the Mark 1, both of
which helped to reduce power consumption (and hence heat dissipation)
and increase overall reliability. A further increase in reliability was made
in the commercial version of Mercury (first produced in 1957) by the use of
the then newly developed ferrite core store.

The limitations on computer design imposed by the problems of heat
dissipation and component reliability were eased dramatically in the late
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1950s and early 1960s by the commercial availability of transistors, and
the first generation of ‘supercomputers’ such as Atlas [KELS62], Stretch
[Buc62], MULTICS [Org72| and the CDC 6600 [Tho70] appeared. These
machines incorporated features which have influenced the design of sub-
sequent generations of computers (the paging/virtual memory system of
Atlas and the multiple functional units of the 6600, for example), and also
highlighted the need for sophisticated software, in the form of an operating
system intimately concerned with activities within the hardware from which
the user (particularly in a multi-user environment) required protection, and
vice versa! In this book we shall follow the developments of some of the
ideas from these early supercomputers into present day computer designs.

1.2 Techniques for improving performance

Improvements in computer architecture arise from three principal factors
1. technological improvements
2. more effective use of existing technology
3. improved software-hardware communication.

Technological improvements include increases in the speed of logic circuits
and storage devices, as well as increases in reliability. Thus the use of tran-
sistors in Atlas, for example, not only allowed individual circuits to operate
faster than those in Mercury, but also allowed the use of parallel adders,
which involved many more logic circuits but which produced results very
much more quickly than the simple serial adders used in earlier machines.
Corresponding changes can be seen today as the scale of integration of in-
tegrated circuits continues to increase, allowing ever more complex logical
operations to be carried out within one silicon chip, and hence allowing
greater complexity to be introduced into systems while keeping the chip
speed and overall system reliability more or less constant.

Making more effective use of existing technology is the chief concern
of computer architecture, and almost all of the techniques used can be
classified under the headings of either storage hierarchies or concurrency.
Storage devices range from being small and fast (but expensive) to being
large and cheap (but slow); in a storage hierarchy several types, sizes and
speeds of storage device are combined together, using both hardware and
software mechanisms, with the aim of presenting the user with the illusion
that he has a fast, large (and cheap) store at his disposal.

Concurrency occurs in various forms and at various levels of system de-
sign. Low-level concurrency is typified by pipeline techniques, interleaved
storage and parallel functional units, for example, all of which are largely
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invisible to software. High-level concurrency, on the other hand, typically
involves the use of a number of processors connected together in some form
of array or network, so as to act in parallel on a given computational task.
Various authors have attempted to classify computers on the basis of the
type of concurrency they exhibit. The most well known of these taxonomies
is that proposed by Flynn [Fly72|, who classified processors as Single In-
struction Single Data (SISD) machines, Single Instruction Multiple Data
(SIMD) vector machines, Single Instruction Multiple Data array proces-
sors, and Multiple Instruction Multiple Data (MIMD) machines. Volume I
of this book deals mainly with techniques which are applicable within the
design of SISD computers and with SIMD vector machines. SIMD array ar-
chitectures and MIMD (multiprocessor) machines are dealt with in Volume
I1.

Communication between software and hardware takes place through the
order code (or instruction set) of the computer, and the efficiency with
which this takes place can significantly affect the overall performance of a
computer system. One of the difficulties with some ‘powerful’ computers is
that the ‘power’ is obtained through hardware features which can only be
fully exploited either by hand coding or by the use of complex and time-
consuming algorithms in compilers. This fact was recognised early in the
Manchester University MU5 project, for example, where an instruction set
was sought which would permit the generation of efficient object code by
high-level language compilers. The design of this order code was therefore
influenced not only by the anticipated organisation of the hardware, which
was itself influenced by the available technology, but also by the nature
of existing high-level languages. Thus the order code, hardware organisa-
tion, and available technology all interact together to produce the overall
architecture of a given system. An example of such an interaction is given
in the next section, based on some of the early design considerations for
MU5 [MI79].

1.3 An architectural design example

At the time when the MUS5 project was started (1966/7), the fastest produc-
tion technology available for its construction was that being used by ICT
(later to become ICL) for their 1906A computers. In this technology, MECL
2.5 small scale integrated circuits are mounted individually or in pairs on
printed circuit modules, together with discrete load resistors, and up to 200
of these modules are interconnected via multi-layer platters. Platters are
mounted in groups of six or nine within logic bays, with adjacent platters
being joined by pressure connectors. Inter-group and inter-bay connections
are via co-axial cables. The circuit delay for this technology is 2 ns, but
the wiring delay of 2 ns/ft (through matched transmission line interconnec-
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Figure 1.1 An indez arithmetic unit

tions) must also be taken into account. An average connection between two
integrated circuits mounted on modules on the same platter involves a 1"
connection on each module and a 4" connection between modules, thus to-
talling 6" and giving an extra 1 ns delay. Some additional delay also occurs
because of the loading of an output circuit with following input circuits, and
so for design purposes a figure of 5 ns was assumed for the delay between
the inputs of successive gates.

A 32-bit fixed-point adder/subtracter constructed in this technology re-
quires five gate delays through the adder, plus one gate delay to select the
TRUE or INVERSE of one of the inputs to allow for subtraction, giving
a total delay of 30 ns. This adder/subtracter can be incorporated into an
index arithmetic unit as shown in figure 1.1. A 10 ns strobe XIN copies new
data into register BIN, the output from which is steady after 5 ns. During
the addition, information is strobed into a register which forms part of the
adder, and the 10 ns strobe XB, which copies the result of the addition into
the index register B, starts immediately after this internal adder strobe has
finished. The earliest time at which the next XIN strobe can start is at
the end of XB, so that the minimum time between successive add/subtract



Introduction 5

r=A
! |
1 1
Associative 1 [ Operand
Address — :._> Value
Field ! | Field
|
|
b |
1
T [—
Address of Named Value of Named
Operand Operand

Figure 1.2 The MU5 name store

operations in this unit is 45 ns.

This time is very much less than the access time to the main store of
MUS5, a plated-wire store with a 260 ns cycle time. Thus, in the absence of
some additional techniques, there would be a severe mis-match between the
operand accessing rate and the arithmetic execution rate for index arith-
metic instructions. An examination of the operands used in high-level lan-
guages, and studies of programs run on Atlas, indicated that over a large
range of programs, 80 per cent of all operand accesses were to named scalar
variables, of which only a small number were in use at any one time. Thus, a
system which kept these operands in fast programmable registers would be
able to achieve high performance. Such a technique is now in widespread
use. However, this is exactly the sort of hardware features which causes
compiler complexity, and which the designers of MU5 sought to avoid.

The alternative solution adopted in MUS5 involves the identification
within each instruction of the kind of operand involved, and the inclusion in
the hardware of an associatively addressed buffer store for named variables,
known as the Name Store. This store has to operate in conjunction with
the main store of the processor, thus immediately introducing the need for
a storage hierarchy in the system. Having observed this implication, fur-
ther discussion of storage hierarchies will be left until chapter 3: there are
additional implications for the system architecture to be considered here,
based on the timing of Name Store operations.

The Name Store consists of two parts, as shown in figure 1.2; the associa-
tive address field and the operand value field. During the execution of an
instruction involving a named variable, the address of the variable is pre-
sented to the associative field of the Name Store, and if a match is found
in one of its 32 associative registers, the value of the variable can be read
from the corresponding register in the Name Store value field. The time re-
quired for association is 25 ns, and similarly for reading. Thus, in order for



6 Architecture of High Performance Computers — Volume I

the index arithmetic unit to operate at its maximum rate, the association
time, reading time and addition time for successive instructions must all be
overlapped (by introducing a buffer register, such as that shown dotted in
figure 1.2). In making provision for this overlap, however, another archi-
tectural feature has been introduced — the organisation of the processor as
a pipeline. Further discussion of pipelines will be left until chapter 4, but
it should now be clear that there is considerable interaction between the
various facets of the architecture of a given computer system.



2 Instructions and Addresses

An important characteristic of the architecture of a computer is the num-
ber of addresses contained in its instruction format. Arithmetic operations
generally require two input operands and produce one result, so that a
three-address instruction format would seem natural. However, there are
arguments against this arrangement, and decisions about the actual num-
ber of addresses to be contained within one instruction are generally based
on the intuitive feelings of the designer(s) in relation to economic consid-
erations, the expected nature of implementation, and the type of operand
address and its size. An important distinction exists between register ad-
dresses and store addresses, for example; if the instruction for a particular
computer contains only register addresses, so that its main store is addressed
indirectly through some of these registers, then up to three addresses can
be accommodated in one instruction. On the other hand, where full store
addresses are used, multiple-address instructions are generally regarded as
prohibitively expensive both in terms of machine complexity and in terms
of the static and dynamic code requirements. Thus one store address per
instruction is usually the limit (in which case arithmetic operations are
performed between the content of the store location and the content of
an implicit accumulator), although some computers have variable-sized in-
structions and allow up to two full store addresses in a long instruction
format. In this chapter we shall introduce examples of computer systems
which have three, two, one and zero-address instruction formats, and dis-
cuss the relationships which exist between each of these arrangements and
the corresponding hardware organisation.

2.1 Three-address systems — the CDC 6600 and 7600

The Control Data Corporation 6600 computer first appeared in the early
1960s, and was superseded in the late 1960s by the 7600 system (now re-
named CYBER 70 Model 76). The latter is machine code compatible up-
ward from the former, so that the basic instruction formats of the two
systems are identical, but the 7600 is about four times faster that the 6600.
The 6600 remains an important system for students of computer architec-
ture, however, since it has been particularly well documented [Tho70]. An
understanding of its organisation and operation provides a proper back-
ground not only for an appreciation of the design of the 7600 system, but

7
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Figure 2.1 CDC 6600 processor organisation

also that of the CRAY-1, which can be seen as a logical extension of the
6600,/7600 concepts from scalar to vector operation. The design of all these
machines will be discussed in more detail in chapters 6 and 7.

The CDC 6600 was designed to solve problems substantially beyond
contemporary computer capability and, in order to achieve this end, a
high degree of functional parallelism was introduced into the design of the
central processor. This in turn required an instruction set and processor
organisation which could exploit this parallelism, while at the same time
maintaining at least the illusion of strictly sequential execution of instruc-
tions. A three-address instruction format provides this possibility, since
successive instructions can refer to totally independent input and result
operands. This would be quite impossible with a one-address instruction
format, for example, where one of the inputs for an arithmetic operation is
normally taken from, and the result returned to, a single implicit accumu-
lator. Despite the potential for instruction overlap, dependencies between
instructions can still occur in a three-address system. For example, where
one instruction requires as its input the result of an immediately preceding
instruction, the hardware must ensure that these are strictly maintained.
This would be difficult if full store addresses were involved, but the use of
three full store addresses would, in any case, have made 6600 instructions
prohibitively long. There were, in addition, strong arguments in favour of
having a scratch-pad of fast registers in the 6600 which could match the
operand processing rate of the functional units.



