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preface

THE OBJECTIVE OF THIS BOOK is to present a reasonably complete account
of linear programming. The mathematical development is based on the
theory of simultaneous linear equations, without the usual notions from the
mathematics of vector spaces. However, the level of mathematical reason-
ing is such that a background of two terms of college-level mathematics is
desirable.

The mathematical developments have been carried out in considerable
detail. In almost all instances, each new method is immediately illustrated
by a numerical calculation that shows how the previous theory applies.

The transportation problem and its solution method are discussed in
Chapter 2, with the simplex method delayed until Chapter 4. The trans-
portation method can be developed independently of the simplex method;
because the former is easier to understand and easier to apply, the latter
then becomes easier to grasp. The arguments used to develop the simplex
method parallel those used to develop the transportation method. By
going over the same arguments in two different contexts, the developments
reinforce each other.

The treatment of topics in Chapters 1-8 is conventional, although the
details are quite different from those used in other texts. In Chapter 8,
emphasis is placed on the dual theorems. (It is recommended that all of
the first eight chapters be included in a college course.)

In Chapter 9, primal-dual methods are discussed. These topics are
rather specialized, but of great importance to anyone working intensively
in the field who needs the most efficient solution methods. The material
of Chapter 10 treats sensitivity analysis, the expansion problem, and
parametric programming.

Chapter 11 deals with problems that have upper-bound and/or integral
constraints on their variables. Chapter 12 involves applications and
methods of putting those problems into the linear-programming format
that do not appear at first glance to be linear-programming problems.

The topic of Chapter 13 is the correspondence between game theory
and linear programming. Chapter 14 covers upper-bound methods in the
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vi Preface

transportation problem, the assignment problem, and some simple network
applications.

The author is grateful to his colleagues at North Carolina State College
for their encouragement during the preparation of the manuscript, and
especially to Mr. H. A. Knappenberger, who used much of the material
in early form and made many valuable suggestions. The author also wishes
to express his appreciation to Mrs. Adele Covington, who typed the
manuscript.

R. W. LLEWELLYN

Raleigh, North Carolina
December 1963
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chapter 1 '

INTRODUCTION

1-1 BACKGROUND

LINEAR PROGRAMMING is a product of modern mathematics and is, at this
writing, about fifteen years old. The problem area has been of interest for
a longer period; there is a rather large literature in both mathematics and
economics in this field dating back into the 1920’s. Dr. George B. Dantzig
published his first paper on the simplex method in 1947. Since that time
progress in the field has been rapid. The first applications were military in
nature, but it was not long before it became apparent that there were
important industrial applications as well.
Linear programming problems have the following framework.

1) There is some objective to be attained, such as maximum profit,
minimum cost, or minimum elapsed time, of the system being studied.

2) There are a large number of variables to be handled simulta-
neously. The variables may be products, machine-hours, man-hours,
money, floor space, or other factors, depending on the problem. There are
usually several kinds of variables in a problem. Some of these are oulputs
of the system (such as products), while others are inpufs to the system
(such as man-hours). The latter are sometimes called the resources.

3) There are many inferactions between the variables. A typical
problem is that of determining the best product mix for a production
period. Here we are trying to determine which products to manufacture,
out of a list of potential products, together with the optimal quantity of
each, so as to maximize the total profit received from all products over some
stated production period. The interactions arise from the fact that if we
have limited resources and manufacture a stated amount of product A,
there are then fewer resources available for the production of products B,
C, D, etc. The products, in a sense, compete for the available resources.
The linear programming model can be used to determine how to resolve
this conflict so as to obtain the most profitable production program.
Obviously, the unit profit obtainable from each potential product is of
significance in determining how this competition should be resolved.

1



2 Introduction

4) Most linear programming problems are also characterized by the
presence of objectives that conflict with the principal objective of the
problem. In the product-mix case, for example, the manufacturer may
specify that at least a certain amount of one of the products be made,
regardless of the effect on profit. The objective competing here with that
of maximizing profits may be to fulfill an order already received and
accepted.

Thus linear programming tends to be associated with complex situations,
many inleracting variables, and competing objectives along with the optimi-
zation of some criteria of the effectiveness of the system. The interactions
of variables and competition of objectives are characteristic of many
industrial situations. Indeed, they are characteristic of all economic
systems, which fact explains the early theoretical interest in this type of
problem among economists. It is natural, then, for industry to find that
many of its most important problems can be solved by linear programming
methods. It is incorrect to assume that all industrial problems involving
these elements of interaction and conflict can be handled with linear
programming methods, however. The word linear means just what it says;
problems can be put into the linear programming model only if the alge-
braic relationships between the variables are linear or can be closely
approximated by first-order equations. If this condition is violated, other
techniques beyond the scope of this book must be used.

A few examples of the use of linear programming, other than the
product-mix problem already mentioned, are

1. The diet problem. The diet problem gets its name from the fact that
an early application was to determine the most economical human diet.
In its most common industrial form, it consists of determining the most
economical mixture of raw materials that will result in a product with a
desired chemical formula. The importance of the problem lies in the fact
that market prices and stocks of the various materials change from
time to time. The most economical mix one week may not be the most
economical, or even possible, the next.

2. The machine-loading problem. In machine-loading, we are con-
cerned with assigning production jobs to machines in such a manner as to
minimize production costs over the entire schedule of a department or
machine center for a production period. The typical plant situation, at
least in job-lot or intermittent plants, is that some machines are most
efficient for many of the scheduled orders, and that the production for the
period cannot be accomplished by simply assigning each order to the most
efficient machine. Some jobs must be assigned to a second best or a third
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best alternative. Linear programming resolves this conflict, providing the
over-all machine time available is adequate, so as to use the machines most
efficiently when all orders are considered simultaneously.

3. The production-scheduling problem. There are several problems
that come under the heading of production scheduling and we will discuss
only one here. Suppose a company makes a single product on a production
line but that the rate at which the line is run can be varied. We shall also
assume that the expected sales pattern over the production season is
known. We will not ordinarily produce the exact amount in each pro-
duction period to satisfy the demands of that period because this would
involve wide variations in production over the season and is not economical.
Instead, we will attempt to smooth production, in relation to sales, and
allow an inventory to absorb the difference between production and sales
quantities. It costs money to store the product and it also costs money to
change the rate of production. Linear programming can be used to deter-
mine the production schedule over the season that will minimize the sum of
the inventory carrying costs and the changeover costs.

4. The transportation problem. In the {ransporlation problem we are
concerned with a product that is stored in a number of origins, perhaps the
plants in which it was made, and needed in a number of destinations, per-
haps jobbers or distribution warehouses. It is assumed that we know the
quantity of the product available in each origin and the quantity needed at
each destination. We are also given the unit cost of shipping the product
from each origin to each destination. The objective of the problem is to
determine the quantity to ship from each origin to each destination so as
to minimize the sum of the shipping costs. Because of special properties of
the problem, a special method can be used to solve it. We will study this
problem in Chapter 2 and again in Chapter 14.

The examples cited here are only a few of the problems to which linear
programming has been applied in industry. It is likely that more and more
applications will be discovered as larger numbers of qualified persons are
employed for work in the fields in which the problems are encountered.
One of the most important facts about the problems most suited to this
type of treatment is that they tend to be repetitive; that is, the problems
are of an operating nature and thus must be solved periodically, say daily
or weekly. This is fortunate, for the typical problem is so large that the
cost of the analysis necessary to develop a model for it is greater than the
savings resulting from a single application. But if the same problem,
except for minor variations in detail, is to be solved on a periodic basis, the
initial cost of analysis becomes small per solution obtained. It should also
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be noted here that almost all practical applications are so large that the
use of digital computers is mandatory. In fact, it is likely that if the
emergence of linear programming were not paralleled by the appearance of
digital computers, progress in linear programming would have been much
less rapid and there would be little need for books such as this, it being
aimed at the practitioner rather than the mathematician.

In order that the reader appreciate the importance of the earlier com-
ments on the interactions and competing objectives in linear programming,
we will present an example of a type of analysis that does not involve these
factors. Suppose a product is expected to have a yearly demand of R units,
that it costs P dollars to prepare for a production run, C dollars per unit
to make the product, and S dollars to store one unit of the product for one
year, the storage costs including the return expected from capital in the
form of interest. If Q is the amount we will produce in one production run
and Y is the total cost of a year’s production making Q units each time
(it is assumed that the rate of sales or use of the product is constant over
the year), then

setup costs per year = P}g (1.1)
production costs per year = CR (1.2)
storage costs per year = ‘S‘)Q (1.3)
Y=P1—5+CR+%Q (1.4)

We assume that Q is a continuous variable. For both small Q and
large Q, Y is large. To find the Q for which Y is a minimum, we determine
where dY/dQ vanishes, or

dY PR S -

w- "Gz =
2PR

Q = \/—S (1.6)

where () is called the “economic lot size.”” It is possible to express the
quantities, particularly .S, in more detailed form and get more precise
versions of (1.6). The point we wish to make here is that:

1) Many authorities from academic and engineering fields feel that
equations like (1.6) are of great value in minimizing the cost of production
programs.

2) Industrial personnel frequently find equations like (1.6) of little
use and refuse to use the economic lot-size concept.
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The answer to the dilemma is that the mathematical model used to
derive (1.6) may be incomplete. In many plants the storage space is not
sufficient to accommodate the goods if production is always in economic
lot sizes. In others, sufficient capital is not available to finance the in-
ventory if that much of each product is manufactured each time it is made.
In still others, where capital for storage is available, management may
prefer to divert it to other objectives, such as financing new plants. When
applied to some plants, (1.6) fails to recognize limitations on resources; in
other applications it fails to recognize and include the effect of other com-
peling objectives. Out of these considerations has developed a whole new
area of research in inventory control in which these limitations of resources
and the effect of other competing objectives are included. Some of this
research utilizes linear-programming methods.

1-2 LINEAR PROGRAMMING

The basic problem in linear programming is merely to maximize
(or minimize) a linear function of the form

z=cx1+ e + - + Caln (1.7)

Now, if we assume, as we did in equation (1.4), that the variables can
assume any values, the problem is trivial, as we can let each variable that
has a positive coefficient become as large as we please and the value of the
function then becomes arbitrarily large. If we are minimizing, we can let
each variable that has a negative coefficient become as large as we please
and the function assumes an arbitrarily large negative value. Or, still
minimizing, if all the coefficients are positive, we can let each variable
become zero and then the value of the function becomes zero. In any event,
the problem is trivial unless there are some restrictions on the variables.
We will discuss these restrictions presently.

First, it should be noted that we did not mention letting any of the
variables become negative. In linear programming the variables are
usually restrained from taking on negative values. Suppose the function is

2 = 3z + 225 + 4a3 (1.8)

where ), x;, and z; represent products to be made in the factory. If z;
represents units produced, then z; = —10 must represent units brought
back from customers, disassembled, and converted back to raw materials.
This is not only a poor business policy, it is technologically impossible in a
great many cases. Linear-programming problems are from a family of
processes an economist would call irreversible. As practical problems are
presented later, the reader will see that in nearly every case the context of
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the problem does not permit the assignment of negative values to the
variables. This is made a formal requirement of the linear-programming
problem as follows. We will use the index j to number the variables and
n to indicate their total number. Since the variables are permitted to
assume the value of zero, the restriction is called the nonnegativity restriction
on the z;, or

x; >0, yj=1,2,--,n (1.9)

It will be assumed throughout this book that (1.9) applies unless a special
note is made to relax the requirement.

The other restrictions that may be on the variables are illustrated by
the following examples.

1) ; < 3. This restriction, plus (1.9), permits x; to assume any
value between zero and 3, including both extremes; x; is still a- variable,
but only within stated limits.

2) 2 > 3. This restriction permits z; to assume any value from 3
on up. The restriction of (1.9) applied to z; is now redundant, since the
requirement that xz;, be at least 3 is stronger than the requirement that it
be at least zero.

3) ©1 + 2z, + 8x3 = 4. This is a combined restriction on three
variables at once and permits x;, x;, and x; to assume any values such that,
when multiplied by their coefficients, the sum equals 4. We will always
assume, however, that the variables are also restrained from being non-
negative by (1.9).

4) 21 + 22 — 23 < 5. This is also a combined restraint on several
variables and the variables x;, 2, and z3, while being nonnegative, must
sum, algebraically, to less than or equal to 5. This permits more freedom
for the variables than the equality type of restriction. This restriction also
illustrates that while the variables are constrained to be nonnegative, their
coefficients may be negative in these constraints.

5) 22 — a2 4 323 > 9. This is interpreted as is the preceding ex-
ample, except that now any combination of the variables, when multiplied
by their coefficients, must sum to 9 or more.

6) x; = x,. This restrains z; from taking on any value other than
that taken on by x, and vice versa. This will usually be rewritten as
Ty — X = 0

1-3 SIMULTANEOUS EQUATIONS

We will see that linear programming is concerned with solutions to
simultaneous linear equations. These equations arise from the restrictions
on the variables. Yet the restrictions are frequently stated as inequalities
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rather than as equations. The inequalities can be converted to equations
as follows.

Type I. We will call the type of inequality where the sign is read
“less than or equal to,” the “Type-I"" inequality. This is a convenience,
since frequent repetition of the phrase “less than or equal to” is awkward.
This designation is not common in mathematics, but will apply throughout
this book.

A Type-I restriction is of the form

kll'l + kgl‘g + kgxs S b (110)

where ki, ks, and k; are constants. *A Type-I inequality is converted to an
equation by adding a nonnegative slack variable. Thus, we convert (1.10)
to ‘

kixy + koxe + ksxs + x4 = b (1-11)

Here z, is called a slack variable and assumes whatever value is necessary
for the equation to be satisfied. For example, if 2; = x; = x3 = 0in (1.11),
then z, must equal b. The slack variable will be considered as under the
nonnegativity restriction (1.9) and is one of the z; variables, j = 1,2, - - -, n.

Type II.  We will likewise refer to the “more than or equal to”
inequality as the “Type-II"" restriction. It is of the form

kixy + kﬂz + ka% > b (1-12)

To convert a Type-II inequality to an equation we must subfract a
nonnegative variable. Thus, (1.12) becomes

klxl + k2172 + k31‘3 — Xy = b (1.13)

where x4, again included in the nonnegativity restriction, is a slack variable
that permits the equation to be satisfied.
For example,

31‘1 + Lo — 2.’B3 Z ].0 (]..].4)
converts to
3.’11 + Ty — 21133 — Iy = 10 (115)

If & = 5, 2, = 10, and x; = 5, then x4 must equal 5.
The reader should note that the treatment of inequalities is different
in linear programming than it is in many other mathematical applications.
‘Ordinarily when the nonnegativity restriction is not imposed, a slack
variable is added to either type of restriction to convert it to an equation.



