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PREFACE

A Symposium on "Combinatorial Structures and their Applications" was held at
Villa Madruzzo (Cognola di Trento), on October 20 - 25, 1980. The meeting was pro-
moted and sponsored by the "Centro Interuniveritario per la Ricerca Matematica"
(C.I.R.M.) of the "Universitd di Trento" for the purpose of offering an intense
week of joint scientific activity to some outstanding scientists and a group of
younger researchers. The enthusiastic co-operation of all participants made the
Conference a great success.

Combinatorics is an old branch of mathematics. In recent times the advent of
the electronic age and the development of computer technology has given great im-
petus to the study of combinatorial techniques, both by providing combinatorists
with a powerful new tool and also by creating a new field of application for those
techniques. As always happens in the development of science the ability to answer
practical questions is greatly enhanced by the scientist making progress in the
study of pure theory. This gives a clear justification for the tremendous activity
and progress in this field.

Combinatorics covers too broad a range of subjects and so a further restric-
tion had to be made on the topics to be considered. It was decided to confine the
main topics to Finite Geometric Structures and in particular to Galois Geometries.

Four lecturers presented, in a series of invited addresses, the State of the
Art in particular fields. Many interesting new results were also given by a number
of contributed papers.

A large part of the material presented at the Symposium appears in detail in
this volume. A few other papers related to the topics considered have been adjoined.

We are confident that many of these papers will form an invaluable basis for
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further progress in this field.

I wish to thank the directors of the C.I.R.M., Professor M. Miranda and
G. Zacher who organized the Symposium. Thanks must also be extended to the
G.N.S.A.G.A. of the C.N.R. which gave the support which made it possible to in-
crease the number of participants.

I am particularly grateful to Professor Peter L. Hammer for encouraging me

to prepare this volume and to the referees for their invaluable assistance.

Adriano Barlotti
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ON FINITE NONLINEAR STRUCTURES

Walter Benz

Mathematisches Seminar
der Universitdt Hamburg
2000 Hamburg
West Germany

The investigation of the geomtry of plane sections of a semi-quadric leads to the
notion of generalized circle geometries. In the case of the geometry of Mobius for
instance there is exactly one circle through three distinct points. This property
does not carry over to the above mentioned general situation. What remains is that
there exists at least one joining circle and that anb=bnc=cna is a consequence
of card(anbnc)>2 for distinct circles a,b,c. We are thus led to the notionof
Tracks, namely to sets anb (a+b circles with card(anb)>2), which we have in-
troduced in [3],[4]. Almost nothing is known in a general setting about the inner
structure of tracks, especially about their possible cardinalities in the finite
case. In the first part of this surveying article we like to stress some open pro-
blems in this context, concentrating ourselves on the geometries of Mobius and La-
guerre. In the second part we are furthermore interested in the theory of Lorentz
transformations of the Jdrnefelt world. This part can be integrated in the geometry
of Minkowski since Lorentz transformations are automorphisms of this geometry. Our
main goal here is to present correspondences of basic theorems of space-time geo-
metry under the assumption that the underlying field is a Galois field. We also
shall include remarks about connections between Lorentz transformations and the
geomtry of Laguerre.

§ 1 Generalized Mobius Planes.

In 1958,[3], we have introduced the notion of a Mobius plane as follows:

Consider a set X of points and a set Y of non-empty subsets of X of circles
such that the following conditions are satisfied:

(M I ) Through three distinct points there is at least one circle. Given distinct
circles a,b,c with card(anbnc)>2 then anb=anc.

(M II ) Given a circle a and points A€a, B§a. Then there is exactly one circle
b>A,B with anb={A}.

(M III ) There exist four distinct points, which are non-cocircular, i.e. which are
not on a common circle.

Obviously, (MI) is a consequence of
(M I') Through three distinct points there is exactly one circle.

In the past we have called structures (X,Y) satisfying (MI'), (MII), (MIII) special
Mobius planes (Mcbiusebenen im engeren Sinn). In the meantime it has become more
and more usual to denote "special Mobius planes" by "Mobius planes". Therefore we
like to say "generalized Mobius planes" instead of the original Mdbius planes.
Generalized Mobius planes occur quite natural when studying the geometry of plane
sections of a semi-quadric Q. The underlying antiautomorphism of order at most 2
is the identy iff (MI') is satisfied.

The following problem seems to be still unsolved:
A. Does there exist a finite generalized Mobius plane, which is not a Mobius plane?

Consider a generalized Mobius plane K. Given distinct circles a,b such that
card(anb)>1 . Then anb is called a track of K (s.[3]).
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In [3] we have proved the following facts:

(1) card a=3 for every circle a .

(2) Through two distinct points there is exactly one track.

(3) Given a circle a and distinct points P,Qea . Then a contains the track
(PQ) through P,Q .

(4) A circle contains at least three distinct tracks. If x {is a track and A¢ X
a point then there is exactly one circle through A and x .

(5) G;ven c1rc1;s a,b then one and only one of the following cases holds true:
a) anb =90,
b) card(afb)
c) anb is a
d) a=b.

(6) Given a circle a and a track x such that card(anx)=1
Then there is exactly one circle box with card(anb)=1 .

(7) Given a point W of K. Define the tracks through W as points and thecircles
through W as lines. Then this structure must be an affine plane, the socalled
derivation of K in W.

track ,

Since every semi-quadric leads to ageneralized Mobius plane many propergeneralized
Mobius planes areknown. If K is such anexample thenit turns out that card x=cardy
for all tracks x,y of K . Therefore we like to pose the following problem

B. Let K be a (eventually finite) generalized Mobius plane. Is then cardx=cardy
true for all tracks x,y of ?

Consider a semi-quadric Q such that the underlying generalized Mdbius plane K is

miquelian. Then it turns out that Q isa quadric and that thus Kis a Mobius plane.

In [3] we have proved more:

Given a miquelian generalized Mobius plane K such that the following condition

holds true

(+) If there exists a track x with card x>2 then card y>2 for all tracks
of 5

Then K must be a Mobius plane.

In case there exist proper generalized Mcbius planes, which are finite, or in case
A remains unanswered it might be of interest to study known results about finite
Mobius planes by replacing (MI') by (MI). In this connection s. P. Dembowski [12],
[14], and J.Kahn [19].

In [16] G. Ewald has characterized generalized Mobius planes stemming from a semi-
quadric by means of a configuration theorem involving incidence and orthogona11ty
He has moreover given, [16] , a wide class of generalized Mgbius planes by using
his notion of weakly convex semi-surfaces.

§ 2 Generalized Laguerre Planes.

Given a set X of spears and a set Y of subsets of X of cycles. The distinct

spears S,T€X are called parallel, S//T, iff there is no cycle a such that

ad3S,T . We also put S//S for all SeX . In case a,b are distinct cycles with

card(anb)>1 we call anb a track. Two tracks x,y are called parallel, x//y,

iff there exists to every spear S of respectively x,y a spear T of respect-

ively y,x with S//T .

The structure (X,Y) 1is called a (now) generalized Laguerre plane ([4]) iff the

following conditions are satisfied:

(L I) Through two non parallel spears S,T there is exactly one track, (ST) .
Given non-cocircular spears S,A,B with AAS/HB then (SA)//(SB) .

(L II) Given a cycle a and spears SE:a 'T¢a SHT, there exists exactly one

cycle b with b3S,T and anb={S}.

(L III) G1ven a cycle a and a spear S¢a there exists exactly one spear T€a
with T//S .

(L 1IV) There ex1sta cycle z and a spear V such that Vt#;z and card z23 .
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A generalized Laguerre plane is a Laguerre plane iff card x=2 for all tracks x.

Given a (commutative or non commutative) field F, char F#2, possessing an involu-
torial antiautomorphism t . Consider the 3-dimensional affine space A3(F) over F

and X 1= { (X,y,2)€ F? |xxt + yyt =1}
If e 1is a plane of A3(F) with enX+@ and such that there is no line in enX

then we call enX a cycle.
This structure (X,Y) turns out to be a generalized Laguerre plane ([4]) .

Problem A is easily solved in the context of generalized Laguerre planes:

Consider F=GF(9) and t:a+bi-a-bi, a,b€GF(3), i* =-1. In this case the zbove
described generalized Laguerre plane consists of 216 spears, 729 cycles. There are

81 tracks through a given spear S. 45 of these tracks contain precisely 4 spears,

the remaining 36 precisely 3 spears.

We now 1ike to present properties for generalized Laguerre planes, which to some
extent are similar to those given for generalized Mobius planes in §1.

(1) Two distinct spears of a track or of a cycle are non parallel.
(2) Given cycles a,b then a cannot be a proper subset of b .
(3) X 1is not a cycle.

(4) The parallelity relation on X 1is an equivalence relation. The parallelity
relation on the set of tracks is an equivalence relation. x//y implies
card x = card y .

(5) card a>3 for all a€eyY .
(6) S,Tea , S+T , implies (ST)ca .

(7) Given three pairwise non parallel spears P,Q,R . Then there is exactly one
cycle through P,Q,R 1if and only if (PQ)4 (PR) .

(8) Let a,b be cycles. Then one and only one of the following conditions holds true:
a) anb=90,
b) card(anb) =1,
c) anb fis a track ,

d) a=b.

Consider a spear W and let M(W) be the set of all tracks through W .
For x€M(W) define

xw:={y€MW)[xNY}.
Let G(W) be the set of all classes X, , XEM(W) .
Then we get
(9) a) M(W)=0 ,
b) card xy>2 for all xeM(W) ,
c) card G (W) =2 ,
d) Given x€eM(W) and a cycle a3W. Then there exists ye€xy with yca.

Finally the following theorem holds true:

Let K be a generalized Laguerre plane and let W be a spear of K . Call the ele-
ments of M(W) points and the cycles through W and the elements of G(W) Tlines.
If x dis a point and g a line put "x on g" iff

xeg for geG(W) ,

xcg in case g 1is a cycle through W .

Then this is an affine plane, the socalled derivation D(K,W) of K in W.

C. If one knows the finite order of D(K,W) (and maybe other invariants of K) what
are the possible cardinalities of the occuring tracks ?

Quite similar to the construction,[16], of G. Ewald of a general class of generalized
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?6bigs planes is the following construction concerning generalized Laguerre planes
[51):
Let E be an affine plane. A set C+@ of points is called a pseudo-oval iff

(+) For PeC there exists exactly one line h through P with hnC = {P} .

Examples: a) Consider distinct and parallel 1ines a,b of E and points U€a,
Veb. Then (aub)~{U,V} 1is a pseudo-oval.

b) Consider two non parallel lines a,b of E . Then (aub)~(anb) isapseudo-oval.
c) Let E be the affine plane over a field F , char F+2 , possessing an involut-
orial antiautomorphism t . Then

{ (x,y) € F? | b+ gyt =1 }
is a pseudo-oval.

Consider now a 3-dimensional affine space A® and let E be a plane of A®. If C
is a fixed pseudo-oval of E and g a fixed 1ine of A® with card(gnE)=1, then
define the cylinder Z to be the set of all points of A , which are on a line
h//g with Cnh+@ . Call the lines heZ with h//g generators. Then the follow-
ing theorem holds true:

Define the points of Z to be the spears and the sets enZ to be the cycles,
where e is an arbitrary plane of A® such that enZ+@ and such that e con-
tains no generator. Then this is a generalized Laguerre plane, which is a Laguerre
plane iff there are no three distinct and collinear points in C .

Remark 1 : Omitting characteristic 2, a semi-quadric, which leads to a proper gene-
ralized Mébius plane, can be canonically described as the set of points (x,,X;sX;sX,)
of a 3-dimensional projective space such that

x1x1t - xzdxzt+ xax“t+ x“x3t= 0.
Here t denotes the underlying involutorial antiautomorphism. d 1is an element
with d=db , which is assumed to be not of form kk' . As one easily can check
there does not exist such an element d in the finite case. So the construction
of finite and proper generalized Laguerre planes does not carry over to the gene-
ralized Mobius case.

Remark 2 : Consider the 3-dimensional projective space P2 over a field F,charFs2,
possessing an involutorial antiautomorphism t . Then the geometry of plane sections

of
(X,.V,Z,W) ep? | th+_yyt- ZZt = th

certainly leads to a notion of generalized Minkowski planes. One should define a
common basis for generalized circle planes as it was proposed for circle geometries,
s. H.-R. Halder, W. Heise [18] .

§ 3 Lorentz transformations.

First of all we like to describe the situation over the field R of reals.
Given the R", n>2 . Then

PQ := (q,=P,) ™ oo + (A, = Po)” - (@ - PF
is called the Lorentz-Minkowski distance of the pointa P(PysevssPp)sQ(qqseeesqp)
of the R" . In physics the notion P<Q for P,QeR' 1is of importance: P< Q

stands for PQ<0 and pp<qp . The bijection s of the RM is called a causal
automorphism in case P<Q 'irf‘f PS<QS holds for all P,Q€ERM .,

The maﬁping s : R"5R" is called a Lorentz transformation iff PQ = PSQS for all
P,QERM , It turns out that Lorentz transformations are bijective affine mappings
of the RP .

The two basic theorems of space-time geometry are the following:

Theorem 1 (A.D. Alexandrov,[1]). Let n be >3 and let s be a bijection of the
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R" such that PQ =0 iff P5QS =0 for all P,Q€R™ . Then s must be a Lorentz
transformation up to a dilatation.

Theorem 2 (A.D. Alexandrov, V.V. Ovchinnikova,[2]). Let n be >3 and let s be
a causal automorphism of the RPN . Then s must be a Lorentz tranformation up to a
dilatation.

We have proved ([61,[7]1) the following

Theorem 3 . Let n be =22 and let r<0 be a fixed real number. In case n =2
we also allow r>0 . Consider a mapping s : R"=R" such that PQ = r implies
PSQs = r for all P,Q€ER™ . Then s must be a Lorentz transformation.

J. Lester has proved that Theorem 3 remains true for n>2 and r>0 (to appear
Arch. Math.).

In [8] we have shown that Theorem 1 is equivalent to the Fundamental Theorem of the
(n-1)-dimensional Laguerre geometry. By the way, Theorem 1,2 are not true in case

n =2 . Theorem 1 has been generalized by J. Lester,[20], to the case of arbitrary
metric vector spaces of index=1 . H. Schaeffer,[23], has pointed out connections

between the Theorem of June Lester and the geometry of Laguerre.

We now Tike to concentrate ourselves on the case n = 2 . By changing the coordi-
nate system of the R2 we can replace the Lorentz-Minkowski form x2-y2 by xy
as we will do in the sequel. We are thus working in the sequel with the distance

6(P,Q) := (a,-p,)(a;-p;)
for the points P(p,,pz)» Q(q,,95) .
In this new situation P<Q simply reads as q,-p,20 and q,-p,20.
The following Theorem is due to F. Rado:
Theorem ([21]). Consider a commutative field F, char F#2,3 . Let s be a bijec-
tion of the plane F2 such that &(P,Q) = 1 holds true iff &(PS,Q5) =1 for all

P,QEF* . Then s must be a collineation of F2 .
Mappings s in this Theorem of F. Rado are obviously of form (x,y)-(x',y') such

that ' t
x'=ax +b
y'=%yt+c

°r ‘'=a yt +b
yieixtec

where t€Aut F and a+0, b, ¢ are in F . We thus can say that s 1is a Lorentz
transformation up to an automorphism t of F . In the Jdrnefelt world GF(p) , p

a big prime number, we are thus led to Lorentz transformations. It might be remarked,
that Rado's Theorem is not true for F=GF(q) with qe€ {3,4,8,9,16} (s.[10],III).

In [10] we have posed the following

Problem 1 : Given a commutative field F . Determine all mappings s of F> into
itself such that

v p,qers 6(PQ) = 1 implies s(P5,Q5) =1 .

As was pointed out in [10] this problem is (for char F#2) equivalent with the
following

Problem 2 : Given a fixed k#0 in F . Determine all mappings s of F* into
itself such that

Vp ger? d(P.Q) = k implies d(P%,Q°) = k
(Here d(P,Q) stands for (q, 'p1)2 - (qz'pz)z-)
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Let us call F regular in case that all the solutions of Problem 1 (for F) are
(bijective) collineations.

The following result can be proved
Theorem : F = GF(p") 1is regular for
a) p#2,3,5,7 ,

b) p€{5,7} and n even ,

¢) p=7,n odd and 3|n ,

d p"=7

GF(5) 1s not regular.

In proving this Theorem in [10](and in a forthcoming paper of mine) a result of
G. Tallini, [25] , plays an important rBle. The cases F = GF(5), GF(7), GF(11)
in this Theorem are due to H.-J. Samaga,[22], who was applying a computer.

Remark : In an earlier paper B. Farrahi,[17], deals with injective solutions of
Problem 1 for GF(p) including also other metrics. The infinite dimensional case
for F =R 1is included in E.M. Schroder,[24].

Fhis last Theorem corresponds to our Theorem 3. i
We now like to find a correspondence to Theorem 1 in case n=2 and F = GF(p ).
(Note that n>3 s one of the assumptions in the Theorem of June Lester.)

Three distinct points of the R", n22 , are pairwise of Lorentz-Minkowski distance
0 1iff they are on a common 1ight Tine. Thus light lines are mapped onto Tight lines
under bijections, which preserve Lorentz-Minkowski distance 0 in both directions.

The Tight lines in our general situation (observe n = 2) are the lines parallel to
the x-axis or to the y-axis. Thus preservance of light lines means almost nothing:
If, for instance, f,g are bijections of F, then (x,y)-(f(x),9(y)) 1is a bijec-
tion of F? preserving light lines and thus distance 0 1in both directions. Of
course Theorem 1 cannot be true for n =2 in Jdrnefelt's world GF(p), p a big
prime number. But having in the R-world two coordinate systems of a Tine moving
against each other with constant speed v ,one knows that the four world lines of
both origins in both line-time coordinate systems must be lines. Taking this into
accouat we arrive at the following mathmatical situation ([9]) in case F = GF(q),
q=7p
Given two copies C,, C, of the affine plane over F = GF(q) and moreover two
pencils of Tines in each copy, say L'+L2 in C, and Lz*L: in C, . Consider
a bijection

S X1 - X2 §
where X; denotes the set of points of Cq . Assume that every line of L) 9%
mapped under s onto a line of L}, i =1,2 . Consider two distinct lines h,,h,
of C, not in L,'uL? and two diStinct lines k,,k, of C, not in LJuLj2. By

L, L2 L. LS
a = ! ! (similarly, A = 2 2 )
h, h, K, k,

we denote the cross ratio of the points of intersection of L,', L2, h,, h, with

the infinite line of C, . Assume finally, hf = ki » 1 =1,2 . Then the following
holds true :

Theorem ([9]1) . If a 1is a primitive (q-1)th root of unity and if there is an auto-
morphism t of GF(q) such that A = al |, then s is an affine mapping of C,
onto C, .

The assumption A = ab s of course necessary since the cross ratio a has to be
transformed under an affine mapping in A = a% , t€Aut GF(q) . But also the other
assumptions of this Theorem are essentially necessary as we have shown in [9],

where the other occuring cases are discussed (s. the two theorems below). In a real
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situation of the R-world it must be A = a corresponding to the fact that t = 1
is the only automorphism of R . That a needs to be a primitive (g-1)th root of
unity expresses the fact that only for certain speeds v the connecting transfor-
mation is of Lorentz type. For other speeds v complicated connecting transforma-
tions may occur according to the

Theorem ([9]1) . If a 1is not a primitive (g-1)th root of unity, if in case a =1
the number q 1is #4 and not a prime number, and if furthermore there exists
t€Aut GF(q) such that A = a , then there exists a bijection s : X4 Xz such
that the following conditions hold:

(i

s s _
(ii ) hi = k.

s 1is not an affine mapping ,

g =12,

(iii) Every line of Lﬂ is mapped under s onto a line of L; , 1=1,2

In this connection we finally mention the

Theorem ([9]) . If A=a=1 and if q {is a prime number or equal to 4, then any
bijection s : X;-X, having the properties (ii), (iii) of the previous theorem
must be an affine mapping of C, onto C,
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THE GEOMETRY ON GRASSMANN MANIFOLDS REPRESENTING
SUBSPACES IN A GALOIS SPACE

Giuseppe Tallini

Istituto Matematico "G. Castelnuovo", Universitd di Roma, Italy

1. ON THE GRASSMANN MANIFOLD G 4 q

Let PG(r,q) be an r-dimensional (r = 3) Galois space of order q (q =
= ph, p a prime, h a non-negative integer). The Grassmann manifold repre-
senting the d-flats (d-dimensional subspaces), 1< d<r - 2, in PG(r,q)

will be denoted by Gr . Such a manifold - as it is well known - is an

»d,q
algebraic manifold, intersection of quadrics, in PG( (511)- 1,9) and has

d
(1.1) 16, g9l = 7_: s . /8

points, where
S
(1.2) s = ) q .

Let Sd be a d-flat in PG(r,q); its Grassmann coordinates will be the
coordinates of the point representing it in PG( (g:})- 1,q); therefore, a
pencil of d-flats (i.e. all the d-flats through a (d-1)-flat contained in
the same (d+1)-flat)will be represented by a Tine; conversely, any line on
G is the image of a pencil of d-flats. Thus, two d-flats in PG(r,q)

r,d,q

meeting in a (d-1)-flat are represented by two points on Gr d,q such that

the line through them is completely contained in G . Now, recall that

in PG(r,q) a collection of d-flats which pairwise ;;2£qin a (d-1)-flat
consists of either d-flats through the same (d-1)-flat or d-flats belonging
to the same (d+1}flat; next, the following definitions will be made.

A (d,s)-star, 1<s<r-d, in PG(r,q) is the set of all d-flats
through a (d-1)-flat belonging to a fixed (d+s)-flat. (Such a set is also

called an s-dimensional star of d-flats through a (d-1)-flat).
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A (d,s)-dual-star, 1 <s <d+1, is the set of all d-flats belonging to
a (d+1)-flat and passing through a fixed (d-s)-flat. (Such a set is also called
an s-dimensional star of d-flats in a (d+1)-flat).

Therefore, any s-dimensional subspace (s-space) on Gr represents

either a (d,s)-star or a (d,s)-dual-star in PG(r,q), and céi&grse1y.

For any a, 1<s<r-d, Zs will denote the collection of s-spaces on
Gr,d,q each of which represents a (d,s)-star in PG(r,q). For any t, 1<t<d+1,
2% will denote the collection of those t-spaces on Gr,d,q
presents a (d,t)-dual-star in PG(r,q). Obviously, Z] = zi is the collection,

each of which re-

R, of lines on G . Furthermore, G
r,d,q r,d,q

. . .
maximal spaces, namely Zr-d and Zd+1’ an element T in Zr

the d-flats in PG(r,q) through a fixed (d-1)-flat and an element T' in Zé+1

contains exactly two collections of

-4 representing all

representing all d-flats in PG(r,q) belonging to a fixed (d+1)-flat.

It is easy to prove:

(1.3) TTef o Ty #T2=IT1 nT2| <1,

(1.4) T Ty€xy s T Ty =T, nT <1,

(1.5) Te Zr—d’ T' € Zé+] = either TNT'=0 or TNT'ER,
(1.6) Ver =aTer  :UCT,

(1.7) VU’ezé:a! Tlezcllﬂ : U1,

(1.8) ¥ e R 33!T€Zr_d, H!TIGZ(;H'I $LCTNT.

The geometry on Gr is the study (which the author started in [2]) of

»d,q

point k-sets on G with respect to zs (s =1,2,...,r-d) and Zé (t=1585:5s

r.d,q
d+1), that is the study of k-sets of d-flats with respect to (linear) families

of d-flats in PG(r,q), Such an investigation is the subject of this paper.

Remark. On Gr 1.9 the two collections of maximal spaces are Zr—1 (whose ele-
ments represent the stars of lines in PG(r.q), such a star consisting of all

lines through a point) and Zé = P (whose elements represent the ruled planes



